
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(9): 21531–21553.
DOI: 10.3934/math.20231097
Received: 01 May 2023
Revised: 16 June 2023
Accepted: 24 June 2023
Published: 06 July 2023

Research article

Iterative methods to solve the constrained Sylvester equation

Siting Yu, Jingjing Peng*, Zengao Tang and Zhenyun Peng

College of Mathematics and Computational Science, Guilin University of Electronic Technology,
Guilin 541004, China

* Correspondence: Email: jjpeng2012@163.com.

Abstract: In this paper, the multiple constraint least squares solution of the Sylvester equation
AX + XB = C is discussed. The necessary and sufficient conditions for the existence of solutions
to the considered matrix equation are given. Noting that the alternating direction method of multipliers
(ADMM) is a one-step iterative method, a multi-step alternating direction method of multipliers
(MSADMM) to solve the considered matrix equation is proposed and some convergence results of the
proposed algorithm are proved. Problems that should be studied in the near future are listed. Numerical
comparisons between MSADMM, ADMM and ADMM with Anderson acceleration (ACADMM) are
included.

Keywords: nonlinear matrix equation; fixed point iteration algorithm; Anderson acceleration
algorithm; Thompson distance
Mathematics Subject Classification: 15A24, 65F30

1. Introduction

The Sylvester equation

AX + XB = C (1.1)

appears frequently in many areas of applied mathematics. We refer readers to the elegant survey
by Bhatia and Rosenthal [1] and the references therein for the history of the Sylvester equation and
many interesting and important theoretical results. The Sylvester equation is important in a number of
applications such as matrix eigenvalue decompositions [2,3], control theory [3–5], model reduction [6–
9], physics mathematics to construct exact solutions of nonlinear integrable equations [10], feature
problemss of slice semi-regular functions [11] and the numerical solution of the matrix differential
Riccati equations [12–14]. There are several numerical algorithms to compute the solution of the
Sylvester equation. The standard ones are the Bartels Stewart algorithm [15] and the Hessenberg Schur

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231097

21532

method first described by Enright [14], but more often attributed to Golub, Nash and Van Loan [16].
Other computationally efficient approaches for the case that both A and B are stable, i.e., both A and
B have all their eigenvalues in the open left half plane, are the sign function method [17], Smith
method [18] and ADI iteration methods [19–22]. All these methods are efficient for the small size of
the dense matrices A and B.

The recent interest is directed more towards the large and sparse matrices A and B, and C with low
rank. For the dense A and B, the approach based on the sign function method is suggested in [23]
that exploits the low rank structure of C. This approach is further used in [24] in order to solve the
large scale Sylvester equation with sparse A and B, i.e., the matrices A and B can be represented by
O(nlog(n)) data. Problems for the sensitivity of the solution of the Sylvester equation are also widely
studied. There are several books that contain the results for these problems [25–27].

In this paper, we focus our attention on the multiple constrained least squares solution of the
Sylvester equation, that is, the following multiple constrained least squares problem:

min
XT =X,L≤X≤U,λmin(X)≥ε>0

f (X) =
1
2
‖AX + XB −C‖2 (1.2)

where A, B,C, L and U are given n× n real matrices, X is a n× n real symmetric matrix which we wish
to find, λmin(X) represents the smallest eigenvalue of the symmetric matrix X, and ε is a given positive
constant. The inequality X ≥ Y , for any two real matrices, means that Xi j ≥ Yi j, here Xi j and Yi j denote
the i jth entries of the matrices X and Y , respectively.

Multiple constrained conditions least squares estimations of matrices are widely used in
mathematical economics, statistical data analysis, image reconstruction, recommendation problems
and so on. They differ from the ordinary least squares problems, and the estimated matrices are usually
required to be symmetric positive definite, bounded and, sometimes, to have some special construction
patterns. For example, in the dynamic equilibrium model of economy [28], one needs to estimate an
aggregate demand function derived from second order analysis of the utility function of individuals.
The formulation of this problem is to find the least squares solution of the matrix equation AX = B,
where A and B are given, the fitting matrix X is a symmetric and bounded matrix, and the smallest
eigenvalue is no less than a specified positive number since, in the neighborhood of equilibrium, the
approximate of the utility function is a quadratic and strictly concave with Hessian matrix. Other
examples discussed in [29, 30] are respectively to find a symmetric positive definite patterned matrix
closest to a sample covariance matrix and to find a symmetric and diagonally dominant matrices with
positive diagonal matrix closest to a given matrix. Based on the above analysis, we have a strong
motivation to study the multiple constrained least squares problem (1.2).

In this paper, we first transform the multiple constrained least squares (1.2) into an equivalent
constrained optimization problem. Then, we give the necessary and sufficient conditions for the
existence of a solution to the equivalent constrained optimization problem. Noting that the alternating
direction method of multipliers (ADMM) is one-step iterative method, we propose a multi-step
alternating direction method of multipliers (MSADMM) to the multiple constrained least squares (1.2),
and analyze the global convergence of the proposed algorithm. We will give some numerical examples
to illustrate the effectiveness of the proposed algorithm to the multiple constrained least squares (1.2)
and list some problems that should be studied in the near future. We also give some numerical
comparisons between MSADMM, ADMM and ADMM with Anderson acceleration (ACADMM).

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21533

Throughout this paper, Rm×n, S Rn×n and S Rn×n
0 denote the set of m×n real matrices, n×n symmetric

matrices and n × n symmetric positive semidefinite matrices, respectively. In stands for the n × n
identity matrix. A+ denotes a matrix with i jth entry equal to max {0, Ai j}. The inner product in space
Rm×n defined as 〈A, B〉 = tr(AT B) =

∑
i j Ai jBi j for all A, B ∈ Rm×n, and the associated norm is Frobenius

norm denoted by ‖A‖. PΩ(X) denotes the projection of the matrix X onto the constrained matrix set Ω,
that is PΩ(X) = arg minZ∈Ω ‖Z − X‖.

2. Preliminaries

In this section, we give an existence theorem for a solution of the multiple constrained least
squares problem (1.2) and some theoretical results for the optimization problems which are useful
for discussions in the next sections.

Theorem 2.1. The matrix X̃ is a solution of the multiple constrained least squares problem (1.2) if and
only if there exist matrices Λ̃1, Λ̃2 and Λ̃3 such that the following conditions (2.1)–(2.4) are satisfied.

AT (AX̃ + X̃B −C) + (AX̃ + X̃B −C)BT − Λ̃1 + Λ̃2 − Λ̃3 = 0, (2.1)

〈Λ̃1, X̃ − L〉 = 0, X̃ − L ≥ 0, Λ̃1 ≥ 0, (2.2)

〈Λ̃2,U − X̃〉 = 0,U − X̃ ≥ 0, Λ̃2 ≥ 0, (2.3)

〈
Λ̃3 + Λ̃T

3 , X̃ − εIn

〉
= 0, X̃ − εIn ∈ S Rn×n

0 , Λ̃3 + Λ̃T
3 ∈ S Rn×n

0 . (2.4)

Proof. Obviously, the multiple constrained least squares problem (1.2) can be rewritten as

min
X∈S Rn×n

F(X) =
1
2
‖AX + XB −C‖2 (2.5)

s.t. X − L ≥ 0,U − X ≥ 0, X − εIn ∈ S Rn×n
0 .

Then, if X̃ is a solution to the constrained optimization problem (2.5), X̃ certainly satisfies KKT
conditions of the constrained optimization problem (2.5), and hence of the multiple constrained least
squares problem (1.2). That is, there exist matrices Λ̃1, Λ̃2 and Λ̃3 such that conditions (2.1)–(2.4) are
satisfied.

Conversely, assume that there exist matrices Λ̃1, Λ̃2 and Λ̃3 such that conditions (2.1)–(2.4) are
satisfied. Let

F̄(X) = F(X) − 〈Λ̃1, X − L〉 − 〈Λ̃2,U − X〉 −
〈

Λ̃3+Λ̃T
3

2 , X − εIn

〉
,

then, for any matrix W ∈ S Rn×n, we have

F̄(X̃ + W)

=
1
2
‖A(X̃ + W) + (X̃ + W)B −C‖2

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21534

−〈Λ̃1, X̃ + W − L〉 − 〈Λ̃2,U − X̃ −W〉 −
〈

Λ̃3+Λ̃T
3

2 , X̃ + W − εIn

〉
= F̄(X̃) +

1
2
‖AW + WB‖2 + 〈AW + WB, AX̃ + X̃B −C〉

−〈Λ̃1,W〉 + 〈Λ̃2,W〉 −
〈

Λ̃3+Λ̃T
3

2 ,W
〉

= F̄(X̃) +
1
2
‖AW + WB‖2

+〈W, AT (AX̃ + X̃B −C) + (AX̃ + X̃B −C)BT − Λ̃1 + Λ̃2 − Λ̃3〉

= F̄(X̃) +
1
2
‖AW + WB‖2

≥ F̄(X̃).

This implies that X̃ is a global minimizer of the function F̄(X) with X ∈ S Rn×n. Since

〈Λ̃1, X̃ − L〉 = 0, 〈Λ̃2,U − X̃〉 = 0,
〈

Λ̃3 + Λ̃T
3 , X̃ − εIn

〉
= 0,

and F̄(X) ≥ F̄(X̃) holds for all X ∈ S Rn×n, we have

F(X) ≥ F(X̃) + 〈Λ̃1, X − L〉 + 〈Λ̃2,U − X〉 +
〈

Λ̃3+Λ̃T
3

2 , X − εIn

〉
.

Noting that Λ̃1 ≥ 0, Λ̃2 ≥ 0 and Λ̃3 + Λ̃T
3 ∈ S Rn×n

0 , then F(X) ≥ F(X̃) holds for all X with X − L ≥ 0,
U − X ≥ 0 and X − εIn ∈ S Rn×n

0 . Hence, X̃ is a solution of the constrained optimization problem (2.5),
that is, X̃ a solution of the multiple constrained least squares problem (1.2). �

Lemma 2.1. [31] Assume that x̃ is a solution of the optimization problem

min f (x) s.t. x ∈ Ω,

where f (x) is a continuously differentiable function, Ω is a closed convex set, then

〈∇ f (x̃), x − x̃〉 ≥ 0, ∀x ∈ Ω.

Lemma 2.2. [31] Assume that (x̃1, x̃2, ..., x̃n) is a solution of the optimization problem

min
n∑

i=1

fi(xi) s.t.
n∑

i=1

Aixi = b, xi ∈ Ωi, i = 1, 2, ..., n (2.6)

where fi(xi) (i = 1, 2, ..., n) are continuously differentiable functions, Ωi (i = 1, 2, ..., n) are closed
convex sets, then

〈∇xi f (x̃i) − AT
i λ̃, xi − x̃i〉 ≥ 0, ∀xi ∈ Ωi, i = 1, 2, ..., n,

where λ̃ is a solution to the dual problem of (2.6).

Lemma 2.3. Assume that Ω = {X ∈ Rn×n : L ≤ X ≤ U}, then, for any matrix M ∈ Rn×n, if Y =

PΩ(Y − M), we have
〈(M)+,Y − L〉 = 0, 〈(−M)+,U − Y〉 = 0.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21535

Proof. Let

Z̃ = arg min
Z∈Ω
‖Z − (Y − M)‖2

and noting that the optimization problem

min
Z∈Ω
‖Z − (Y − M)‖2

is equivalent to the optimization problem

min
Z∈Rn×n,Z−L≥0,U−Z≥0

‖Z − (Y − M)‖2, (2.7)

then Z̃ satisfies the KKT conditions for the optimization problem (2.7). That is, there exist matrices
Λ̃1 ≥ 0 and Λ̃2 ≥ 0 such that

Z̃ − Y + M − Λ̃1 + Λ̃2 = 0, 〈Λ̃1, Z̃ − L〉 = 0, 〈Λ̃2,U − Z̃〉 = 0, Z̃ − L ≥ 0, U − Z̃ ≥ 0.

Since
Y = PΩ(Y − M) = arg min

Z∈Ω
‖Z − (Y − M)‖2,

then
M − Λ̃1 + Λ̃2 = 0, 〈Λ̃1,Y − L〉 = 0, 〈Λ̃2,U − Y〉 = 0, Y − L ≥ 0, U − Y ≥ 0.

So we have from the above conditions that (Λ̃1)i j(Λ̃2)i j = 0 when Li j , Ui j, and (Λ̃1)i j and (Λ̃2)i j can
be arbitrarily selected as (Λ̃1)i j ≥ 0 and (Λ̃2)i j ≥ 0 when Li j = Ui j. Noting that M = Λ̃1 − Λ̃2, Λ̃1 and
Λ̃2 can be selected as Λ̃1 = (M)+ and Λ̃2 = (−M)+. Hence, the results hold. �

Lemma 2.4. Assume that Ω = {X ∈ Rn×n : XT = X, λmin(X) ≥ ε > 0}, then, for any matrix M ∈ Rn×n, if
Y = PΩ(Y − M), we have

〈M + MT ,Y − εIn〉 = 0, M + MT ∈ S Rn×n
0 ,Y − εIn ∈ S Rn×n

0 .

Proof. Let

Z̃ = arg min
Z∈Ω
‖Z − (Y − M)‖2

and noting that the optimization problem

min
Z∈Ω
‖Z − (Y − M)‖2

is equivalent to the optimization problem

min
Z∈S Rn×n,Z−εIn∈S Rn×n

0

‖Z − (Y − M)‖2, (2.8)

then Z̃ satisfies the KKT conditions for the optimization problem (2.8). That is, there exists a matrix
Λ̃ ∈ S Rn×n

0 such that

Z̃ − Y + M − Λ̃ + (Z̃ − Y + M − Λ̃)T = 0, 〈Λ̃, Z̃ − εIn〉 = 0, Z̃ − εIn ∈ S Rn×n
0 .

Since
Y = PΩ(Y − M) = arg min

Z∈Ω
‖Z − (Y − M)‖2,

then

M + MT − 2Λ̃ = 0, 〈Λ̃,Y − εIn〉 = 0, Y − εIn ∈ S Rn×n
0 .

Hence, the results hold. �

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21536

3. Accelerated ADMM

In this section we give a multi-step alternating direction method of multipliers (MSADM) tothe
multiple constrained least squares problem (1.2). Obviously, the multiple constrained least squares
problem (1.2) is equivalent to the following constrained optimization problem

min
X

F(X) =
1
2
‖AX + XB −C‖2, (3.1)

s.t. X − Y = 0, X − Z = 0,
X ∈ Rn×n,

Y ∈ Ω1 = {Y ∈ Rn×n : L ≤ Y ≤ U},

Z ∈ Ω2 = {Z ∈ Rn×n : ZT = Z, λmin(Z) ≥ ε > 0}.

The Lagrange function, augmented Lagrangian function and dual problem to the constrained
optimization problem (3.1) are, respectively,

L(X,Y,Z,M,N) = F(X) − 〈M, X − Y〉 − 〈N, X − Z〉, (3.2)

Lα(X,Y,Z,M,N) = F(X) +
α

2
‖X−Y−M/α‖2 +

α

2
‖X−Z−N/α‖2, (3.3)

max
M,N∈Rn×n

inf
X∈Rn×n,Y∈Ω1,Z∈Ω2

L(X,Y,Z,M,N), (3.4)

where M and N are Lagrangian multipliers and α is penalty parameter.
The alternating direction method of multipliers [32, 33] to the constrained optimization problem

(3.1) can be described as the following Algorithm 3.1.

Algorithm 3.1. ADMM to solve problem (3.1).

Step 1. Input matrices A, B,C, L and U. Input constant ε > 0, error tolerance εout > 0 and penalty
parameter α > 0. Choose initial matrices Y0,Z0,M0,N0 ∈ Rn×n. Let k =: 0;
Step 2. Compute

(a) Xk+1 = arg min
X∈Rn×n

Lα(X,Yk,Zk,Mk,Nk), (3.5)

(b) Yk+1 = arg min
Y∈Ω1

Lα(Xk+1,Y,Zk,Mk,Nk) = PΩ1(Xk+1 − Mk/α),

(c) Zk+1 = arg min
Z∈Ω2

Lα(Xk+1,Yk+1,Z,Mk,Nk) = PΩ2(Xk+1 − Nk/α),

(d) Mk+1 = Mk − α(Xk+1 − Yk+1),
(e) Nk+1 = Nk − α(Xk+1 − Zk+1);

Step 3. If (‖Yk+1 − Yk‖
2 + ‖Zk+1 − Zk‖

2 + ‖Mk+1 −Mk‖
2 + ‖Nk+1 − Nk‖

2)1/2 < εout, stop. In this case, Xk+1

is an approximate solution of problem (3.1);
Step 4. Let k =: k + 1 and go to step 2.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21537

Alternating direction method of multipliers (ADMM) has been well studied in the context of the
linearly constrained convex optimization. In the last few years, we have witnessed a number of
novel applications arising from image processing, compressive sensing and statistics, etc. ADMM
is a splitting version of the augmented Lagrange method (ALM) where the ALM subproblem is
decomposed into multiple subproblems at each iteration, and thus the variables can be solved separably
in alternating order. ADMM, in fact, is one-step iterative method, that is, the current iterates is
obtained by the information only from the previous step, and the convergence rate of ADMM is only
linear, which was proved in [33]. In this paper we propose a multi-step alternating direction method
of multipliers (MSADMM), which is more effective than ADMM, to the constrained optimization
problem (3.1). The iterative pattern of MSADMM can be described as the following Algorithm 3.2.

Algorithm 3.2. MSADMM to solve problem (3.1).

Step 1. Input matrices A, B,C, L and U. Input constant ε > 0, error tolerance εout > 0, penalty
parameter α > 0 and correction factor γ ∈ (0, 2). Choose initial matrices Y0,Z0,M0,N0 ∈ Rn×n. Let
k =: 0;
Step 2. ADMM step

(a) X̃k = arg min
X∈Rn×n

Lα(X,Yk,Zk,Mk,Nk), (3.6)

(b) M̃k = Mk − α(X̃k − Yk), (3.7)
(c) Ñk = Nk − α(X̃k − Zk), (3.8)
(d) Ỹk = arg min

Y∈Ω1
Lα(X̃k,Y,Zk, M̃k, Ñk) = PΩ1(X̃k − M̃k/α), (3.9)

(e) Z̃k = arg min
Z∈Ω2

Lα(X̃k, Ỹk,Z, M̃k, Ñk) = PΩ2(X̃k − Ñk/α); (3.10)

Step 3. Correction step

(a) Yk+1 = Yk − γ(Yk − Ỹk), (3.11)
(b) Zk+1 = Zk − γ(Zk − Z̃k), (3.12)
(c) Mk+1 = Mk − γ(Mk − M̃k). (3.13)
(d) Nk+1 = Nk − γ(Nk − Ñk); (3.14)

Step 4. If (‖Yk+1 − Yk‖
2 + ‖Zk+1 − Zk‖

2 + ‖Mk+1 −Mk‖
2 + ‖Nk+1 − Nk‖

2)1/2 < εout, stop. In this case, X̃k is
an approximate solution of problem (3.1);
Step 5. Let k =: k + 1 and go to step 2.

Compared to ADMM, MSADMM yields the new iterate in the order X → M → N → Y → Z
with the difference in the order of X → Y → Z → M → N. Despite this difference, MSADMM and
ADMM are equally effective to exploit the separable structure of (3.1) and equally easy to implement.
In fact, the resulting subproblems of these two methods are of the same degree of decomposition and
they are of the same difficulty. We shall verify by numerical experiments that these two methods are
also equally competitive in numerical senses, and that, if we choose the correction factor γ suitably,
MSADMM is more efficient than ADMM.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21538

4. Convergence analysis

In this section, we prove the global convergence and the O(1/t) convergence rate for the proposed
Algorithm 3.2. We start the proof with some lemmas which are useful for the analysis of coming
theorems.

To simplify our analysis, we use the following notations throughout this section.

Ω = Rn×n ×Ω1 ×Ω2 × Rn×n × Rn×n;V =


Y
Z
M
N

 ;W =

(
X
V

)
;

G(W) =


∇F(X) − M − N

M
N

X − Y
X − Z


;

Q =


αIn 0 In 0
0 αIn 0 In

In 0 1
α

In 0
0 In 0 1

α
In

 .
Lemma 4.1. Assume that (X∗,Y∗,Z∗) is a solution of problem (3.1), (M∗,N∗) is a solution of the dual
problem (3.4) to the constrained optimization problem (3.1), and that the sequences {Vk} and {W̃k}

are generated by Algorithm 3.2, then we have

〈Vk −V
∗,Q(Vk − Ṽk)〉 ≥ 〈Vk − Ṽk,Q(Vk − Ṽk)〉. (4.1)

Proof. By (3.6)–(3.10) and Lemma 2.1, we have, for any (X,Y,Z,M,N) ∈ Ω, that

〈
X − X̃k

Y − Ỹk

Z − Z̃k

M − M̃k

N − Ñk


,


∇F(X̃k) − M̃k − Ñk

M̃k

Ñk

X̃k − Ỹk

X̃k − Z̃k


+


0 0 0 0
αIn 0 In 0
0 αIn 0 In

In 0 1
α

In 0
0 In 0 1

α
In




Ỹk − Yk

Z̃k − Zk

M̃k − Mk

Ñk − Nk


〉
≥ 0, (4.2)

or compactly,

〈W − W̃k,G(W̃k) +

(
0
Q

)
(Ṽk −Vk)〉 ≥ 0. (4.3)

ChoosingW asW∗ =

(
X∗

V∗

)
, then (4.3) can be rewritten as

〈Ṽk −V
∗,Q(Vk − Ṽk)〉 ≥ 〈W̃k −W

∗,G(W̃k)〉.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21539

Noting that the monotonicity of the gradients of the convex functions, we have by Lemma 2.2 that

〈W̃k −W
∗,G(W̃k)〉 ≥ 〈W̃k −W

∗,G(W∗)〉 ≥ 0.

Therefore, the above two inequalities imply that

〈Ṽk −V
∗,Q(Vk − Ṽk)〉 ≥ 0,

from which the assertion (4.1) is immediately derived. �

Noting that the matrix Q is a symmetric and positive semi-definite matrix, we use, for convenience,
the notation

‖Vk − Ṽk‖Q :=
√
〈Vk − Ṽk,Q(Vk − Ṽk)〉.

Then, the assertion (4.1) can be rewritten as

〈Vk −V
∗,Q(Vk − Ṽk)〉 ≥ ‖Vk − Ṽk‖

2
Q. (4.4)

Lemma 4.2. Assume that (X∗,Y∗,Z∗) is a solution of the constrained optimization problem (3.1),
(M∗,N∗) is a solution of the dual problem (3.4) to the constrained optimization problem (3.1), and
that the sequences {Vk}, {Ṽk} are generated by Algorithm 3.2. Then, we have

‖Vk+1 −V
∗‖2Q ≤ ‖Vk −V

∗‖2Q − γ(2 − γ)‖Vk − Ṽk‖
2
Q. (4.5)

Proof. By elementary manipulation, we obtain

‖Vk+1 −V
∗‖2Q = ‖(Vk −V

∗) − γ(Vk − Ṽk)‖2Q
= ‖Vk −V

∗‖2Q − 2γ〈Vk −V
∗,Q(Vk − Ṽk)〉 + γ2‖Vk − Ṽk‖

2
Q

≤ ‖Vk −V
∗‖2Q − 2γ‖Vk − Ṽk‖

2
Q + γ2‖Vk − Ṽk‖

2
Q

= ‖Vk −V
∗‖2Q − γ(2 − γ)‖Vk − Ṽk‖

2
Q,

where the inequality follows from (4.1) and (4.4). �

Lemma 4.3. The sequences {Vk} and {W̃k} generated by Algorithm 3.2 satisfy

〈W − W̃k,G(W̃k)〉 +
1

2γ
(‖V −Vk‖

2
Q − ‖V −Vk+1‖

2
Q) ≥ (1 −

γ

2
)‖Vk − Ṽk‖

2
Q (4.6)

for any (X,Y,Z,M,N) ∈ Ω.

Proof. By (4.2) or its compact form (4.3), we have, for any (X,Y,Z,M,N) ∈ Ω, that

〈W − W̃k,G(W̃k)〉 ≥ −〈W − W̃k,

(
0
Q

)
(Ṽk −Vk)〉 = 〈V − Ṽk,Q(Vk − Ṽk)〉. (4.7)

Thus, it suffices to show that

〈V − Ṽk,Q(Vk − Ṽk)〉 +
1

2γ
(‖V −Vk‖

2
Q − ‖V −Vk+1‖

2
Q) ≥ (1 −

γ

2
)‖Vk − Ṽk‖

2
Q. (4.8)

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21540

By using the formula 2〈a,Qb〉 = ‖a‖2Q + ‖b‖2Q − ‖a − b‖2Q, we derive that

〈V −Vk+1,Q(Vk −Vk+1)〉 =
1
2
‖V −Vk+1‖

2
Q +

1
2
‖Vk −Vk+1‖

2
Q −

1
2
‖V −Vk‖

2
Q. (4.9)

Moreover, since (3.11)–(3.14) can be rewritten as (Vk −Vk+1) = γ(Vk − Ṽk), we have

〈V −Vk+1,Q(Vk − Ṽk)〉 =
1
γ
〈V −Vk+1,Q(Vk −Vk+1)〉. (4.10)

Combining (4.9) and (4.10), we obtain

〈V −Vk+1,Q(Vk − Ṽk)〉 =
1

2γ
(‖V −Vk+1‖

2
Q − ‖V −Vk‖

2
Q) +

1
2γ
‖Vk −Vk+1‖

2
Q. (4.11)

On the other hand, we have by using (3.11)–(3.14) that

〈Vk+1 − Ṽk,Q(Vk − Ṽk)〉 = (1 − γ)‖Vk − Ṽk‖
2
Q. (4.12)

By adding (4.11) and (4.12), and again using the fact that (Vk −Vk+1) = γ(Vk − Ṽk), we obtain that

〈V − Ṽk,Q(Vk − Ṽk)〉

=
1

2γ
(‖V −Vk+1‖

2
Q − ‖V −Vk‖

2
Q) +

1
2γ
‖Vk −Vk+1‖

2
Q + (1 − γ)‖Vk − Ṽk‖

2
Q

=
1

2γ
(‖V −Vk+1‖

2
Q − ‖V −Vk‖

2
Q) + (1 −

γ

2
)‖Vk − Ṽk‖

2
Q

which is equivalent to (4.8). Hence, the lemma is proved. �

Theorem 4.1. The sequences {Vk} and {W̃k} generated by Algorithm 3.2 are bounded, and
furthermore, any accumulation point X̃ of the sequence {X̃k} is a solution of problem (1.2).

Proof. The inequality (4.5) with the restriction γ ∈ (0, 2) implies that
(i) limk→∞ ‖Vk − Ṽk‖Q = 0;
(ii) ‖Vk −V

∗‖Q is bounded upper.
Recall that the matrix Q is symmetric and positive semi-definite. Thus, we have by the assertion (i)

that Q(Vk − Ṽk) = 0 (k → ∞) which, together with (3.7) and (3.8), imply that Ỹk = X̃k = Z̃k (k → ∞).
The assertion (ii) implies that the sequences {Yk}, {Zk}, {Mk} and {Nk} are bounded. Equations (3.11)–
(3.14) hold, and the sequences {Yk}, {Zk}, {Mk} and {Nk} are bounded imply the sequence {Ỹk}, {Z̃k},
{M̃k} and {Ñk} are also bounded. Hence, by the clustering theorem and together with (3.11)–(3.14),
there exist subsequences {X̃k}K , {Ỹk}K , {Z̃k}K , {M̃k}K , {Ñk}K , {Yk}K , {Zk}K , {Mk}K and {Nk}K such that

lim
k→∞,k∈K

X̃k = X̃, lim
k→∞,k∈K

Ỹk = lim
k→∞,k∈K

Yk = Ỹ , lim
k→∞,k∈K

Z̃k = lim
k→∞,k∈K

Zk = Z̃,

lim
k→∞,k∈K

M̃k = lim
k→∞,k∈K

Mk = M̃, lim
k→∞,k∈K

Ñk = lim
k→∞,k∈K

Nk = Ñ.

Furthermore, we have by (3.7) and (3.8) that

X̃ = Ỹ = Z̃. (4.13)

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21541

By (3.6)–(3.8), we have

AT (AX̃k + X̃kB −C) + (AX̃k + X̃kB −C)BT − M̃k − Ñk = 0.

So we have

AT (AX̃ + X̃B −C) + (AX̃ + X̃B −C)BT − M̃ − Ñ = 0. (4.14)

Let k → ∞, k ∈ K , we have by (3.9), (3.10) and (4.13) that

X̃ = PΩ1(X̃ − M̃/α), X̃ = PΩ2(X̃ − Ñ/α). (4.15)

Noting that α > 0, we have by (4.15), Lemma 2.3 and Lemma 2.4 that

〈M̃+, X̃ − L〉 = 0, X̃ − L ≥ 0, (4.16)

〈(−M̃)+,U − X̃〉 = 0,U − X̃ ≥ 0, (4.17)

and

〈Ñ + ÑT , X̃ − εI〉 = 0, Ñ + ÑT ∈ S Rn×n
0 , X̃ − εI ∈ S Rn×n

0 . (4.18)

Let

Λ̃1 = (M̃)+, Λ̃2 = (−M̃)+, Λ̃3 = Ñ,

we have by (4.14) and (4.16)–(4.18) that
AT (AX̃ + X̃B −C) + (AX̃ + X̃B −C)BT − Λ̃1 + Λ̃2 − Λ̃3 = 0
〈Λ̃1, X̃ − L〉 = 0, X̃ − L ≥ 0, Λ̃1 ≥ 0,
〈Λ̃2,U − X̃〉 = 0,U − X̃ ≥ 0, Λ̃2 ≥ 0,
〈Λ̃3 + Λ̃T

3 , X̃ − εI〉 = 0, X̃ − εI ∈ S Rn×n
0 , Λ̃3 + Λ̃T

3 ∈ S Rn×n
0 .

(4.19)

Hence, we have by Theorem 2.1 that X̃ is a solution of problem (1.2). �

Theorem 4.2. Let the sequences {W̃k} be generated by Algorithm 3.2. For an integer t > 0, let

W̃t =
1

t + 1

t∑
k=0

W̃k, (4.20)

then 1
t+1

∑t
k=0(X̃k, Ỹk, Z̃k, M̃k, Ñk) ∈ Ω and the inequality

〈W̃t −W,G(W)〉 ≤
1

2γ(t + 1)
‖V −V0‖

2
Q (4.21)

holds for any (X,Y,Z,M,N) ∈ Ω.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21542

Proof. First, for any integer t > 0, we have (X̃k, Ỹk, Z̃k, M̃k, Ñk) ∈ Ω for k = 0, 1, 2, · · · , t. Since
1

t+1

∑t
k=0 W̃k can be viewed as a convex combination of W̃′

ks, we obtain

1
t + 1

t∑
k=0

(X̃k, Ỹk, Z̃k, M̃k, Ñk) ∈ Ω.

Second, since γ ∈ (0, 2), it follows from Lemma 4.3 that

〈W − W̃k,G(W̃k)〉 +
1

2γ
(‖V −Vk‖

2
Q − ‖V −Vk+1‖

2
Q) ≥ 0,∀(X̃k, Ỹk, Z̃k, M̃k, Ñk) ∈ Ω. (4.22)

By combining the monotonicity of G(W) with the inequality (4.22), we have

〈W − W̃k,G(W)〉 +
1

2γ
(‖V −Vk‖

2
Q − ‖V −Vk+1‖

2
Q) ≥ 0,∀(X,Y,Z,M,N) ∈ Ω.

Summing the above inequality over k = 0, 1, · · · , t, we derive that

〈(t + 1)W−

t∑
k=0

W̃k,G(W)〉 +
1

2γ
(‖V −V0‖

2
Q − ‖V −Vt+1‖

2
Q) ≥ 0,∀(X,Y,Z,M,N) ∈ Ω.

By dropping the minus term, we have

〈(t + 1)W−

t∑
k=0

W̃k,G(W)〉 +
1

2γ
‖V −V0‖

2
Q ≥ 0,∀(X,Y,Z,M,N) ∈ Ω.

which is equivalent to

〈
1

t + 1

t∑
k=0

W̃k −W,G(W)〉 ≤
1

2γ(t + 1)
‖V −V0‖

2
Q,∀(X,Y,Z,M,N) ∈ Ω.

The proof is completed. �

Noting that problem (3.1) is equivalent to find (X∗,Y∗,Z∗,M∗,N∗) ∈ Ω such that the following
inequality

〈W −W∗,G(W∗)〉 ≥ 0 (4.23)

holds for any (X,Y,Z,M,N) ∈ Ω. Theorem 4.2 means that, for any initial matrices Y0,Z0,M0,N0 ∈

Rn×n, the point W̃t defined in (4.20) satisfies

〈W̃t −W
∗,G(W∗)〉 ≤

‖V∗ −V0‖
2
Q

2γ(t + 1)
,

which means the point W̃t is an approximate solution of (4.23) with the accuracy O(1/t). That is, the
convergence rate O(1/t) of the Algorithm 3.2 is established in an ergodic sense.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21543

5. Numerical experiments

In this section, we present some numerical examples to illustrate the convergence of MSADMM to
the constrained least squares problem (1.2). All tests were performed by Matlab 7 with 64-bit Windows
7 operating system. In all tests, the constant ε = 0.1, matrices L with all elements are −1 and U with
all elements are 3. The matrices A, B and C are randomly generated, i.e., generated in Matlab style as
A = randn(n, n), B = randn(n, n), C = randn(n, n). In all algorithms, the initial matrices are chosen
as the null matrices. The maximum number of inner iterations and out iterations are restricted to 5000.
The error tolerance εout = εin = 10−9 in Algorithms 3.1 and 3.2. The computational methods of the
projection PΩi(X) (i = 1, 2) are as follows [38].

PΩ1(X) =


Xi j, if Li j ≤ Xi j ≤ Ui j

Ui j, if Xi j > Ui j

Li j, if Xi j < Li j

, PΩ2(X) = Wdiag(d1, d2, · · · , dn)WT

where

di =

{
λi(X+XT

2), if λi(X+XT

2) ≥ ε
ε, if λi(X+XT

2) < ε

and W is such that X+XT

2 = W∆WT is spectral decomposition, i.e., WT W = I and ∆ =

diag(λ1(X+XT

2), λ2(X+XT

2), · · · , λn(X+XT

2)). We use LSQR algorithm described in [34] with necessary
modifications to solve the subproblems (3.5) in Algorithm 3.1, (3.6) in Algorithm 3.2 and (6.1) in
Algorithm 6.2.

The LSQR algorithm is an effective method to solve consistent linear matrix equation or least square
problem of inconsistent linear matrix equation. Using this iterative algorithm, for any initial matrix, a
solution can be obtained within finite iteration steps if exact arithmetic is used. In addition, using this
iterative algorithm, a solution with minimum Frobenius norm can be obtained by choosing a special
kind of initial matrix, and a solution which is nearest to given matrix in Frobenius norm can be obtained
by first finding minimum Frobenius norm solution of a new consistent matrix equation. The LSQR
algorithm to solve the subproblems (3.5), (3.6) and (6.1) can be described as follows:

Algorithm 5.1. LSQR algorithm to solve subproblems (3.5) and (3.6).

Step 1. Input matrices A, B,C,Yk,Zk,Mk and Nk, penalty parameter α > 0 and error tolerance εin.
Compute

η1 =

(
‖C‖2 +

∥∥∥∥ √αYk + Mk√
α

∥∥∥∥2
+

∥∥∥∥ √αZk + Nk√
α

∥∥∥∥2
)1/2

,

U (1)
1 =

C
η1
, U (2)

1 =

√
αYk + Mk√

α

η1
, U (3)

1 =

√
αZk + Nk√

α

η1
,

ξ1 = ‖AT U (1)
1 + U (1)

1 BT +
√
αU (2)

1 +
√
αU (3)

1 ‖,

Γ1 =
AT U (1)

1 + U (1)
1 BT +

√
αU (2)

1 +
√
αU (3)

1

ξ1
,

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21544

Φ1 = Γ1, φ̄ = η1, ρ̄1 = ξ1.

Let i =: 1;

Step 2. Compute

ηi+1 = (‖AΓi + ΓiB − ξiU
(1)
i ‖

2 + ‖
√
αΓi − ξiU

(2)
i ‖

2 + ‖
√
αΓi − ξiU

(3)
i ‖

2)1/2,

U (1)
i+1 =

AΓi + ΓiB − ξiU
(1)
i

ηi+1
, U (2)

i+1 =

√
αΓi − ξiU

(2)
i

ηi+1
, U (3)

i+1 =

√
αΓi − ξiU

(3)
i

ηi+1
,

ξi+1 = ‖AT U (1)
i+1 + U (1)

i+1BT +
√
αU (2)

i+1 +
√
αU (3)

i+1 − ηi+1Γi‖,

Γi+1 =
AT U (1)

i+1 + U (1)
i+1BT +

√
αU (2)

i+1 +
√
αU (3)

i+1 − ηi+1Γi

ξi+1
,

ρi = (ρ̄2
i + η2

i+1)1/2, ci =
ρ̄i

ρi
, si =

ηi+1

ρi
, θi+1 = siξi+1, ρ̄i+1 = −ciξi+1,

φi = ciφ̄i, φ̄i+1 = siφ̄i,

Xi+1 = Xi +
φi

ρi
Φi, Φi+1 = Γi+1 −

θi+1

ρi
Φi;

Step 3. If ‖Xi+1 − Xi‖ < εin, terminate the execution of the algorithm. (In this case, Xi is a solution of
problem (3.5) or (3.6));
Step 4. Let i =: i + 1 and go to step 2.

Table 1 reports the average computing time (CPU) of 10 tests of Algorithm 3.1 (ADMM) and
Algorithm 3.2 (MSADMM) with penalty parameter α = n. Figures 1–4 report the computing time
of ADMM with the same size of problem and different penalty parameters α. Figures 5–8 report the
computing time of MSADMM with the same size of problem and different correction factor γ. Figure 9
reports the computing time curve of Algorithm 3.1 (ADMM) and Algorithm 3.2 (MSADMM) with
different matrix size.

Table 1. Numerical comparisons between MSADMM and ADMM.

α=n ADMM MSADMM(γ=0.8) MSADMM(γ=1.0) MSADMM(γ=1.5)
20 0.0846 0.1254 0.0865 0.0538
40 0.3935 0.4883 0.3836 0.2676
80 1.3370 1.6930 1.3726 0.8965

100 2.4766 3.1514 2.5015 1.6488
150 5.8780 7.3482 5.8742 3.9154
200 11.6398 14.6023 11.6162 7.6576
300 35.1929 41.4151 32.9488 21.4898
400 83.7386 108.9807 86.0472 56.8144
500 147.5759 183.4758 144.2038 92.3137
600 242.0408 302.6395 241.6225 157.8042

Based on the tests reported in Table 1, Figures 1–9 and many other performed unreported tests
which show similar patterns, we have the following results:

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21545

Remark 5.1. The convergence speed of ADMM is directly related to the penalty parameter α. In
general, the penalty parameter α in this paper can be chosen as α ≈ n (see Figures 1–4). However,
how to select the best penalty parameter α is an important problem should be studied future time.

Remark 5.2. The convergence speed of MSADMM is direct relation to the penalty parameter α and
the correction factor γ. The selection of the penalty parameter α is similar to ADMM since MSADMM
is a direct extension of ADMM. For the correction factor γ, as showed in Table 1 and Figures 5–8,
aggressive values such as γ ≈ 1.5 are often preferred. However, how to select the best correction
factor γ is also an important problem should be studied future time.

Remark 5.3. As showed in Table 1 and Figure 9, MSADMM, with the correction factor γ ≈ 1.5 and
the penalty parameter α be chosen as the same as ADMM, is more effective than ADMM.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

α

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 1. Computing times (seconds) vs. the values of α for n=40.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

α

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 2. Computing times (seconds) vs. the values of α for n=60.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21546

0 100 200 300 400 500 600
0

5

10

15

20

25

α

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 3. Computing times (seconds) vs. the values of α for n=80.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

α

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 4. Computing times (seconds) vs. the values of α for n=100.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 5. Computing times (seconds) vs. the values of γ for α=n=40.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21547

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

γ

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 6. Computing times (seconds) vs. the values of γ for α=n=60.

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

γ

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 7. Computing times (seconds) vs. the values of γ for α=n=80.

0 0.5 1 1.5 2
0

5

10

15

20

25

γ

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

Figure 8. Computing times (seconds) vs. the values of γ for α=n=100.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21548

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

Matrix size (n)

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

ADMM

MSADMM(γ=0.8)

ACADMM(γ=1)

ACADMM(γ=1.5)

Figure 9. Numerical comparisons between ADMM and MSADMM.

6. Algorithm 3.1 with Anderson acceleration

Anderson acceleration, or Anderson mixing, was initially developed in 1965 by Donald
Anderson [35] as an iterative procedure to solve some nonlinear integral equations arising in physics.
It turns out that the Anderson acceleration is very efficient to solve other types of nonlinear equations
as well, see [36–38], and the literature cited therein. When Anderson acceleration is applied to the
equation f (x) = g(x) − x = 0, the iterative pattern can be described as the following Algorithm 6.1.

Algorithm 6.1. Anderson accelerated method to solve the equation f (x) = 0.

Given x0 ∈ Rn and an integer m ≥ 1 this algorithm produces a sequence xk of iterates intended to
converge to a fixed point of the function g : Rn → Rn

Step 1. Compute x1 = g(x0);
Step 2. For k = 1, 2, · · · until convergence;
Step 3. Let mk = min(m, k);
Step 4. Compute λk = (λ1, λ2, · · · , λmk)

T ∈ Rmk that solves

min
λ∈Rmk

‖ f (xk) −
mk∑
j=1

λ j(f (xk−mk+ j) − f (xk−mk+ j−1))‖22;

Step 5. Set

xk+1 = g(xk) +

mk−1∑
j=1

λ j[g(xk−mk+ j+1) − g(xk−mk+ j)].

In this we define the following matrix functions

f (Y,Z,M,N) = g(Y,Z,M,N) − (Y,Z,M,N),

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21549

where g(Yk,Zk,Mk,Nk) = (Yk+1,Zk+1,Mk+1,Nk+1) with Yk+1,Zk+1,Mk+1 and Nk+1 are computed by (b)–
(e) in Algorithm 3.1, and let fk = f (Yk,Zk,Mk,Nk), gk = g(Yk,Zk,Mk,Nk), then Algorithm 3.1 with
Anderson acceleration can be described as the following Algorithm 6.2.

Algorithm 6.2. Algorithm 3.1 with Anderson acceleration to solve problem (3.1).

Step 1. Input matrices A, B,C, L and U. Input constant ε > 0, error tolerance εout > 0, penalty
parameter α > 0 and integer m ≥ 1. Choose initial matrices Y0,Z0,M0,N0 ∈ Rn×n. Let k =: 0;
Step 2. Compute

Xk+1 = arg min
X∈Rn×n

Lα(X,Yk,Zk,Mk,Nk); (6.1)

Step 3. Let mk = min(m, k);
Step 4. Compute λk = (λ1, λ2, · · · , λmk)

T ∈ Rmk that solves

min
λ∈Rmk

‖ fk −

mk∑
j=1

λ j(fk−mk+ j+1 − fk−mk+ j)‖2;

Step 5. Set

(Yk+1,Zk+1,Mk+1,Nk+1) = gk +

mk−1∑
j=1

λ j(gk−mk+ j+1 − gk−mk− j);

Step 6. If (‖Yk+1 − Yk‖
2 + ‖Zk+1 − Zk‖

2 + ‖Mk+1 −Mk‖
2 + ‖Nk+1 − Nk‖

2)1/2 ≤ εout, stop. In this case, Xk+1

is an approximate solution of problem (3.1);
Step 7. Let k =: k + 1 and go to step 2.

Table 2. Numerical comparisons between MSADMM and ACADMM.

α=n MSADMM(γ=1.5) ACADMM(m=2) ACADMM(m=10) ACADMM(m=20)
20 0.0735 0.0991 0.0521 0.0647
40 0.2595 0.3485 0.2186 0.2660
80 1.1866 1.1319 1.0232 1.1069

100 1.7750 2.2081 1.6003 1.7660
150 3.8474 5.2760 3.5700 3.9587
200 7.6133 10.8719 6.9807 7.7318
300 21.2970 28.5379 18.8233 19.9526
400 56.2133 74.3192 44.8087 46.5275
500 98.0542 130.2326 75.6044 80.1480
600 157.7573 208.1124 125.2842 133.4549

Algorithm 6.2 (ACADMM) is m-step iterative method, that is, the current iterates is obtained by
the linear combination of the previous m steps. Furthermore, the combination coefficients of the

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21550

linear combination are modified at each iteration steps. Compared to ACADMM, Algorithm 3.2
(MSADMM) is two-step iterative method and the combination coefficients of the linear combination
are fixed at each iteration steps. The convergence speed of ACADMM is directly related to the penalty
parameter α and the backtracking step m. The selection of the penalty parameter α is the same as
ADMM since ACADMM’s iterates are corrected by ADMM’s iterates. For the backtracking step m,
as showed in Table 2 (the average computing time of 10 tests) and Figure 10, aggressive values such as
m = 10 are often preferred (in this case, ACADMM is more efficient than MSADMM). However, how
to select the best backtracking step m is an important problem which should be studied in near future.

0 100 200 300 400 500 600
0

50

100

150

200

250

Matrix size (n)

C
o

m
p

u
te

 t
im

e
(s

e
c
o

n
d

s
)

MSADMM(γ=1.5)

ACADMM(m=2)

ACADMM(m=10)

ACADMM(m=20)

Figure 10. Numerical comparisons between MSADMM and ACADMM.

7. Conclusions

In this paper, the multiple constraint least squares solution of the Sylvester equation AX + XB = C
is discussed. The necessary and sufficient conditions for the existence of solutions to the considered
problem are given (Theorem 2.1). MSADMM to solve the considered problem is proposed and some
convergence results of the proposed algorithm are proved (Theorem 4.1 and Theorem 4.2). Problems
which should be studied in the near future are listed. Numerical experiments show that MSADMM
with a suitable correction factor γ is more effective than ADMM (See Table 1 and Figure 10), and
ACADMM with a suitable backtracdking step m is the most effective of ADMM, MSADMM and
ACADMM (See Table 2 and Figure 10).

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

21551

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant number
11961012) and Special Research Project for Guangxi Young Innovative Talents (grant number
AD20297063).

Conflict of interest

The authors declare no competing interests.

References

1. R. Bhatia, P. Rosenthal, How and why to solve the operator equation AX − XB = Y , Bull. London
Math. Soc., 29 (1997), 1–21. https://doi.org/10.1112/S0024609396001828

2. G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Johns Hopkins University Press,
Baltimore, Maryland, 1996.

3. V. Sima, Algorithms for linear quadratic optimization, Pure and Applied Mathematics, New York:
Marcel Dekker, Inc., 1996.

4. B. Datta, Numerical methods for linear control systems, Design and Analysis, Academic Press,
2004. https://doi.org/10.1016/B978-0-12-203590-6.X5000-9

5. A. Locatelli, Optimal control: an introduction, Birkhäuser Basel, 2001.

6. R. W. Aldhaheri, Model order reduction via real Schur-form decomposition, Int. J. Control, 53
(1991), 709–716. https://doi.org/10.1080/00207179108953642

7. A. C. Antoulas, Approximation of large scale dynamical systems, Society for Industrial and Applied
Mathematics, Philadelphia, 2005.

8. U. Baur, P. Benner, Cross-gramian based model reduction for data-sparse systems, Electron. Trans.
Numer. Anal., 31 (2008), 256–270.

9. D. C. Sorensen, A. C. Antoulas, The Sylvester equation and approximate balanced reduction,
Linear Algebra Appl., 351-352 (2002), 671–700. https://doi.org/10.1016/S0024-3795(02)00283-
5

10. Y. Sun, C. Wu, S. Zhao, Applications of the Sylvester equation for the lattice BKP system, Theor.
Math. Phys., 214 (2023), 354–368. https://doi.org/10.1134/S0040577923030042

11. A. Altavilla, C. de Fabritiis, Equivalence of slice semi-regular functions via Sylvester operators,
Linear Algebra Appl., 607 (2020), 151–189. https://doi.org/10.1016/j.laa.2020.08.009

12. C. H. Choi, A. J. Laub, Efficient matrix-valued algorithm for solving stiff Riccati differential
equations, IEEE Trans. Autom. Control, 35 (1989), 770–776. https://doi.org/10.1109/9.57015

13. L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM
J. Numer. Anal., 29 (1992), 781–815. https://doi.org/10.1137/0729049

14. W. H. Enright, Improving the efficiency of matrix operations in the numerical solution
of stiff ordinary differential equations, ACM Trans. Math. Software, 4 (1978), 127–136.
https://doi.org/10.1145/355780.355784

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

http://dx.doi.org/https://doi.org/10.1112/S0024609396001828
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-203590-6.X5000-9
http://dx.doi.org/https://doi.org/10.1080/00207179108953642
http://dx.doi.org/https://doi.org/10.1016/S0024-3795(02)00283-5
http://dx.doi.org/https://doi.org/10.1016/S0024-3795(02)00283-5
http://dx.doi.org/https://doi.org/10.1134/S0040577923030042
http://dx.doi.org/https://doi.org/10.1016/j.laa.2020.08.009
http://dx.doi.org/https://doi.org/10.1109/9.57015
http://dx.doi.org/https://doi.org/10.1137/0729049
http://dx.doi.org/https://doi.org/10.1145/355780.355784

21552

15. R. H. Bartels, G. W. Stewart, Algorithm 432: the solution of the matrix equation AX − BX = C,
Commun. ACM, 15 (1972), 820–826. https://doi.org/10.1145/361573.361582

16. G. Golub, S. Nash, C. F. Van Loan, A Hessenberg-Schur method for the matrix equation AX+XB =

C, IEEE Trans. Automat. Control, 24 (1979), 909–913. https://doi.org/10.1109/TAC.1979.1102170

17. J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the
sign function, Int. J. Control, 32 (1980), 677–687. https://doi.org/10.1080/00207178008922881

18. R. A. Smith, Matrix equation XA + BX = C, SIAM J. Appl. Math., 16 (1968), 198–201.
https://doi.org/10.1137/0116017

19. D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images,
SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. https://doi.org/10.1137/S0895479894273687

20. N. Truhar, R. C. Li, On ADI method for Sylvester equations, Technical Report 2008-02,
Department of Mathematics, University of Texas at Arlington, 2008.

21. E. L. Wachspress, Trail to a Lyapunov equation solver, Comput. Math. Appl., 55 (2008), 1653–
1659. https://doi.org/10.1016/j.camwa.2007.04.048

22. E. Wachspress, Adi iteration parameters for solving Lyapunov and Sylvester equations, Technical
Report, March, 2009.

23. P. Benner, Factorized solution of Sylvester equations with applications in control, Processing of
the 16th International Symposium on Mathematical Theory of Network and Systems (MTNS 2004),
Leuven, Belgium, 2004.

24. U. Baur, Low rank solution of data sparse Sylvester equations, Numer. Linear Algebra Appl., 15
(2008), 837–851. https://doi.org/10.1002/nla.605

25. M. Konstantinov, D. W. Gu, V. Mehrmann, P. Petkov, Perturbation theory for matrix equations,
Elsevier, 2003.

26. N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadelphia, 1996.

27. G. W. Stewart, J. G. Sun, Matrix perturbation theory, Academic Press, Harcourt Brace Jovanovich,
1990.

28. G. B. Dantzig, Deriving a utility function for the economy, Technical Report SOL 85-6R,
Department of Operations Research, Stanford University, Stanford, CA 1985.

29. H. Hu, I. Olkin, A numerical procedure for finding the positive definite matrix closest to a patterned
matrix, Stat. Probab. Lett., 12 (1991), 511–515. https://doi.org/10.1016/0167-7152(91)90006-D

30. M. Monsalve, J. Moreno, R. Escalante, M. Raydan, Selective alternating projections to find the
nearest SDD+ matrix, Appl. Math. Comput., 145 (2003), 205–220. https://doi.org/10.1016/S0096-
3003(02)00478-2

31. S. Q. Ma, Alternating proximal gradient method for convex minimization, J. Sci. Comput., 68
(2016), 546–572. https://doi.org/10.1007/s10915-015-0150-0

32. D. P. Bertsekas, J. N. Tsitsiklis, Parallel and distributed computation: numerical methods,
Prentice-Hall, Inc., 1989.

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

http://dx.doi.org/https://doi.org/10.1145/361573.361582
http://dx.doi.org/https://doi.org/10.1109/TAC.1979.1102170
http://dx.doi.org/https://doi.org/10.1080/00207178008922881
http://dx.doi.org/https://doi.org/10.1137/0116017
http://dx.doi.org/https://doi.org/10.1137/S0895479894273687
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.04.048
http://dx.doi.org/https://doi.org/10.1002/nla.605
http://dx.doi.org/https://doi.org/10.1016/0167-7152(91)90006-D
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(02)00478-2
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(02)00478-2
http://dx.doi.org/https://doi.org/10.1007/s10915-015-0150-0

21553

33. J. Eckstein, D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318.
https://doi.org/10.1007/BF01581204

34. Z. Y. Peng, A matrix LSQR iterative method to solve matrix equation AXB = C, Int. J. Comput.
Math., 87 (2010), 1820–1830. https://doi.org/10.1080/00207160802516875

35. D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM, 12 (1965), 547–560.
https://doi.org/10.1145/321296.321305

36. H. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear
Algebra Appl., 16 (2009), 197–221. https://doi.org/10.1002/nla.617

37. H. F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49
(2011), 1715–1735. https://doi.org/10.1137/10078356X

38. N. J. Higham, N. Strabic, Anderson acceleration of the alternating projections method
for computing the nearest correlation matrix, Numer. Algor., 72 (2016), 1021–1042.
https://doi.org/10.1007/s11075-015-0078-3

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 9, 21531–21553.

http://dx.doi.org/https://doi.org/10.1007/BF01581204
http://dx.doi.org/https://doi.org/10.1080/00207160802516875
http://dx.doi.org/https://doi.org/10.1145/321296.321305
http://dx.doi.org/https://doi.org/10.1002/nla.617
http://dx.doi.org/https://doi.org/10.1137/10078356X
http://dx.doi.org/https://doi.org/10.1007/s11075-015-0078-3
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Accelerated ADMM
	Convergence analysis
	 Numerical experiments
	Algorithm 3.1 with Anderson acceleration
	Conclusions

