Processing math: 73%
Research article

A novel event-triggered constrained control for nonlinear discrete-time systems

  • In this paper, a novel event-triggered optimal control method is developed for nonlinear discrete-time systems with constrained inputs. First, a non-quadratic utility function is constructed to overcome the challenge caused by saturating actuators. Second, a novel triggering condition is designed to reduce computational burden. Difference from other triggering conditions, fewer assumptions are required to guarantee asymptotic stability. Then, the optimal cost function and control law are obtained by constructing the action-critic network. Convergence analysis of the system is provided in the consideration of the system state and neural network weight estimation errors. Finally, the effectiveness and correctness of the proposed method are verified by two numerical examples.

    Citation: Yuanyuan Cheng, Yuan Li. A novel event-triggered constrained control for nonlinear discrete-time systems[J]. AIMS Mathematics, 2023, 8(9): 20530-20545. doi: 10.3934/math.20231046

    Related Papers:

    [1] Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123
    [2] Brice Landry Doumbé Bangola . Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298
    [3] Franck Davhys Reval Langa, Armel Judice Ntsokongo . A conserved phase-field model based on type II heat conduction. AIMS Mathematics, 2018, 3(2): 288-297. doi: 10.3934/Math.2018.2.288
    [4] Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102
    [5] Armel Andami Ovono, Alain Miranville . On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24
    [6] Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215
    [7] Cyril Dennis Enyi, Soh Edwin Mukiawa . Dynamics of a thermoelastic-laminated beam problem. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338
    [8] Yang Wang, Jihui Wu . Long-time dynamics of nonlinear MGT-Fourier system. AIMS Mathematics, 2024, 9(4): 9152-9163. doi: 10.3934/math.2024445
    [9] Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095
    [10] Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202
  • In this paper, a novel event-triggered optimal control method is developed for nonlinear discrete-time systems with constrained inputs. First, a non-quadratic utility function is constructed to overcome the challenge caused by saturating actuators. Second, a novel triggering condition is designed to reduce computational burden. Difference from other triggering conditions, fewer assumptions are required to guarantee asymptotic stability. Then, the optimal cost function and control law are obtained by constructing the action-critic network. Convergence analysis of the system is provided in the consideration of the system state and neural network weight estimation errors. Finally, the effectiveness and correctness of the proposed method are verified by two numerical examples.



    The Caginalp phase-field system

    tu+Δ2uΔf(u)=Δθ, (1.1)
    tαΔθ=tu, (1.2)

    has been proposed in [1] to model phase transition phenomena, e.g. melting-solidification phenomena, in certain classes of materials. In this context, u is the order parameter and θ the relative temperature (relative to the equilibrium melting temperature), f is a given function (precisely, the derivative of a doublewell potential F). This system has been studied, e.g., [2,6,7,8,9,10,11,13,15] and [17].

    Equations (1.1) and (1.2) are based on the total free energy

    Ψ(u,θ)=Ω(12|u|2+F(u)uθ12θ2)dx, (1.3)

    where Ω is the domain occupied by the material (we assume that it is a bounded and smooth domain of Rn, n=2 or 3 with boundary Γ).

    We then introduce the enthalpy H defined by

    H=θψ, (1.4)

    where denotes a variational derivative, so that

    H=u+θ. (1.5)

    The gouverning equations for u and θ are finally given by

    tu=Δuψ, (1.6)

    where u stands for the variational derivative with respect to u, which yields (1.1). Then, we have the energy equation

    tH=divq, (1.7)

    where q is the thermal flux vector. Assuming the classical Fourier law

    q=θ, (1.8)

    we obtain (1.1) and (1.2).

    Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called "paradox of heat conduction", see, e.g. [5]). Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.

    A different approach to heat conduction was proposed in the Sixties (see, [14,16]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature θ, influencing the heat conduction contribution, and the thermodynamic temperature, appearing in the heat supply part. For time-independent models, it appears that these two temperatures coincide in absence of heat supply. Actually, they are generally different in time for example, [8] and references therein for more discussion on the subject. In particular, this happens for non-simple materials. In that case, the two temperatures are related as follows (see [4,5]).

    θ=αα, (1.9)

    Our aim in this paper is to study a generalization of the Caginalp phase-field system based on these two temperatures theory and the usual Fourier law with a nonlinear coupling. In particular, we obtain the existence and the uniqueness of the solutions and we prove the existence of the exponential attractors and, thus, of finite-dimensional global attractors.

    We consider the following initial and boundary value problem:

    tu+Δ2uΔf(u)=Δg(u)(αα), (2.1)
    tαΔtα+Δ2αΔα=g(u)tu, (2.2)
    u=Δu=α=Δα=0onΓ, (2.3)
    u|t=0=u0,α|t=0=α0, (2.4)

    where Γ is the boundary of the spatial domain Ω.

    We make the following assumptions on nonlinearities f and g:

    fisofclassC2(R),f(0)=0,gC2(R),g(0)=0, (2.5)
    G(s)∣<c1F(s)+c2,c0,c1,c20,sR, (2.6)
    g(s)s∣<c3(G(s)2+1),c30,sR, (2.7)
    c4sk+2c5F(s)f(s)s+c0c6sk+2c7,c4,c6>0,c5,c70,sR, (2.8)
    g(s)∣<c8(s+1),g(s)∣≤c9c8,c90,sR, (2.9)
    f(s)∣≤c10(sk+1),c100,sR, (2.10)

    where k is an integer, G(s)=s0g(τ)dτ,and,F(s)=s0f(τ)d(τ).

    We denote by . the usual L2-norm (with associated scalar product ((., .))) and set .1=(Δ)12., where Δ denotes the minus Laplace operator with Dirichlet boundary conditions. More generally, .X denotes the norm in the Banach space X. Throughout this paper, the same letters c, c and c denotes (generally positive) constants which may change from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may change from line to line, or even in a same line.

    Remark 2.1. In our case, to obtain equations (2.1) and (2.2), the total free energy reads in terms of the conductive temperature θ

    ψ(u,θ)=Ω(12|u|2+F(u)G(u)θ12θ2)dx, (2.11)

    where f=F and g=G, and (1.6) yields, in view of (1.9), the evolution equation for the order parameter (2.1). Furthermore, the enthalpy now reads

    H=G(u)+θ=G(u)+αα,

    which yields thanks to (1.7), the energy equation,

    αtαt+divq=g(u)ut.

    Considering the usual Fourier law (q=θ), we have (2.2).

    We can note that we still have an infinite speed of propagation here.

    The estimates derived in this section are formal, but they can easily be justified within a Galerkin scheme. In what follows, the Poincaré, Hölder and Young inequalities are extensively used, Without further referring to them.

    We rewrite (2.1) in the equivalent form:

    (Δ)1tuΔu+f(u)=g(u)(αΔα). (3.1)

    We multiply (3.1) by tu and integrate over Ω, we have

    ((Δ)1tu,tu)+(Δu,tu)+(f(u),tu)=(g(u)(αΔα),tu),

    which gives

    12ddt(u2+2ΩF(u)dx)+tu21=Ωg(u)tu(αΔα)dx. (3.2)

    We multiply (2.2) by (αΔα) and integrate over Ω, we have

    (tα,αΔα)+(Δ2α,αΔα)+(Δtα,αΔα)+(Δα,αΔα)=(g(u)tu,(αΔα)),

    which gives,

    12ddtαΔα2+α2+2Δα2+Δα2=Ωg(u)tu(αΔα)dx (3.3)

    (note that αΔα2=α2+2α2+Δα2).

    Summing (3.2) and (3.3), we find

    ddt(u2+αΔα2+2ΩF(u)dx)+2α2+4Δα2+2Δα2+2tu21=0, (3.4)

    which yields,

    dE1dt+c(α2+Δα2+Δα2+tu21)c. (3.5)

    where

    E1=u2+αΔα2+2ΩF(u)dx, (3.6)

    Owing to (2.8), we obtain

    c(u2H1(Ω)+α2H2(Ω)+uk+2Lk+2(Ω))cE1c"(u2H1(Ω)+α2H2(Ω)+uk+2Lk+2(Ω))c, (3.7)

    We multiply (2.1) by u and integrate over Ω, we have

    ddtu21+c(u2H1(Ω)+ΩF(u)dx)c2α2H2(Ω)+2c0. (3.8)

    Summing (3.5) and δ(3.8), where δ>0 is small enough, we have

    ddtE2+c(E2+Δα2+tu21)c,c>0, (3.9)

    where

    E2=E1+δu21,

    satifies

    c(u2H1(Ω)+uk+2Lk+2(Ω)+α2H2(Ω))cE2c(u2H1(Ω)+uk+2Lk+2(Ω)+α2H2(Ω))c,c,c>0.

    In particular, we deduce from (3.9) and Gronwall's lemma the dissipative estimate

    u(t)2H1(Ω)+u(t)k+2Lk+2(Ω)+α(t)2H2(Ω)+t0ec(ts)(Δα(s)2+tu(s)21)dsc(u02H1(Ω)+u0k+2Lk+2(Ω)+α02H2(Ω))ect,c>0,t0. (3.10)

    We multiply (2.1) by tu and integrate over Ω, we obtain

    ddtΔu2+2tu2=2ΩΔf(u)tudx2ΩΔg(u)(αΔα)tu)dx. (3.11)

    We multiply (2.2) by Δ(αΔα) and integrate over Ω, we obtain

    ddt(αΔα)2+2Δα2+4Δα2+2Δ2α=2Ωg(u)tu.Δ(αΔα)dx. (3.12)

    (note that (αΔα)2=α2+2Δα2+Δα2)

    Summing (3.11) and (3.12), we find

    ddt(Δu2+(αΔα)2)+2Δα2+4Δα2+2Δ2α2+2tu2=2(Δf(u),tu)2(Δg(u)(αΔα),tu)+2(g(u)tu,Δ(αΔα)). (3.13)

    This, let find estimates of (3.13) right terms, using H¨older inequality, owing to αH2(Ω) with continuous injection the H2(Ω)L(Ω), we have

    2|(Δf(u),tu)|cf(u)2H2(Ω)+13tu2. (3.14)

    Furthermore,

    2|(Δg(u)(αΔα),tu)|2Ω|Δg(u)||(αΔα)|L(Ω)|tu|dx2cΔg(u)tucΔg(u)2+13tu2, (3.15)

    and,

    2|(g(u)tu,Δ(αΔα))|=2|((αΔα)Δg(u),tu)|c1Δg(u)2+c3tu2. (3.16)

    Inserting (3.14), (3.15) and (3.16) into (3.13), we find

    ddt(Δu2+(αΔα)2)+2Δα2+4Δα2+2Δ2α2+c5tu2cf(u)2H2(Ω)+cΔg(u)2. (3.17)

    We recall that H2(Ω)C(¯Ω) and owing to (2.5), we obtain

    f(u)2H2(Ω)+g(u)2H2(Ω)Q(uH2(Ω)). (3.18)

    and inserting (3.18) into (3.17), we find

    ddt(Δu2+(αΔα)2)+2Δα2+4Δα2+Δ2α2+c5tu2Q(uH2(Ω)). (3.19)

    In particular, we deduce

    ddt(Δu2+(αΔα)2)Q(uH2(Ω)). (3.20)

    We set

    y=Δu2+(αΔα)2, (3.21)

    we deduce from (3.20) an inequation of the form

    yQ(y). (3.22)

    Let z be the solution to the ordinary differential equation

    z=Q(z),z(0)=y(0). (3.23)

    It follows from the comparison principle, that there exists a time

    T0=T0(u0H2(Ω),α0H3(Ω))>0 belonging to, say (0,12) such that

    y(t)z(t),t[0,T0], (3.24)

    hence

    u(t)2H2(Ω)+α(t)2H3(Ω)Q(u0H2(Ω),α0H3(Ω)),tT0. (3.25)

    We now differentiate (3.1) with respect to time, and have

    (Δ)12tuΔtu+f(u)tu=g(u)tu(αΔα)+g(u)(tαΔtα). (3.26)

    Owing to (2.2), we have

    (Δ)12tuΔtu+f(u)tu=g(u)tu(αΔα)g2(u)tu+g(u)Δα. (3.27)

    We multiply (3.27) by ttu and integrate over Ω, we find for tT0

    ddt(ttu21)+2ttu2+2(f(u)tu,ttu)=2Ωg(u)tu(αΔα).ttudx2Ωg2(u)tu.ttudx+2Ωg(u)Δα.ttudx. (3.28)

    Owing to (2.9), (3.18) and (3.25), we obtain tT0

    |2(f(u)tu,ttu)|2tQ(u0H2(Ω),α0H3(Ω))tu2Q(u0H2(Ω),α0H3(Ω))(ttu21)+t2tu2. (3.29)

    Using to the interpolation inequality note that, tu2ctu1tu.

    Owing to (3.25) and that ΔαL2(Ω)H1(Ω), we have

    |2(g(u)(Δα,ttu)|2tQ(u0H2(Ω),α0H3(Ω))ΔαtuQ(u0H2(Ω),α0H3(Ω))(tΔα2+ttu2)Q(u0H2(Ω),α0H3(Ω))(tα2H2(Ω)+ttu2). (3.30)

    Using the estimates (2.9) and owing to (3.25), we find

    |2(g(u)tu(αΔα),ttu)|2tQ(u0H2(Ω),α0H3(Ω))tu2tQ(u0H2(Ω),α0H3(Ω))tu21+t2tu2. (3.31)

    Owing to (3.25), we have

    |2(g2(u)tu,ttu,)|tQ(u0H2(Ω),α0H3(Ω))tu21+t2tu2. (3.32)

    In inserting (3.29), (3.30), (3.31), (3.32) into (3.28) and owing to (3.25), we find

    ddt(ttu21)+cttu2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))(ttu21)+ctα2H2(Ω). (3.33)

    In particular, owing to (3.5), (3.10), (3.25) and (3.33), Gronwall's lemma and, we find

    tu211tQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),t(0,T0]. (3.34)

    We multiply (3.27) by tu and integrate over Ω, we have

    ddttu21+tu2c(tu21+α2H2(Ω)). (3.35)

    Owing to (3.10), (3.25) and Granwall's lemma, then the estimates (3.35) becomes

    tu21ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))tu(T0)21,c0,tT0, (3.36)

    hence, owing to (3.34), we have

    tu21ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),c0,tT0. (3.37)

    We now rewrite (3.1), for tT0 fixed, in the form

    Δu+f(u)=hu(t),u=0onΓ, (3.38)

    where

    hu(t)=(Δ)1tu+g(u)(αΔα). (3.39)

    We multiply (3.39) by hu(t) and integrate over Ω, we have

    hu(t)2c(tu21+α2H2(Ω)). (3.40)

    Owing to (3.34)-(3.37), we obtain

    hu(t)2ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),c>0,tT0. (3.41)

    We multiply (3.38) by u, owing to (2.8) and integrate over Ω, we find

    u2+cΩF(u)dxchu(t)2+c,c>0. (3.42)

    We multiply (3.38) by Δu, owing to (3.9)-(3.25) and integrate over Ω, we have

    Δu2hu(t)2+cu2, (3.43)

    we deduce the (3.41)-(3.43), we obtain

    u(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c,c0,tT0. (3.44)

    Owing to (3.25), we find

    u(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),c0,t0. (3.45)

    Then the estimate (3.3) becomes

    ddtαΔα2+2α2+2Δα2+2Δα2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))(αΔα2+tu2). (3.46)

    Owing to (3.25) and (3.36), we have

    αΔα2+tu2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)). (3.47)

    Owing to (3.35)-(3.37) and we integrate over T0 to t, we deduce that

    α(t)2H2(Ω)+tT0(α(s)2+Δα(s)2+Δα(s)2)dsectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),tT0, (3.48)

    which implies

    α(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),c>0,tT0. (3.49)

    Combining (3.44) and (3.49), we have

    u(t)2H2(Ω)+α(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c,c0,tT0. (3.50)

    Finally, we deduce (3.35) and (3.50) that

    u(t)2H2(Ω)+α(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c,c>0,t0. (3.51)

    Integrating (3.51) between 0 to 1, we obtain

    10α(t)2H2(Ω)dtQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c. (3.52)

    We multiply (2.1) by u and integrate over Ω, we have

    ddtu2+cΔu2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))(u2+α2H3(Ω)). (3.53)

    Owing to (3.18) and (3.25), we find

    ddtu2+cΔu2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)). (3.54)

    We deduce the (3.54), we have

    10u(t)2H2(Ω)dtQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)). (3.55)

    The estimates (3.52) and (3.55) conclude that there exists T(0,1) such that

    u(T)2H2(Ω)+α(T)2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c, (3.56)

    which implies

    u(1)2H2(Ω)+α(1)2H2(Ω)Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c. (3.57)

    Owing to (3.10), (3.51) and (3.57), we have the estimate dissipative following

    u(t)2H2(Ω)+α(t)2H2(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))+c,c>0,t0. (3.58)

    We multiply (2.2) by Δtα and integrate over Ω, we have

    ddt(Δα2+Δα2)+Δtα2+tα2Q(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω))tu21. (3.59)

    Owing to (3.35)-(3.37) and integrate between T0 to t, we deduce that

    tT0(Δtα(s)2+tα(s)2)dsectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω)),tT0, (3.60)

    Setting y=Δα2,g=0 and h=tu21, we deduce from (3.60) that

    ygy+h,tt0, (3.61)

    where, owing to the above estimates, y, g and h satisfy the assumptions of the uniform Gronwall's lemme (for tt0), and for tt0+r,

    t+rtΔα2dsectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω),r)+c(r),c>0,tr, (3.62)

    which implies

    α(t)2H3(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω),r)+c(r),c>0,tr. (3.63)

    We deduce owing to (3.58) and (3.63) that

    u(t)2H2(Ω)+α(t)2H3(Ω)ectQ(u0H2(Ω),u0Lk+2(Ω),α0H3(Ω),r)+c(r),c(r)>0,tr. (3.64)

    Based on the a priori estimates, we have the

    Theorem 4.1. We assume that (u0,α0)(H2(Ω)H10(Ω)LK+2(Ω))×(H3(Ω)H10(Ω)). Then, the system (2.1)-(2.4) possesses at least solution (u,α) such that uL(0,T;H2(Ω)H10(Ω)Lk+2(Ω)), αL(0,T;H3(Ω)H10(Ω)) and tuL2(0,T;H1(Ω)),T>0.

    Proof. The proof is based on the estimate (3.64) and, e.g., a standard Galerkin scheme.

    We have, concerning the uniqueness, the following.

    Theorem 4.2. We assume that the assumptions of Theorem 4.1 hold. Then, the solution obtained in Theorem 4.1 is unique.

    Proof. Let now (u1,α1) and (u2,α2) be two solutions to (2.1)-(2.4) with initial data (u1,0,α1,0) et (u2,0,α2,0) (H2(Ω)H10(Ω)LK+2(Ω))×(H3(Ω)H10(Ω)) respectively. We set (u,α)=(u1,α1)(u2,α2) and (u0,α0)=(u1,0,α1,0)(u2,0,α2,0). Then (u,α) verifies the following problem.

    (Δ)1tuΔu(f(u1)f(u2))=g(u1)(αΔα)+(g(u1)g(u2))(α2Δα2), (4.1)
    tαΔtα+Δ2αΔα=g(u1)tu(g(u1)g(u2))tu2, (4.2)
    u=Δu=α=Δα=0onΓ, (4.3)
    u|t=0=u0,α|t=0=α0. (4.4)

    We multiply (4.1) by tu and integrate over Ω, we have

    12ddtu2+tu21+Ω(f(u1)f(u2))tudx=Ωg(u1)(αΔα)tudxΩ(g(u1)g(u2))(α2Δα2)tudx. (4.5)

    We multiply (4.2) by (αΔα) and integrate Ω, we obtain

    ddtαΔα2+2α2+4Δα2+2Δα2=2Ωg(u1)tu(αΔα)dx2Ω(g(u1)g(u2))tu2(αΔα)dx2Ω|g(u1)||(Δ)1tu||αΔα|dx+2Ω|g(u1)g(u2)||tu2||αΔα|dxc4tu21+ctu22+cαΔα2. (4.6)

    Summing (4.5) and (4.6) and integrate over Ω, we find

    ddt(u2+αΔα2)+2α2+4Δα2+2Δα2+2tu21+2Ω(f(u1)f(u2))tudx=cαΔα2+ctu22+c4tu212Ω(g(u1)g(u2))(α2Δα2)tudx+2Ωg(u1)(αΔα)tudx, (4.7)

    which implies

    ddtE4+2α2+4Δα2+2Δα2+ctu21+2Ω(f(u1)f(u2))tudx=+cαΔα2+ctu222Ω(g(u1)g(u2))(α2Δα2)tudx+2Ωg(u1)(αΔα)tudx, (4.8)

    where

    E4=u2+αΔα2,

    satisfies

    E4c(u2H1(Ω)+α2H2(Ω)). (4.9)

    Find the estimates for (4.8),

    2|((f(u1)f(u2),tu)|2|(fu1)f(u2))||(Δ)12tu|2(fu1)f(u2))2+12tu21. (4.10)

    Besides

    2(fu1)f(u2))2=2Ω|(f((u1s+(1s)u2)u|2dx2Ω|(10f((u1s+(1s)u2)dsu+10f((u1s+(1s)u2)(|u||u1|+|u||u2|)ds|2dxQ(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))u2+Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))u2Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))(u2+u2)Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))u2. (4.11)

    Inserting (4.11) into the estimates (4.10), we find

    2|((f(u1)f(u2),tu)|Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))u2+12tu21. (4.12)

    Furthermore

    2|(g(u1)g(u2)(α2Δα2),tu2)|2Ω|(g(u1)g(u2)||α2Δα2||(Δ)12tu2|dx|α2Δα2|L(Ω)(Ω|u||(Δ)12tu×10|g(su12+(1s)u2)|dsdx)Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))Ω|u||(Δ)12tu2|dxQ(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))×u2+12tu21. (4.13)

    and

    2|(g(u1)(αΔα),tu)|2|((Δ)12(g(u1))(αΔα),(Δ)12tu)|2Ω|g(u1)||αΔα||(Δ)1tu|dxΩ|g(u1)|L|αΔα||tu|1dx2cαΔαtu1cαΔα+c2tu2. (4.14)

    Inserting (4.12), (4.13) and (4.14) into (4.8), owing (3.37), we find

    ddtE4+2α2+cα2H2(Ω)+2Δα2+ctu21Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω)))(u2), (4.15)

    which gives

    ddtE4+2α2+cα2H2(Ω)+2Δα2+ctu21Q(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))E4. (4.16)

    Applying Granwall's lemme, into (4.16), we find

    u(t)2H1(Ω)+α(t)2H2(Ω)ectQ(u1,0H2(Ω),u2,0H2(Ω),α1,0H3(Ω),α2,0H3(Ω))(α02H2(Ω)+u02H1(Ω)), (4.17)

    hence the uniqueness, as well as continuous depending with respect to the initial data.

    We set Ψ=(H2(Ω)H10(Ω)LK+2(Ω))×(H3(Ω)H10(Ω)). It follows from Theorem 4.2, that we have the continuous (with respect to the H1(Ω)×H2(Ω)-norm) of the following semigroup

    S(t):ΨΨ,(u0,α0)(u(t),α(t)),

    (i.e,S(0)=I,S(t)oS(s)=S(t+s),t,s0). We then deduce from (3.47) the following theorem.

    Theorem 4.3. The semigroup S(t) is dissipative in Ψ, i.e., there exists a bounded set BΨ(called absorbing set) such that, for every bounded BΨ, there exists t0=t0(B)0 such that tt0 implies S(t)BB0.

    Remark 4.1. It is easy to see that we can assume, without loss of generality, that B0 is positively invariant by S(t),i.e.,S(t)B0B0,t0. Furthermore, it follows from (3.64) that S(t) is dissipative in H2(Ω)×H3(Ω) and it follows from (3.63) that we can take B0 in H2(Ω)×H3(Ω).

    Corollary 4.1. The semigroup S(t) possesses the global attractor A who is bounded in H2(Ω)×H3(Ω) and compact in Ψ.

    The aim of this section is to prove the existence of exponential attractors for the semigroup S(t),t0, associated to the problem (2.1)-(2.4). To do so, we need the semigroup that has to be Lipschitz continuous, satisfying the smoothing property and checking a Hölder continuous with respect to time. This is enough to conclude on the existence of exponential attractors.

    Lemma 5.1. Let (u1,α1) and (u2,α2) be two solutions to (2.1)-(2.4) with initial data (u1,0,α1,0) and (u2,0,α2,0), respectively, belonging to B0. Then, the corresponding solutions of the problem (2.1)-(2.4) satisfy the following estimate

    u1(t)u2(t)2H2(Ω)+α1(t)α2(t)2H3(Ω)cect(u1,0u2,02H1(Ω)+α1,0α2,02H2(Ω)),t1, (5.1)

    where the constants only depend on B0.

    Proof. We set (u,α)=(u1,α1)(u2,α2) and (u0,α0)=(u1,0,α1,0)(u2,0,α2,0), then (u,α) satisfies

    (Δ)1tuΔu(f(u1)f(u2))=g(u1)(αΔα)(g(u1)g(u2))(α2Δα2), (5.2)
    tαΔtα+Δ2αΔα=g(u1)tu(g(u1)g(u2))tu2, (5.3)
    u=Δu=α=Δα=0onΓ (5.4)
    u|t=0=u0,α|t=0=α0. (5.5)

    We first deduce from (4.16) that

    u(t)2+α(t)2H2(Ω)cect(u02H1(Ω)+α02H2(Ω)),c>0,t0, (5.6)

    and

    t0(α(s)2+Δα(s)2+tu(s)21)dscect(u02H1(Ω)+α02H2(Ω)),c>0,t0, (5.7)

    where the constants only depend on B0.

    We differentiate (5.2) with respect to time and have, owing to (5.3), we obtain

    (Δ)1tθ+Δθf(u1)θ+(f(u1)f(u2))tu2=g(u1)tu1(αΔα)+g2(u1)θg(u1)(g(u1)g(u2))tu2+g(u1)Δα+g(u1)θ(α2Δα2)+(g(u1)g(u2))tu2(α2Δα2)+(g(u1)g(u2))(tα2Δtα2), (5.8)

    where θ=tu and u1=u+u2.

    We multiply (5.8) by (tT0)θ and integrate over Ω, where T0 is same as in one of previous section, we have

    12ddt((tT0)θ21)+(tT0)θ2|(g2(u1)θ,(tT0)θ)|+|((f(u1)f(u2))tu2,(tT0)θ)|+|(g(u1)tu1(αΔα),(tT0)θ|+|(g(u1)(g(u1)g(u2))tu2,(tT0)θ)|+|(g(u1)Δα,(tT0)θ|+|(g(u1)θ(α2Δα2),(tT0)θ)|+|((g(u1)g(u2))tu2(α2Δα2),(tT0)θ)|+|((g(u1)g(u2))(tα2Δtα2),(tT0)θ)|+|(f(u1)θ,(tT0)θ)|. (5.9)

    We have,

    |(g2(u)θ,(tT0)θ)|(tT0)Ω|g2(u)||θ|2dxc(tT0)θ2(owing(2.9)andH2(Ω)L(Ω)), (5.10)

    Noting that u1,u2H2(Ω)L(Ω), we have

    |((f(u1)f(u2))tu2,(tT0)θ)|(tT0)Ω|f(u1)f(u2)||θ||tu2|dx(tT0)Ω|3u213u22||θ||tu2|dxc(tT0)(u1L+u2L)Ω|u||θ||tu2|dxc(tT0)Ω|u|L4|θ|L4|tu2|dxc(tT0)uL4θL4tu2c(tT0)uθtu2, (5.11)

    Furthermore,

    |((g(u1)g(u2))tu2(α2Δα2),(tT0)θ)|(tT0)Ω|g(u1)g(u2)||tu2||α2Δα2||θ|dxc(tT0)Ω|tu2||α2Δα2||θ|dxc(tT0)α2Δα2L4θL4tu2c(tT0)(α2Δα2)θtu2c(tT0)θtu2, (5.12)

    Using (2.9) and (4.17), we find

    |(g(u1)tu1(αΔα),(tT0)θ|(tT0)Ω|g(u1)||tu1||αΔα||θ|dxc(tT0)Ω|tu1||αΔα||θ|dxc(tT0)Ω|tu1||θ|dxc(tT0)tu1θ, (5.13)

    noting that u1H2(Ω) and αH3(Ω), then

    |(g(u1)θ(α2Δα2),(tT0)θ)|(tT0)Ω|g(u1)||α2Δα2||θ|2dxc(tT0)θ2, (5.14)

    after Green, we have

    |(g(u)Δα,(tT0)θ|(tT0)Ω|α||g(u)u||θ|dx+(tT0)Ω|α||g(u)||θ|dxc(tT0)αθ+c(tT0)αθ, (5.15)

    we have that α2H2(Ω), then

    |((g(u1)g(u2))(tα2Δtα2),(tT0)θ)|(tT0)Ω|g(u1)g(u2)||tα2Δtα2||θ|dx(tT0)Ω|u|L4|tα2Δtα2||θ|L4dx(tT0)uL4tα2Δtα2θL4(tT0)utα2Δtα2θc(tT0)uθ, (5.16)

    moreover

    |(g(u1)(g(u1)g(u2))tu2,(tT0)θ)|(tT0)Ω|g(u1)||g(u1)g(u2)||tu2||θ|dxc(tT0)Ω|g(u1)||tu2||θ|dxc(tT0)Ω(|u1|L4+1)|tu2||θ|L4dxc(tT0)(u1L4+1)tu2θL4c(tT0)tu2θL4, (5.17)

    and

    |(f(u1)θ,(tT0)θ)|c(tT0)θ2, (5.18)

    where the constants only depend on B0.

    By substituting (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17) and (5.18) into (5.9), we have, owing to the interpolation inequality,

    ddt((tT0)θ21)+34(tT0)θ2c(tT0)θ21+c(tT0)θtu2+2c(tT0)θtu1+14c(tT0)α. (5.19)

    We now multiply (5.3) by (tT0)α and intégrate over Ω, we obtain

    (tα,(tT0)α)+(Δtα,(tT0)α)+(Δα,(tT0)α)+(Δ2α,(tT0)α)=(g(u1)tu,(tT0)α)+((g(u1)g(u2))tu2,(tT0)α),

    which implies

    \begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}((t-T_{0})\Vert\alpha\Vert^{2}+(t-T_{0})\Vert\nabla\alpha\Vert^{2})+(t-T_{0})\Vert\nabla\alpha\Vert^{2}+(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ &&\leq \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert+\vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert. \end{eqnarray} (5.20)

    For that, let find the estimates of (5.20) right terms, using Hölder inequality, we have

    \begin{eqnarray} \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})\vert\vert\partial_{t}u\vert\vert\alpha\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}(\vert u_{1}\vert_{L^{4}}+1)\vert\partial_{t}u\vert\vert\alpha\vert_{L^{4}} dx \\ & \leq & c(t-T_{0})(\Vert\nabla u_{1}\Vert_{L^{4}}+1)\Vert\partial_{t}u\Vert\Vert\alpha\Vert_{L^{4}} \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert, \end{eqnarray} (5.21)

    and

    \begin{eqnarray} \vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\alpha\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\alpha\vert_{L^{4}}\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\Vert\nabla u\Vert\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} (5.22)

    Inserting (5.21) and (5.22) into (5.20), we find

    \begin{eqnarray} && \frac{d}{dt}[(t-T_{0})(\Vert\alpha\Vert^{2}+\Vert\nabla\alpha\Vert^{2})]+2(t-T_{0})\Vert\nabla\alpha\Vert^{2}+2(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ & \leq & 2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert +2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} (5.23)

    Noting that (u, \alpha) = (u_{2}, \alpha_{2}) = (u_{1}, \alpha_{1}) , then

    \begin{eqnarray} \int^{t}_{T_{0}}\Vert\partial_{t}u_{2}(s)\Vert^{2}dx \leq ce^{c't} , t\geq T_{0}, \end{eqnarray} (5.24)

    where the constants only depend on B_{0} .

    Combining (5.19) and (5.23), we find

    \begin{eqnarray} && \frac{d}{dt}E_{5}++2(t-T_{0})\Vert\Delta\alpha\Vert^{2}+c(t-T_{0})\Vert\nabla\theta\Vert^{2}+2(t-T_{0})\Vert\nabla\alpha\Vert^{2} \\ & \leq & c(t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{1}(\Omega)})+c(t-T_{0})(\Vert\partial_{t}u_{1}\Vert^{2}+\Vert\partial_{t}u_{2}\Vert^{2}), \end{eqnarray} (5.25)

    where

    \begin{eqnarray} E_{5} = (t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert \nabla\alpha\Vert^{2}+\Vert\alpha\Vert^{2}). \end{eqnarray} (5.26)

    Applying Gronwall's lemma to (5.25) over [T_{0}, t] , we have

    \begin{eqnarray} && \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}+ \int^{t}_{T_{0}}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\Delta\alpha(s)\Vert^{2}+\Vert\nabla\theta(s)\Vert^{2})e^{-c(s-t)}ds \\ &\leq &\int^{t}_{T^{0}}(\Vert\partial_{t}u_{1}(s)\Vert^{2}+\Vert\partial_{t}u_{2}(s)\Vert^{2})e^{-c(s-t)}ds+E(0)e^{ct}, \end{eqnarray} (5.27)

    which implies

    \begin{eqnarray} \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{1}), c > 0, \end{eqnarray} (5.28)

    finally, we obtain

    \begin{eqnarray} \Vert\partial_{t}u(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c > 0, t\geq 1, \end{eqnarray} (5.29)

    where the constants only depend on B_{0} .

    We rewrite (5.8) in the form

    \begin{eqnarray} -\Delta u = \tilde{h}_{u}(t),\quad u = 0\; on \;\Gamma. \end{eqnarray} (5.30)

    for t \geq 1 fixed, where

    \begin{eqnarray} \tilde{h}_{u}(t) & = & -(-\Delta)^{-1}\partial_{t}u-(f(u_{1})-f(u_{2}))+ g(u_{1})(\alpha-\Delta\alpha) \\ &&+(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}). \end{eqnarray} (5.31)

    We multiply (5.31) by \tilde{h}_{u}(t) and integrate over \Omega , we have

    \begin{eqnarray*} &&(\tilde{h}_{u}(t),\tilde{h}_{u}(t)) \\ && = -((-\Delta)^{-1}\partial_{t}u,\tilde{h}_{u}(t))-(f(u_{1})-f(u_{2}),\tilde{h}_{u}(t)) -(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t)) \\ &&+((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t)), \end{eqnarray*}

    which implies

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} &\leq & c\Vert\tilde{h}_{u}(t)\Vert\Vert\partial_{t}u\Vert_{-1}+\vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert+\vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert \\ &&+\vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert. \end{eqnarray} (5.32)

    Here

    \begin{eqnarray} \vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert &\leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \Vert f(u_{1})-f(u_{2})\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq & c \Vert f(u_{1})-f(u_{2})\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.33)

    furthermore u_{1}, u_{2} \in H^{2}(\Omega) \subset L^{\infty}(\Omega) , then

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert^{2}dx \\ & \leq & \int_{\Omega}\int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}\vert u\vert^{2}ds dx \\ & \leq & \int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c\int^{1}_{0}(\Vert su_{1}+(1-s)u_{2}\Vert^{2k}_{L^{\infty}}+1)ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c(\Vert u_{1}+u_{2}\Vert^{2k}_{L^{\infty}}+1)\Vert u\Vert^{2}, \end{eqnarray} (5.34)

    if n = 2 where n = 3 , for k\leq 1 (in particular k = 1 ), preceding estimate give

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & c(\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} (5.35)

    if n = 2 where n = 3 with k > 1 , owing we have

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq &c((\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}})^{k}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} (5.36)

    on the one hand,

    \begin{eqnarray} \vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert & \leq & \int_{\Omega}\vert g(u_{1})\vert\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega} \vert g(u_{1})\vert_{L^{\infty}}\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha-\Delta\alpha\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq &c\Vert\alpha-\Delta\alpha\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2} \\ & \leq & c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.37)

    on the other hand,

    \begin{eqnarray} \vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert \\ & = & \vert((\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}),\tilde{h}_{u}(t))\vert \\ & \leq & \int_{\Omega}\vert\Delta g(u_{1})-\Delta g(u_{2})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert_{L^{\infty}}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ &\leq & c\int_{\Omega}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.38)

    combining (5.33), (5.36), (5.37) and (5.38), we find

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)})+c\Vert\nabla u\Vert^{2}+c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}. \end{eqnarray} (5.39)

    Using (5.29) and (5.6), we obtain

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} (5.40)

    where the constants only depend on {B}_{0}

    We multiply (5.30) by and intergrate over \Omega , we find

    \begin{eqnarray} \Vert\Delta u\Vert^{2}\leq \Vert \tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.41)

    hence, owing to (5.40), we have

    \begin{eqnarray} \Vert\Delta u\Vert^{2}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), \;t\geq 1, \end{eqnarray} (5.42)

    we finally deduce from (5.29) and (5.42), the estimate (5.1) which concludes the proof

    Lemma 5.2. Let (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) and (u_{2, 0}, \alpha_{2, 0}) , respectively, belonging to {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Lipschitz continuity with respect to space, i.e, there exists the constant c > 0 such that

    \begin{eqnarray} &&\Vert u_{1}(t)-u_{2}(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert^{2}_{H^{2}(\Omega)} \\ & \leq & ce^{c't}(\Vert u_{1,0}-u_{2,0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1,0}-\alpha_{2,0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} (5.43)

    where the constants only depend on {B}_{0} .

    Proof. The proof of the Lemma 5.2 is a direct consequence of the estimate (5.6).

    It just remains to prove the Hölder continuity with respect to time.

    Lemma 5.3. Let (u, \alpha) be the solution of (5.2)-(5.5) with intial data (u_{0}, \alpha_{0}) \; in {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Hölder continuous with respect to time, i.e, there exists the constant c > 0 such that \forall t_{1}, t_{2}\in [0, T]

    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} (5.44)

    where the constants only depend on {B}_{0} and \Gamma .

    Proof.

    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi} & = & \Vert (u(t_{1})-u(t_{2}),\alpha(t_{1})-\alpha_{2}))\Vert_{\Psi} \\ & \leq & \Vert u(t_{1})-u(t_{2})\Vert_{H^{1}(\Omega)}+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)} \\ & \leq & c(\Vert \nabla (u(t_{1})-u(t_{2}))\Vert+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)}) \\ & \leq & ( \Vert \int^{t_{2}}_{t_{1}}\nabla \partial_{t}u ds\Vert+\Vert \int^{t_{2}}_{t_{1}}\partial_{t}\alpha\Vert_{H^{2}}) \\ & \leq & c\vert t_{1}-t_{2})\vert^{\frac{1}{2}} \vert \int^{t^{2}}_{t_{1}}(\Vert\nabla \partial_{t}u\Vert^{2}+\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}})ds\vert^{\frac{1}{2}}. \end{eqnarray} (5.45)

    Noting that, thanks to (3.5) and (3.37), we have

    \begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert \nabla\partial_{t}u\Vert^{2}ds \vert \leq c, \end{eqnarray} (5.46)

    where the constant c depends only on {B}_{0} and T\geq T_{0} such that t_{1}, t_{2}\in [0, T] .

    Furthermore, multiplying (5.3) by (-\Delta)^{-1}\partial_{t}\alpha and integrate over \Omega , we obtain

    \begin{eqnarray} \frac{d}{dt}\Vert\alpha\Vert^{2}+c\Vert\partial_{t}\alpha\Vert^{2}_{-1}+2\Vert\nabla\partial_{t}\alpha\Vert^{2}+2\Vert\partial_{t}\alpha\Vert^{2} \leq c(\Vert\partial_{t}u_{2}\Vert^{2}+\Vert\partial_{t}u\Vert^{2}), \end{eqnarray} (5.47)

    and it follows from (3.60), (5.24), (5.46) and (5.47) that

    \begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}(\Omega)}ds \vert \leq c, \end{eqnarray} (5.48)
    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} (5.49)

    where c only depends on {B}_{0} and T such that t_{1}, t_{2}\in [0, T] .

    Finally, we obtain thanks to (5.46) and (5.48), the estimate (5.44). Thus, the Lemma is proved. We finally deduce from Lemma 5.1, Lemma 5.2 and Lemma 5.3 the following result (see, e.g. [12]).

    Theorem 5.1. The semigroup S(t) possesses an exponential attractor M \subset {B}_{0} , i.e.,

    (i) M is compact in H^{1}(\Omega)\times H^{2}(\Omega) ;

    (ii) M is positively invariant, S(t)M \subset M, t\geq 0 ;

    (iii) M has finite fractal dimension in H^{1}(\Omega)\times H^{2}(\Omega) ;

    (iv) M attracts exponentially fast the bounded subsets of \Psi

    \begin{eqnarray*} \forall B \in \Psi \;bounded, dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(S(t)B,M) \leq Q(\Vert B\Vert_{\Psi})e^{-ct} ,\; c > 0, t\geq 0, \end{eqnarray*}

    where the constant c is independent of B and dist_{H^{1}(\Omega)\times H^{2}(\Omega)} denotes the Hausdorff semidistance between sets defined by

    \begin{eqnarray*} dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(A,B) = \sup\limits_{a \in A}\inf\limits_{b \in B}\Vert a-b\Vert_{H^{1}(\Omega)\times H^{2}(\Omega)}. \end{eqnarray*}

    Remark 5.1. Setting \tilde{M} = S(1)M , we can prove that \tilde{M} is an exponential attractor for S(t) , but now in the topology of \Psi .

    Since M (or \tilde{M} ) is a compact attracting set, we deduce from Theorem 5.1 and standard results (see, e.g, [3,12]) the

    Corollary 5.1. The semigroup S(t) possesses the finite-dimensional global attractor {A}\subset {B}_{0} .

    Remark 5.2. We note that the global attractor {A} is the smallest (for the inclusion) compact set of the phase space which is invariant by the flow (i.e. S(t){A} = {A}, \; \forall t\geq 0) and attractors all bounded sets of initial data as time goes to infinity; thus, it appears as a suitable object in view of the study of asymptotic behaviour of the system. Furthermore, the finite dimensionality means, roughly speaking, that, even though the initial phase space is infinite dimensional, the reduced dynamics is, in some proper sense, finite dimensional and can be described by a finite number of parameters.

    The existence of the global attractor being established, one question is to know whether this attractor has a finite dimension in terms of the fractal or Hausdorff dimension. This is the aim of the final section.

    Remark 5.3. Comparing to the global attractor, an exponentiel attractor is expected to be more robust under perturbations. Indeed, the rate of attraction of trajectories to the global attractor may be slow and it is very difficult, if not impossible, to estimate this rate of attraction with respect to the physical parameters of the problem in general. As a consequence, global attractors may change drastically under small perturbations.

    This manuscript explains in a clear way, the context of dynamic system with two temperatures, when the relative solution exists. The existence of exponential attractor, associated to the problem (2.1)-(2.4) that we have proved, allow to assert that the existing solution of the problem (2.1)-(2.4) that we have shown in this work, belongs to the finite-dimensional subset called global attractor, from a certain time.

    The authors thank the referees for their careful reading of the paper and useful comments.

    The authors declare that there is no conflict of interests in this paper.



    [1] D. Liu, S. Xue, B. Zhao, B. Luo, Q. Wei, Adaptive dynamic programming for control: a survey and recent advances, IEEE T. Syst. Man Cy., 51 (2021), 142–160. https://doi.org/10.1109/TSMC.2020.3042876 doi: 10.1109/TSMC.2020.3042876
    [2] Y. Zhang, B. Zhao, D. Liu, Deterministic policy gradient adaptive dynamic programming for model-free optimal control, Neurocomputing, 387 (2020), 40–50. https://doi.org/10.1016/j.neucom.2019.11.032 doi: 10.1016/j.neucom.2019.11.032
    [3] M. Ha, D. Wang, D. Liu, A novel value iteration scheme with adjustable convergence rate, IEEE T. Neur. Net. Lear., in press. https://doi.org/10.1109/TNNLS.2022.3143527
    [4] C. Mu, D. Wang, H. He, Novel iterative neural dynamic programming for data-based approximate optimal control design, Automatica, 81 (2017), 240–252. https://doi.org/10.1016/j.automatica.2017.03.022 doi: 10.1016/j.automatica.2017.03.022
    [5] L. Dong, X. Zhong, C. Sun, H. He, Adaptive event-triggered control based on heuristic dynamic programming for nonlinear discrete-time systems, IEEE T. Neur. Net. Lear., 28 (2017), 1594–1605. https://doi.org/10.1109/TNNLS.2016.2541020 doi: 10.1109/TNNLS.2016.2541020
    [6] T. Li, D. Yang, X. Xie, H. Zhang, Event-triggered control of nonlinear discrete-time system with unknown dynamics based on HDP (\lambda), IEEE T. Cybernetics, 52 (2021), 6046–6058. https://doi.org/10.1109/TCYB.2020.3044595 doi: 10.1109/TCYB.2020.3044595
    [7] J. Lu, Q. Wei, T. Zhou, Z. Wang, F. Wang, Event-triggered near-optimal control for unknown discrete-time nonlinear systems using parallel control, IEEE T. Cybernetics, 53 (2023), 1890–1904. https://doi.org/10.1109/TCYB.2022.3164977 doi: 10.1109/TCYB.2022.3164977
    [8] J. Wang, Y. Wang, Z. Ji, Model-free event-triggered optimal control with performance guarantees via goal representation heuristic dynamic programming, Nonlinear Dyn., 108 (2022), 3711–3726. https://doi.org/10.1007/s11071-022-07438-y doi: 10.1007/s11071-022-07438-y
    [9] Z. Wang, J. Lee, X. Sun, Y. Chai, Y. Liu, Self-learning optimal control with performance analysis using event-triggered adaptive dynamic programming, Proceedings of 5th International Conference on Crowd Science and Engineering, 2021, 29–34. https://doi.org/10.1145/3503181.3503187
    [10] S. Xue, B. Luo, D. Liu, Y. Gao, Event-triggered ADP for tracking control of partially unknown constrained uncertain systems, IEEE T. Cybernetics, 52 (2022), 9001–9012. https://doi.org/10.1109/TCYB.2021.3054626 doi: 10.1109/TCYB.2021.3054626
    [11] D. Wang, M. Zhao, M. Ha, J. Ren, Neural optimal tracking control of constrained nonaffine systems with a wastewater treatment application, Neural Networks, 143 (2021), 121–132. https://doi.org/10.1016/j.neunet.2021.05.027 doi: 10.1016/j.neunet.2021.05.027
    [12] J. Lu, Q. Wei, Y. Liu, T. Zhou, F. Wang, Event-triggered optimal parallel tracking control for discrete-time nonlinear systems, IEEE T. Syst. Man Cy., 52 (2022), 3772–3784. https://doi.org/10.1109/TSMC.2021.3073429 doi: 10.1109/TSMC.2021.3073429
    [13] K. Wang, Q. Gu, B. Huang, Q. Wei, T. Zhou, Adaptive event-triggered near-optimal tracking control for unknown continuous-time nonlinear systems, IEEE Access, 10 (2022), 9506–9518. https://doi.org/10.1109/ACCESS.2021.3140076 doi: 10.1109/ACCESS.2021.3140076
    [14] Q. Wei, J. Lu, T. Zhou, X. Cheng, F. Wang, Event-triggered near-optimal control of discrete-time constrained nonlinear systems with application to a boiler-turbine system, IEEE T. Ind. Inform., 18 (2022), 3926–3935. https://doi.org/10.1109/TII.2021.3116084 doi: 10.1109/TII.2021.3116084
    [15] D. Wang, L. Hu, M. Zhao, J. Qiao, Adaptive critic for event-triggered unknown nonlinear optimal tracking design with wastewater treatment applications, IEEE T. Neur. Net. Lear., in press. https://doi.org/10.1109/TNNLS.2021.3135405
    [16] B. Sun, E. van Kampen, Event-triggered constrained control using explainable global dual heuristic programming for nonlinear discrete-time systems, Neurocomputing, 468 (2022), 452–463. https://doi.org/10.1016/j.neucom.2021.10.046 doi: 10.1016/j.neucom.2021.10.046
    [17] S. Xue, B. Luo, D. Liu, Y. Li, Adaptive dynamic programming based event-triggered control for unknown continuous-time nonlinear systems with input constraints, Neurocomputing, 396 (2020), 191–200. https://doi.org/10.1016/j.neucom.2018.09.097 doi: 10.1016/j.neucom.2018.09.097
    [18] S. Zhang, B. Zhao, Y. Zhang, Event-triggered control for input constrained non-affine nonlinear systems based on neuro-dynamic programming, Neurocomputing, 440 (2021), 175–184. https://doi.org/10.1016/j.neucom.2021.01.116 doi: 10.1016/j.neucom.2021.01.116
    [19] X. Yang, Q. Wei, Adaptive critic learning for constrained optimal event-triggered control with discounted cost, IEEE T. Neur. Net. Lear., 32 (2021), 91–104. https://doi.org/10.1109/TNNLS.2020.2976787 doi: 10.1109/TNNLS.2020.2976787
    [20] M. Ha, D. Wang, D. Liu, Event-triggered adaptive critic control design for discrete-time constrained nonlinear systems, IEEE T. Syst. Man Cy., 50 (2020), 3158–3168. https://doi.org/10.1109/TSMC.2018.2868510 doi: 10.1109/TSMC.2018.2868510
    [21] M. Ha, D. Wang, D. Liu, B. Zhao, Adaptive event-based control for discrete-time nonaffine systems with constrained inputs, Proceedings of Eighth International Conference on Information Science and Technology (ICIST), 2018,104–109. https://doi.org/10.1109/ICIST.2018.8426093
    [22] B. Luo, Y. Yang, D. Liu, H. Wu, Event-triggered optimal control with performance guarantees using adaptive dynamic programming, IEEE T. Neur. Net. Lear., 31 (2020), 76–88. https://doi.org/10.1109/TNNLS.2019.2899594 doi: 10.1109/TNNLS.2019.2899594
    [23] Z. Wang, Q. Wei, D. Liu, A novel triggering condition of event-triggered control based on heuristic dynamic programming for discrete-time systems, Optim. Contr. Appl. Meth., 39 (2018), 1467–1478. https://doi.org/10.1002/oca.2421 doi: 10.1002/oca.2421
    [24] C. Mu, K. Liao, K. Wang, Event-triggered design for discrete-time nonlinear systems with control constraints, Nonlinear Dyn., 103 (2021), 2645–2657. https://doi.org/10.1007/s11071-021-06218-4 doi: 10.1007/s11071-021-06218-4
    [25] M. Ha, D. Wang, D. Liu, Event-triggered constrained control with dhp implementation for nonaffine discrete-time systems, Inform. Sciences, 519 (2020), 110–123. https://doi.org/10.1016/j.ins.2020.01.020 doi: 10.1016/j.ins.2020.01.020
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1514) PDF downloads(79) Cited by(1)

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog