Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation

  • Received: 03 May 2023 Revised: 24 May 2023 Accepted: 29 May 2023 Published: 19 June 2023
  • MSC : 30D05, 37F10, 37F50

  • In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between T(r,f) and logM(r,f) when the modulus of variable |z|=r is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.

    Citation: Guowei Zhang. The lower bound on the measure of sets consisting of Julia limiting directions of solutions to some complex equations associated with Petrenko's deviation[J]. AIMS Mathematics, 2023, 8(9): 20169-20186. doi: 10.3934/math.20231028

    Related Papers:

    [1] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [2] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [3] Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726
    [4] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [5] Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481
    [6] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [7] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [8] Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231
    [9] Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075
    [10] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
  • In the value distribution theory of complex analysis, Petrenko's deviation is to describe more precisely the quantitative relationship between T(r,f) and logM(r,f) when the modulus of variable |z|=r is sufficiently large. In this paper we introduce Petrenko's deviations to the coefficients of three types of complex equations, which include difference equations, differential equations and differential-difference equations. Under different assumptions we study the lower bound of limiting directions of Julia sets of solutions of these equations, where Julia set is an important concept in complex dynamical systems. The results of this article show that the lower bound of limiting directions mentioned above is closely related to Petrenko's deviation, and our conclusions improve some known results.



    Fractional calculus is an emerging field drawing attention from both theoretical and applied disciplines. In particular, fractional calculus is a powerful tool for explaining problems in ecology, biology, chemistry, physics, mechanics, networks, flow in porous media, electricity, control systems, viscoelasticity, mathematical biology, fitting of experimental data, and so forth. One may see the papers [1,2,3,4,5] and the references therein.

    Fractional difference calculus or discrete fractional calculus is a very new field for mathematicians. Some real-world phenomena are being studied with the assistance of fractional difference operators. Basic definitions and properties of fractional difference calculus can be found in the book [6]. Fractional boundary value problems can be found in the books [7,8]. Now, the studies of boundary value problems for fractional difference equations are extended to be more complex. Excellent papers related to discrete fractional boundary value problems can be found in [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] and references cited therein. In particular, there are some recent papers that present the Caputo fractional difference calculus [36,37,38,39,40,41]. In the literature, there are apparently few research works studying boundary value problems for Caputo fractional difference-sum equations. For example, [42] studied a boundary value problem for pLaplacian Caputo fractional difference equations with fractional sum boundary conditions of the forms

    {ΔαC[ϕp(ΔβCx)](t)=f(t+α+β1,x(t+α+β1)),tN0,T:={0,1,,T},ΔβCx(α1)=0,x(α+β+T)=ρΔγx(η+γ). (1.1)

    In [43], investigated a nonlocal fractional sum boundary value problem for a Caputo fractional difference-sum equation of the form

    ΔαCu(t)=F[t+α1,ut+α1,ΔβCu(t+αβ)],tN0,T,ΔγCu(αγ1)=0,u(T+α)=ρΔωu(η+ω). (1.2)

    In addition, [44] considered a periodic boundary value problem for Caputo fractional difference-sum equations of the form

    ΔαCu(t)=F[t+α1,u(t+α1),Ψγu(t+α1)],tN0,T,t+α1tk,Δu(tk)=Ik(u(tk1)),k=1,2,...,p,Δ(Δβu(tk+β))=Jk(Δβu(tk+β1)),k=1,2,...,p,Au(α1)+BΔβu(α+β1)=Cu(T+α)+DΔβu(T+α+β). (1.3)

    We aim to fill the gaps related to the boundary value problem of Caputo fractional difference-sum equations. The goal of this paper is to enrich this new research area by using the unknown function of Caputo fractional difference and fractional sum in the problem. So, in this paper, we consider a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary value conditions of the form

    CΔααCΔβα+β1x(t)=H[t+α+β1,x(t+α+β1),CΔνα+β1x(t+α+βν),Ψμ(t+α+β1,x(t+α+β1))],tN0,T,ρ1x(α+β2)=x(T+α+β),ρ2CΔγα+β2x(α+βγ1)=CΔγα+β2x(T+α+βγ+1), (1.4)

    where ρ1,ρ2R, 0<α,β,γ,ν,μ1, 1<α+β2 are given constants, HC(Nα+β2,T+α+β×R3,R), and for φC(×R2,[0,)), :={(t,r):t,rNα+β2,T+α+βandrt}. The operator Ψμ is defined by

    Ψμ(t,x(t)):=tμs=α+βμ2(tσ(s))μ1_Γ(μ)φ(t,s+μ,x(s+μ),CΔνα+β2x(s+μν+1)).

    The plan of this paper is as follows. In Section 2, we recall some definitions and basic lemmas. Also, we derive the solution of (1.4) by converting the problem to an equivalent equation. In Section 3, we prove existence and uniqueness results of the problem (1.4) using the Banach contraction principle and Schaefer's theorem. Furthermore, we also show the existence of a positive solution to (1.4). An illustrative example is presented in Section 4.

    In the following, there are notations, definitions and lemmas which are used in the main results.

    Definition 2.1. [10] We define the generalized falling function by tα_:=Γ(t+1)Γ(t+1α), for any t and α for which the right-hand side is defined. If t+1α is a pole of the Gamma function and t+1 is not a pole, then tα_=0.

    Lemma 2.1. [9] Assume the following factorial functions are well defined. If tr, then tα_rα_ for any α>0.

    Definition 2.2. [10] For α>0 and f defined on Na:={a,a+1,}, the α-order fractional sum of f is defined by

    Δαaf(t)=Δαf(t):=1Γ(α)tαs=a(tσ(s))α1_f(s),

    where tNa+α and σ(s)=s+1.

    Definition 2.3. [11] For α>0 and f defined on Na, the α-order Caputo fractional difference of f is defined by

    CΔαaf(t)=ΔαCf(t):=Δ(Nα)aΔNf(t)=1Γ(Nα)t(Nα)s=a(tσ(s))Nα1_ΔNf(s),

    where tNa+Nα and NN is chosen so that 0N1<α<N. If α=N, then ΔαCf(t)=ΔNf(t).

    Lemma 2.2. [11] Assume that α>0 and 0N1<αN. Then,

    Δαa+NαCΔαay(t)=y(t)+C0+C1t1_+C2t2_+...+CN1tN1_,

    for some CiR, 0iN1.

    To study the solution of the boundary value problem (1.4), we need the following lemma that deals with a linear variant of the boundary value problem (1.4) and gives a representation of the solution.

    Lemma 2.3. Let Λ(ρ11)0, 0<α,β,γ,ν,μ1, 1<α+β2 and hC(Nα+β1,T+α+β1,R) be given. Then, the problem

    CΔααCΔβα+β1x(t)=h(t+α+β1),tN0,T (2.1)
    {ρ1x(α+β2)=x(T+α+β),ρ2CΔγα+β2x(α+βγ1)=CΔγα+β2x(T+α+βγ+1), (2.2)

    has the unique solution

    x(t)=T+(ρ11)(tαβ)+2ρ1Λ(ρ11)Γ(1γ)Γ(β1)Γ(α)T+α+βs=α+β1sβ+1r=αrαξ=0(T+α+βγ+1σ(s))γ_×(sσ(r))β2_(rσ(ξ))α1_h(ξ+α+β1)+1(ρ11)Γ(β)Γ(α)T+αs=αsαξ=0(T+α+βσ(s))β1_(sσ(ξ))α1_h(ξ+α+β1)+1Γ(β)Γ(α)tβs=αsαξ=0(tσ(s))β1_(sσ(ξ))α1_h(ξ+α1), (2.3)

    where

    Λ=ρ2Γ(Tγ+4)Γ(2γ)Γ(T+3). (2.4)

    Proof. Using the fractional sum of order α(0,1] for (2.1) and from Lemma 2.2, we obtain

    CΔβα+β2x(t)=C1+1Γ(α)tαs=0(tσ(s))α1_h(s+α+β1), (2.5)

    for tNα1,T+α.

    Using the fractional sum of order 0<β1 for (2.5), we obtain

    x(t)=C2+C1t+1Γ(β)Γ(α)tβs=αsαξ=0(tσ(s))β1_(sσ(ξ))α1_h(ξ+α+β1), (2.6)

    for tNα+β2,T+α+β.

    By substituting t=α+β2,T+α+β into (2.6) and employing the first condition of (2.2), we obtain

    C2(ρ11)+C1[(T(ρ11)(α+β)+2ρ1]=1Γ(β)Γ(α)T+αs=αsαξ=0(T+α+βσ(s))β1_(sσ(ξ))α1_h(ξ+α+β1). (2.7)

    Using the fractional Caputo difference of order 0<γ1 for (2.6), we obtain

    CΔγα+β2x(t)=C1Γ(1γ)t+γ1s=α+β2(tσ(s))γ_+1Γ(1γ)Γ(β)Γ(α)×t+γ1s=α+β2(tσ(s))γ_sΔ[sβr=αrαξ=0(sσ(r))β1_(rσ(ξ))α1_h(ξ+α+β1)]=C1Γ(1γ)t+γ1s=α+β2(tσ(s))γ_+1Γ(1γ)Γ(β1)Γ(α)×t+γ1s=α+β2sβ+1r=αrαξ=0(tσ(s))γ_(sσ(r))β2_(rσ(ξ))α1_h(ξ+α+β1), (2.8)

    for Nα+βγ1,T+α+βγ+1.

    By substituting t=α+βγ1,T+α+βγ+1 into (2.8) and employing the second condition of (2.2), it implies

    C1=1ΛΓ(1γ)Γ(β1)Γ(α)T+α+βs=α+β1sβ+1r=αrαξ=0(T+α+βγ+1σ(s))γ_×(sσ(r))β2_(rσ(ξ))α1_h(ξ+α+β1).

    The constant C2 can be obtained by substituting C1 into (2.7). Then, we get

    C2=T(ρ11)(α+β)+2ρ1(ρ11)ΛΓ(1γ)Γ(β1)Γ(α)T+α+βs=α+β1sβ+1r=αrαξ=0(T+α+βγ+1σ(s))γ_×(sσ(r))β2_(rσ(ξ))α1_h(ξ+α+β1)+1(ρ11)Γ(β)Γ(α)T+αs=αsαξ=0(T+α+βσ(s))β1_(sσ(ξ))α1_h(ξ+α+β1),

    where Λ is defined by (2.4). Substituting the constants C1 and C2 into (2.6), we obtain (2.3).

    In this section, we wish to establish the existence results for the problem (1.4). We denote C=C(Nα+β2,T+α+β,R) as the Banach space of all functions x with the norm defined by

    xC=x+ΔνCx,

    where x=max and \|\Delta^{\nu}_Cx\| = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}}\big|\Delta^{\nu}_{C}x(t-\nu+1)\big| .

    The following assumptions are assumed:

    \textbf{(A1)} {\mathcal{H}}[t, x, y, z]:{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^3\rightarrow \mathbb{R} is a continuous function.

    \textbf{(A2)} There exist constants K_1, K_2 > 0 such that for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} and all x_i, y_i, z_i\in {\mathbb{R}}, \; i = 1, 2 , we have

    \Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big| \leq K_1\,\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big],

    and

    K_2 = \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}} \Big|{\mathcal{H}}[t,0,0,\Psi^\mu (t,0) ]\Big|,

    where \; \Psi^\mu (t, 0): = \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\, \varphi\Big(t, s+\mu, 0, 0\Big) .

    \textbf{(A3)} \varphi:\odot \times {\mathbb{R}}^2\rightarrow {\mathbb{R}} is continuious for (t, s)\in \odot , and there exists a constant L > 0 , such that for each (t, s)\in \odot and all x_i, y_i\in \mathcal{C}, \; i = 1, 2 we have

    \Big|\varphi(t,s+\mu,x_1,y_1)-\varphi(t,s+\mu,x_2,y_2)\Big|\leq L\,\Big[|x_1-x_2|+|y_1-y_2|\Big].

    Let us define the operator {\widetilde{\mathcal{H}}}[t, x(t)] by

    \begin{align} \; \,{\widetilde{\mathcal{H}}}[t,x(t)]: = {\mathcal{H}}\Big[&t,x(t),\Delta^\nu_C x(t-\nu+1),\Psi^\mu (t,x(t))\Big], \end{align} (3.1)

    for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x\in {\mathcal{C}} .

    Note that \; \Delta^{-\beta} \Delta^{-\alpha}\, {\widetilde{\mathcal{H}}}[t, x(t)] and \Delta^{\nu}_C\, \Delta^{-\beta} \Delta^{-\alpha} \, {\widetilde{\mathcal{H}}}[t, x(t)]\; exist when \; \nu < \alpha+\beta\leq2.

    Lemma 3.1. Assume that (A1)(A3) hold. Then, the following property holds:

    (A4) There exits a positive constant \Theta such that

    \Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \leq \Theta\,\|x_1-x_2\|_{\mathcal{C}},

    for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , where

    \begin{align} \Theta: = K_1\left[1+ \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\right]. \end{align} (3.2)

    Proof. By \textbf{(A3)} , for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\; and \; x_1, x_2\in {\mathcal{C}} , we obtain

    \begin{align*} &\Big|(\Psi^\mu x_1)(t)-(\Psi^\mu x_2)(t)\Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{t-\mu}(t-\sigma(s))^{\underline{\mu-1}}\,\\ & \Big|\varphi\Big(t,s+\mu,x_1(s+\mu),\Delta^\nu_C x_1(s+\mu-\nu+1)\Big)\\ &\; -\varphi\Big(t,s+\mu,x_2(s+\mu),\Delta^\nu_C x_2(s+\mu-\nu+1)\Big) \Big|\\ \leq&\; \frac{1}{\Gamma(\mu)}\sum\limits_{s = \alpha+\beta-\mu-2}^{T+\alpha+\beta-\mu}(T+\alpha+\beta-\sigma(s))^{\underline{\mu-1}}\times\\ &\; L\,\Big[\big|x_1(s+\mu)-x_2(s+\mu)\big|+\\ &\big|\Delta^\nu_C x_1(s+\mu-\nu+1)-\Delta^\nu_C x_2(s+\mu-\nu+1)\big|\Big]\\ \leq&\; \frac{L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}, \end{align*}

    and hence

    \begin{align*} &\Big|\,{\widetilde{\mathcal{H}}}[t,x_1(t)]-{\widetilde{\mathcal{H}}}[t,x_2(t)]\,\Big| \\ \leq&\; K_1\,\Big[\big|x_1(t)-x_2(t)\big|+\big|\Delta^\nu_C x_1(t-\nu+1)-\Delta^\nu_C x_2(t-\nu+1)\big|\Big]\\ &\; +\frac{K_1L\,\Gamma(T+\mu+3)}{\Gamma(\mu+1)\Gamma(T+3)}\,\Bigg\{ \big\|x_1-x_2\big\| + \big\|\Delta^\nu_C x_1-\Delta^\nu_C x_2\big\|\Bigg\}\\ = &\; \Theta\,\|x_1-x_2\|_{\mathcal{C}}.\end{align*}

    Next, we define the operator {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} by

    \begin{align} &({\mathcal{F}}x)(t) \\ = & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,{\widetilde{\mathcal{H}}}\\ & [\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} \frac{(T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}}{\left(\rho_1-1\right)\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] \\ & +\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}\frac{(t-\sigma(s))^{\underline{\beta-1}} (s-\sigma(\xi))^{\underline{\alpha-1}}}{\Gamma(\beta)\Gamma(\alpha)}\,\\ & {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)] , \end{align} (3.3)

    where

    \begin{align} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) : = &\; \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\times\\ &\; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}. \end{align} (3.4)

    By Lemma 2.3, we find that any solution of the problem (1.4) is the fixed point of the operator {\mathcal{F}} .

    Lemma 3.2. Assume that the function {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) satisfies the following properties:

    (A5) {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}\times{\mathbb{N}}_{\alpha-1, T+\alpha+1}\times {\mathbb{N}}_{0, T+2} = :\mathcal{D} , and there exist two constants \; \Omega_1, \Omega_2 > 0 , such that

    \begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}\Big| {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_1,\\ \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\Big|\leq &\; \Omega_2, \end{align*}

    where

    \begin{align} \Omega_1: = &\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right]\frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(2-\gamma)\Gamma(\alpha+\beta)[\Gamma(T+2)]^2} , \end{align} (3.5)
    \begin{align} \Omega_2: = &\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}, \end{align} (3.6)

    and \; _t\Delta_C^{\nu}\; is the Caputo fractional difference with respect to t .

    Proof. It is obvious that {\mathcal{A}}_{\alpha, \beta, \gamma, \rho_1, \rho_2}(t, s, r, \xi) is a continuous function for all (t, s, r, \xi)\in {\mathcal{D}} . Next, we consider

    \begin{align*} & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\Bigg|\, \frac{T+\left(\rho_1-1\right)(t-\alpha-\beta)+2\rho_1}{\Lambda\left(\rho_1-1\right)\Gamma(1-\gamma)\Gamma(\beta-1) \Gamma(\alpha)}\,\Bigg|\times\nonumber \\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left[\frac{\left(1+|\rho_1-1|\right)T+2p_1}{|\rho_1-1||\Lambda|}\right] \\ & \frac{\Gamma(T+\gamma+3)\Gamma(T+\alpha+\beta+1)}{\Gamma(T+2)\Gamma(T+2)\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\; = \; \Omega_1, \end{align*}

    and

    \begin{align*} \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}& \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ \leq&\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\, \\ &\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|\,_t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\big|\nonumber\\ = &\; \max\limits_{t\in {\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}}\,\\ &\Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1}(t-\sigma(s))^{\underline{-\nu}} {_s}\Delta \left[ T+(\rho_1-1)(s-\alpha-\beta)+2\rho_1 \right] }{\Lambda\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta-1)\Gamma(\alpha)}\Bigg|\times\\ &\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \\ &(T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Bigg|\frac{ \sum\limits_{s = \alpha+\beta-2}^{T+\alpha+\beta+\nu-1}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(1-\alpha-\beta)}{\Lambda\Gamma(1-\nu)}\Bigg| \\ & \,\frac{\Gamma(T-\gamma+3)\Gamma(T+\alpha+\beta+1)}{[\Gamma(T+2)]^2\Gamma(2-\gamma)\Gamma(\alpha+\beta)}\nonumber \\ \leq&\; \left|\frac{1-\alpha-\beta}{\Lambda} \right| \\ &\frac{\Gamma(T-\gamma+3)[\Gamma(T+\alpha+\beta+1)]^2}{ \Gamma(2-\nu) \Gamma(2-\gamma)\Gamma(\alpha+\beta) [\Gamma(T+2)]^2\Gamma(T+\alpha+\beta-\nu)}\; = \; \Omega_2. \end{align*}

    Thus, the condition \textbf{(A5)} holds.

    In what follows, we consider the existence and uniqueness of a solution to the problem (1.4) using the Banach contraction principle.

    Theorem 3.1. Assume that (A1)(A5) hold. If

    \begin{equation} \Theta \big[\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big]\; < \; 1, \end{equation} (3.7)

    where \Omega_1, \Omega_2 are defined as (3.5)–(3.6), and

    \begin{align} \phi_1 = &\left[\frac{1+|\rho_1-1|}{|\rho_1-1|}\right] \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)}, \end{align} (3.8)
    \begin{align} \phi_2 = &\frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2}, \end{align} (3.9)

    then, the problem (1.4) has a unique solution in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta}.

    Proof. Choose a constant R satisfying

    \begin{equation*} R\geq\frac{K_2 \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }{1-\Theta \big(\, \Omega_1+\Omega_2+\phi_1+\phi_2 \,\big) }. \end{equation*}

    We will show that {\mathcal{F}}(B_R)\subset B_R, where B_R = \{x \in \mathcal{C}: \|x\|_{\mathcal{C}} \leq R\} . For all x\in B_R, we have

    \begin{align*} &|({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\Bigg|\,\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; \; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg|\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_1 +\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\left(\frac{1+|\rho_1-1|}{\Gamma(\beta)\Gamma(\alpha)\,|\rho_1-1|}\right)\times\nonumber \\ &\; \,\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\,\|x\|_{\mathcal{C}}+K_2\right) \Bigg\{ \Omega_1+\left(\frac{1+|\rho_1-1|}{|\rho_1-1|}\right) \frac{\Gamma(T+\alpha+\beta+1)}{\Gamma(T+1)\Gamma(\alpha+\beta+1)} \Bigg\}\\ \leq&\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*}

    and

    \begin{align*} &|(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\nonumber \\ &\; \; \; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big| +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \nonumber \\ & +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\Big(\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0]\big|\nonumber \\ &\; \; \; +\big|{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,0] \big|\Big) \,\Bigg]\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Omega_2+\frac{\left(\Theta\|x\|_{\mathcal{C}}+K_2\right)}{\Gamma(1-\nu) \Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \left(\Theta\|x\|_{\mathcal{C}}+K_2\right)\,\Bigg\{\Omega_2 + \frac{\Gamma(T+2)\Gamma(T+\alpha+\beta+\nu)} {\Gamma(2-\nu)\Gamma(\alpha+\beta+\nu+1)\left[\Gamma(T+\nu+1)\right]^2} \Bigg\}\nonumber \\ \leq&\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*}

    Thus,

    \| {\mathcal{F}}x \|_{\mathcal{C}}\; \leq\; \left(\Theta R+K_2\right)\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; \leq\; R,

    and hence, {\mathcal{F}}(B_R)\subset B_R .

    We next show that \mathcal{F} is a contraction. For all x, y\in \mathcal{C} and for each t\in \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} , we have

    \begin{align*} &\; \big|({\mathcal{F}}x)(t)-({\mathcal{F}}y)(t)\big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \Big| \,\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\frac{1}{\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,\\ &{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\Big|\,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big| \nonumber \\ &\; +\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\,\\ &\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times \nonumber \\ &\; \; \; \; \,\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}}\Omega_1 +\Theta\,\|x-y\|_{\mathcal{C}}\left(\frac{1+|\rho_1-1|}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\right)\times\nonumber \\ &\; \sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\nonumber \\ \leq&\; \Theta\,\big[\,\Omega_1+\phi_1\,\big]\,\|x-y\|_{\mathcal{C}}, \end{align*}

    and

    \begin{align*} &\; |(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\\ &\; -{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\nonumber \\ & \; +\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\,\sum\limits_{s = \alpha+\beta-1}^{t+\nu-1} \\ & \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(t-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \Big| \,{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]-\\ &{\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,y(\xi+\alpha+\beta-1)] \,\Big|\\ \leq&\; \Theta\,\|x-y\|_{\mathcal{C}} \,\Omega_2+\Theta\,\|x-y\|_{\mathcal{C}}\,\frac{1}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\times\nonumber \\ & \; \sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta+\nu-1} \sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha}(T+\alpha+\beta-\sigma(s))^{\underline{-\nu}}(s-\sigma(r))^{\underline{\beta-2}} (r-\sigma(\xi))^{\underline{\alpha-1}}\\ \leq&\; \Theta\,\big[\,\Omega_2+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}. \end{align*}

    Thus,

    \begin{equation} \nonumber \|{\mathcal{F}}x-{\mathcal{F}}y\|_{\mathcal{C}}\leq \Theta\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\,\|x-y\|_{\mathcal{C}}\leq \|x-y\|_{\mathcal{C}}. \end{equation}

    Therefore, {\mathcal{F}} is a contraction. Hence, by using Banach fixed point theorem, we get that {\mathcal{F}} has a fixed point which is a unique solution of the problem (1.4).

    We next deduce the existence of a solution to (1.4) by using the following Schaefer's fixed point theorem.

    Theorem 3.2. [45] (Arzelá-Ascoli Theorem) A set of functions in C[a, b] with the sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b] .

    Theorem 3.3. [45] If a set is closed and relatively compact, then it is compact.

    Theorem 3.4. [46] Let X be a Banach space and T: X\rightarrow X be a continuous and compact mapping. If the set

    \{x\in X\; :\; x = \lambda T(x),\; {{for \;some}}\; \lambda\in(0, 1) \}

    is bounded, then T has a fixed point.

    Theorem 3.5. Suppose that (A1)(A5) hold. Then, the problem (1.4) has at least one solution on \mathbb{N}_{\alpha+\beta-2, T+\alpha+\beta} .

    Proof. We shall use Schaefer's fixed point theorem to prove that the operator F defined by (3.3) has a fixed point. It is clear that {\mathcal{F}}:\mathcal{C}\longrightarrow\mathcal{C} is completely continuous. So, it remains to show that the set

    E = \Big\lbrace u\in C({\mathbb{N}}_{\alpha+\beta-2,T+\alpha+\beta}):u = \lambda {\mathcal{F}}u\; {\rm{for \;some\; }} 0 < \lambda < 1\Big\rbrace \rm{\; \; is \;bounded.}

    Let u\in E . Then,

    u(t) = \lambda (Fu)(t)\; {\rm{\; \; for \;some\; }}\;0 < \lambda < 1.

    Thus, for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} , we have

    \begin{align*} &|\lambda({\mathcal{F}}x)(t)| \nonumber\\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \Big|\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\,\\ &\Big|\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\left|\rho_1-1\right|\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha}^{T+\alpha}\sum\limits_{\xi = 0}^{s-\alpha} (T+\alpha+\beta-\sigma(s))^{\underline{\beta-1}}(s-\sigma(\xi))^{\underline{\alpha-1}}\times\\ &\; \; \; \; \; \big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big| \nonumber \\ &\; +\frac{\lambda}{\Gamma(\beta)\Gamma(\alpha)} \sum\limits_{s = \alpha}^{t-\beta}\sum\limits_{\xi = 0}^{s-\alpha}(t-\sigma(s))^{\underline{\beta-1}} \\ & (s-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\\ < &\; \left(\Theta\,R+K_2\right)\big[\,\Omega_1+\phi_1\,\big], \end{align*}

    and

    \begin{align*} &|\lambda(\Delta^\nu_C {\mathcal{F}}x)(t-\nu+1)| \\ \leq&\; \lambda\sum\limits_{s = \alpha+\beta-1}^{T+\alpha+\beta}\sum\limits_{r = \alpha}^{s-\beta+1}\sum\limits_{\xi = 0}^{r-\alpha} \big|_t\Delta^\nu_C\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\big|\,\\ &\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\nonumber \\ & +\frac{\lambda}{\Gamma(1-\nu)\Gamma(\beta)\Gamma(\alpha)}\sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} (t-\sigma(s))^{\underline{-\nu}}\Delta_s\,\\ &\Bigg[\sum\limits_{r = \alpha}^{s-\beta}\sum\limits_{\xi = 0}^{r-\alpha}(s-\sigma(r))^{\underline{\beta-1}}\times\\ &\; \; \; (r-\sigma(\xi))^{\underline{\alpha-1}}\,\big| {\widetilde{\mathcal{H}}}[\xi+\alpha+\beta-1,x(\xi+\alpha+\beta-1)]\big|\,\Bigg]\\ < &\; \left(\Theta R+K_2\right)\,\big[\,\Omega_2+\phi_2\,\big].\nonumber \end{align*}

    Hence,

    \big\|\lambda({\mathcal{F}}x)(t)\big\|\; < \; {\widetilde{\Theta}}_{R}\,\big[\,\Omega_1+\Omega_2+\phi_1+\phi_2\,\big]\; < \; R.

    This shows that E is bounded. By Schaefer's fixed point theorem, we conclude that the problem (1.4) has at least one solution.

    In the sequel, we discuss the positivity of the obtained solution x\in\mathcal{C} . To this end, we add adequate assumptions and provide the following theorem.

    We note that a positive solution of (1.4) in \mathcal{C} is a function x(t) > 0 which has \Delta^\nu_C\, x(t-\nu+1) > 0 for all t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .

    Theorem 3.6. Suppose that (A1)(A5) are fulfilled in {\mathbb{R}^+} , where \; \mathcal{H}\in C\big({\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} \times {\mathbb{R}}^+\times {\mathbb{R}}^+\times {\mathbb{R}}^+, \mathbb{R}^{+}\big)\; and \; \varphi \in C\big(\odot\times {\mathbb{R}^{+}}\times {\mathbb{R}^{+}}, {\mathbb{R}}^{+}\big) . If condition (3.7) is satisfied, for \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1), and in addition

    \rho_1 > 1 \; \; {{and}}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)},

    then a solution in \mathcal{C} of the problem (1.4) is positive.

    Proof. By Theorem 3.1 and the fact that, for \; \rho_1 > 1 \; \; \rm{and}\; \; \rho_2 > \frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)} , the condition (3.7) is a particular case, the problem (1.4) admits a unique solution in \mathcal{C} .

    Moreover, since \; \alpha, \beta, \gamma, \nu, \mu \in (0, 1) , we obtain for each (t, s, r, \xi)\in {\mathcal{D}} ,

    \begin{align*} {\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi) = &\; \Bigg[ \frac{ T+(\rho_1-1)(t-\alpha-\beta)+2\rho_1}{(\rho_1-1)\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg] \times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0, \end{align*}

    and

    \begin{align*} &\; _t\Delta_C^{\nu}\,{\mathcal{A}}_{\alpha,\beta,\gamma,\rho_1,\rho_2}(t,s,r,\xi)\nonumber\\ = &\; \sum\limits_{s = \alpha+\beta-2}^{t+\nu-1} \Bigg[ \frac{(t-\sigma(s))^{\underline{-\nu}}(s-\alpha-\beta) }{\left(\rho_2-\frac{\Gamma(T+\gamma+4)}{\Gamma(2-\gamma)\Gamma(T+3)}\right)\Gamma(1-\nu)\Gamma(1-\gamma)\Gamma(\beta)\Gamma(\alpha)}\Bigg]\times\\ &\; \; (T+\alpha+\beta-\gamma+1-\sigma(s))^{\underline{-\gamma}}(s-\sigma(r))^{\underline{\beta-2}}(r-\sigma(\xi))^{\underline{\alpha-1}}\; > \; 0. \end{align*}

    It results that the unique solution x(t) of problem (1.4) which satisfies with (3.3) is positive for each t\in {\mathbb{N}}_{\alpha+\beta-2, T+\alpha+\beta} .

    In this section, we present an example to illustrate our results.

    Example. Consider the following fractional difference boundary value problem:

    \begin{align} {^C}\Delta^{\frac{2}{3}}_{\frac{2}{3}}\,{^C}\Delta^{\frac{5}{6}}_{\frac{1}{2}}x(t) = &\frac{x\left(t+\frac{1}{2}\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|x\left(t+\frac{1}{2}\right)|\big]} +\\ &\frac{{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)}{\left((t+\frac{1}{2})+5\right)^5\big[1+|{^C}\Delta^{\frac{1}{2}}_{\frac{1}{2}} x\left(t-1\right)|\big]}\; \; \\ &+\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right),\quad t\in N_{0,4},\\ 2x\left(-\frac{1}{2}\right) = &\; x\left(\frac{11}{2}\right),\; \; \; \; \; 20\Delta^{\frac{1}{3}}x\left(\frac{1}{6}\right) = \Delta^{\frac{1}{3}}x\left(\frac{37}{6}\right), \end{align} (4.1)
    \begin{array}{l} {\rm{where\; \; \; }}\;\Psi^{\frac{1}{4}}\left(t+\frac{1}{2},x\left( t+\frac{1}{2}\right) \right) =\\ \sum\limits_{s = -\frac{3}{4}}^{t-\frac{1}{4}}\frac{(t-\sigma(s))^{-\frac{3}{4}}}{\Gamma\left(\frac{1}{4}\right)}\Bigg[\frac{e^{-(s+\frac{1}{4})}\big[x\left(s+\frac{1}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|x(s+\frac{1}{4})|\big]} \\ + \frac{e^{-(s+\frac{1}{4})}\big[{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x\left(s+\frac{3}{4}\right)+1\big]}{\left((t+\frac{1}{2})+5\right)^2\big[3+|{^C}\Delta^{\frac{1}{2}}_{-\frac{1}{2}} x(s+\frac{3}{4})|\big]}\Bigg]. \end{array}

    By letting \; \alpha = \frac{2}{3}, \; \beta = \frac{5}{6}, \; \gamma = \frac{1}{3}, \; \nu = \frac{1}{2}, \; \mu = \frac{1}{4}, \; T = 4, \; \rho_1 = 2, \; \rho_2 = 20 , {\mathcal{H}}[t, x, y, z] = \frac{1}{(t+5)^5}\left[\frac{x}{1+|x|} + \frac{y}{1+|y|} + z \right] {\rm{\; and }}\; \varphi[t+\frac{1}{2}, s+\frac{1}{4}, x, y] = \frac{e^{-s}}{(t+5)^2}\left[\frac{x+1}{3+|x|} + \frac{y+1}{3+|y|} \right], we can show that

    \Lambda\approx16.0098,\; \; \Theta\approx0.000199,\; \; {\Omega_1\approx35.0489,\; \; \Omega_2\approx19.7664},\\ \Phi_1\approx18.0469{\rm{\; \; \; and \; \; }}\;\Phi_2\approx2.9653.

    Observe that (A1)(A5) hold for all x_i, y_i, z_i\in \mathbb{R}, \; i = 1, 2 , and for each t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain

    \Big|{\mathcal{H}}[t,x_1,y_1,z_1]-{\mathcal{H}}[t,x_2,y_2,z_2]\Big|\leq \frac{1}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|+|z_1-z_2|\Big].

    So, K_1 = \left(\frac{2}{11}\right)^5\approx 0.000199, \; and \; K_2 = \max\limits_{t\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}}{\widetilde{\mathcal{H}}[t, 0]}\approx0.0000394.

    Next, for all x_i, y_i\in \mathbb{R}, \; i = 1, 2, and each (t, s)\in \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}}\times \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} , we obtain

    \Big|\varphi[t,s+\frac{3}{4},x_1,y_1]-{\mathcal{H}}[t,s+\frac{3}{4},x_2,y_2]\Big|\leq \frac{e^{-s}}{(t+5)^5}\Big[|x_1-x_2|+|y_1-y_2|\Big].

    So, K_2 = e^{-\frac{1}{2}}\left(\frac{2}{11}\right)^5\approx 0.000121.

    Finally, we can show that

    \Theta\left[\Omega_1+\Omega_2+\Phi_1+\Phi_2\right]\approx {0.0151} < 1.

    Hence, by Theorem 3.1, the problem (4.1) has a unique solution.

    Moreover, by Theorem 3.5, the problem (4.1) has at least one solution on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} .

    Furthermore, {\mathcal{H}}, \varphi \in {\mathbb{R}}^+, and

    \; \rho_1 = 2 > 1,\; \; \rho_2 = 20 > \frac{\Gamma\left(\frac{25}{3}\right)}{\Gamma\left(\frac{5}{3}\right)\Gamma\left(7\right)}\approx 15.293.

    Therefore, the solution of the problem (4.1) is positive on \mathbb{N}_{\frac{-1}{2}, \frac{11}{2}} by Theorem 3.6.

    In the present research, we considered a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions. Notice that the unknown function of this problem is in the form of Caputo fractional difference and fractional sum with different orders, which expands the research scope of the problems in [42,43,44]. Existence results are established by a Banach contraction principle and Schaefer's fixed point theorem. {The results of the paper are new and enrich the subject of boundary value problems for Caputo fractional difference-sum equations. In future work, we may extend this work by considering new boundary value problems.

    This research was funded by the National Science, Research and Innovation Fund (NSRF) and Suan Dusit University with Contract no. 64-FF-06.

    The authors declare no conflict of interest.



    [1] I. N. Baker, Sets of non-normality in iteration theory, J. Lond. Math. Soc., 40 (1965), 499–502.
    [2] I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. AI Math., 1 (1975), 277–283.
    [3] P. D. Barry, Some theorems related to the \cos \pi\rho theorem, Proc. London Math. Soc., 21 (1970), 334–360.
    [4] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc., 29 (1993), 151–188.
    [5] J. C. Chen, Y. Z. Li, C. F. Wu, Radial distribution of Julia sets of entire solutions to complex difference equations, Mediterr. J. Math., 17 (2020), 184. https://doi.org/10.1007/s00009-020-01627-y doi: 10.1007/s00009-020-01627-y
    [6] J. Clunie, On integral functions having prescribed asymptotic growth, Canadian J. Math., 17 (1965), 396–404. https://doi.org/10.4153/CJM-1965-040-8 doi: 10.4153/CJM-1965-040-8
    [7] H. X. Dai, Q. Y. Qiao, T. B. Cao, On limiting directions of entire solutions of complex differential-difference equations, Anal. Math., 2023. https://doi.org/10.1007/s10476-023-0213-7 doi: 10.1007/s10476-023-0213-7
    [8] W. H. J. Fuchs, Proof of a conjecture of G. Pólya concerning gap series, Illinois J. Math., 7 (1963), 661–667.
    [9] A. A. Gol'dberg, I. V. Ostrovskii, Value Distribution of Meromorphic Function, Washington: American Mathematical Society, 2008.
    [10] W. Hayman, Meromorphic Functions, Oxford: Clarendon Press, 1964.
    [11] W. K. Hayman, J. Rossi, Characteristic, maximum modulus and value distribution, Trans. Amer. Math. Soc., 284 (1984), 651–664.
    [12] J. Heittokangas, M. A. Zemirni, On Petrenko's deviations and second order differential equations, Kodai Math. J., 44 (2021), 181–193. https://doi.org/10.2996/kmj44111 doi: 10.2996/kmj44111
    [13] Z. Huang, J. Wang, On the radial distribution of Julia sets of entire solutions of f^{(n)}+A(z)f = 0, J. Math. Anal. Appl., 387 (2012), 1106–1113. https://doi.org/10.1016/j.jmaa.2011.10.016 doi: 10.1016/j.jmaa.2011.10.016
    [14] Z. Huang, J. Wang, On limit directions of Julia sets of entire solutions of linear differential equations, J. Math. Anal. Appl., 409 (2014), 478–484. https://doi.org/10.1016/j.jmaa.2013.07.026 doi: 10.1016/j.jmaa.2013.07.026
    [15] I. Laine, Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter, 1993.
    [16] Y. Z. Li, H. Q. Sun, A note on the Julia sets of entire solutions to delay differential equations, Acta Math. Sci., 43 (2023), 143–155. https://doi.org/10.1007/s10473-023-0109-4 doi: 10.1007/s10473-023-0109-4
    [17] J. R. Long, J. Heittokangas, Z. Ye, On the relationship between the lower order of coefficients and the growth of solutions of differential equations, J. Math. Anal. Appl., 444 (2016), 153–166. https://doi.org/10.1016/j.jmaa.2016.06.030 doi: 10.1016/j.jmaa.2016.06.030
    [18] V. P. Petrenko, Growth of meromorphic function of finite order, Math. USSR Izv., 33 (1969), 414–454. https://doi.org/10.1070/IM1969v003n02ABEH000786 doi: 10.1070/IM1969v003n02ABEH000786
    [19] J. Qiao, On limiting directions of Julia set, Ann. Acad. Sci. Fenn. Math., 26 (2001), 391–399.
    [20] W. Rudin, Real and Complex Analysis, New York: McGraw-Hill, 1987.
    [21] J. Wang, Z. Chen, Limiting directions of Julia sets of entire solutions to complex differential equations, Acta Math. Sci., 37 (2017), 97–107. https://doi.org/10.1016/S0252-9602(16)30118-7 doi: 10.1016/S0252-9602(16)30118-7
    [22] J. Wang, X. Yao, On Julia limiting directions of meromorphic functions, Israel J. Math., 238 (2020), 405–430. https://doi.org/10.1007/s11856-020-2037-5 doi: 10.1007/s11856-020-2037-5
    [23] J. Wang, X. Yao, C. Zhang, Julia limiting directions of entire solutions of complex differential equations, Acta Math. Sci., 41 (2021), 1275–1286. https://doi.org/10.1007/s10473-021-0415-7 doi: 10.1007/s10473-021-0415-7
    [24] Z. Wang, Z. G. Huang, Limiting directions of Julia sets of entire solutions of complex difference equations, Filomat, 36 (2022), 3745–3754.
    [25] C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Beijing: Science Press, 2003.
    [26] G. W. Zhang, J. Ding, L. Z. Yang, Radial dsitribution of Julia sets of derivetives of solutions to complex linear differential equations, in Chinese, Sci. Sin. Math., 44 (2014), 693–700.
    [27] G. W. Zhang, L. Z. Yang, On Petrenko's deviations and the Julia limiting directions of solutions of complex differential equations, J. Math. Anal. Appl., 519 (2023), 126799. https://doi.org/10.1016/j.jmaa.2022.126799 doi: 10.1016/j.jmaa.2022.126799
    [28] J. H. Zheng, Dynamics of Meromorphic Functions, in Chinese, Beijing: Tsinghua University Press, 2006.
    [29] J. H. Zheng, Value Distribution of Meromorphic Function, Beijing: Tsinghua University Press, 2010.
    [30] J. H. Zheng, S. Wang, Z. Huang, Some properties of Fatou and Julia sets of transcendental meromorphic functions, Bull. Aust. Math. Soc., 66 (2002), 1–8. https://doi.org/10.1017/S000497270002061X doi: 10.1017/S000497270002061X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1349) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog