Research article

Invariant Jordan curves in the Julia sets of rational maps

  • Received: 24 March 2025 Revised: 28 June 2025 Accepted: 08 July 2025 Published: 24 July 2025
  • MSC : 37F10, 37F20

  • We give a way to construct invariant Jordan curves in the Julia sets of rational maps that are not boundaries of Fatou components.

    Citation: Xiuming Zhang. Invariant Jordan curves in the Julia sets of rational maps[J]. AIMS Mathematics, 2025, 10(7): 16664-16675. doi: 10.3934/math.2025747

    Related Papers:

  • We give a way to construct invariant Jordan curves in the Julia sets of rational maps that are not boundaries of Fatou components.



    加载中


    [1] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, 48 (1920), 208–314. https://doi.org/10.24033/bsmf.1008 doi: 10.24033/bsmf.1008
    [2] A. Douady, Disques de Siegel et anneaux de Herman, Astérisque, 152-153 (1987), 151–172.
    [3] M. R. Herman, Conjugaison quasi-symmétrique des homéomorphismes analytiques du cercle à des rotations, preliminary manuscript, 1987.
    [4] C. L. Petersen, S. Zakeri, On the Julia set of a typical quadratic polynomial with a Siegel disk, Ann. Math., 159 (2004), 1–52. https://doi.org/10.4007/annals.2004.159.1 doi: 10.4007/annals.2004.159.1
    [5] A. Avila, X. Buff, A. Chéritat, Siegel disks with smooth boundaries, Acta Math., 193 (2004), 1–30. https://doi.org/10.1007/bf02392549 doi: 10.1007/bf02392549
    [6] G. Zhang, All bounded type Siegel disks of rational maps are quasi-disks, Invent. Math., 185 (2011), 421–466. https://doi.org/10.1007/s00222-011-0312-0 doi: 10.1007/s00222-011-0312-0
    [7] M. Shishikura, F. Yang, The high type quadratic Siegel disks are Jordan domains, J. Eur. Math. Soc., 2024. https://doi.org/10.4171/jems/1481
    [8] D. Cheraghi, Topology of irrationally indifferent attractors, arXiv: 1706.02678, 2025. https://doi.org/10.48550/arXiv.1706.02678
    [9] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup., 20 (1987), 1–29. https://doi.org/10.24033/asens.1522 doi: 10.24033/asens.1522
    [10] P. Roesch, Y. Yin, Bounded critical Fatou components are Jordan domains for polynomials, Sci. China Math., 65 (2022), 331–358. https://doi.org/10.1007/s11425-020-1827-4 doi: 10.1007/s11425-020-1827-4
    [11] A. Eremenko, Invariant curves and semiconjugacies of rational functions, Fund. Math., 219 (2012), 263–270. https://doi.org/10.4064/fm219-3-5 doi: 10.4064/fm219-3-5
    [12] F. Yang, Rational maps with smooth degenerate Herman rings, Adv. Math., 452 (2024), 1–29. https://doi.org/10.1016/j.aim.2024.109827 doi: 10.1016/j.aim.2024.109827
    [13] W. R. Lim, A priori bounds and degeneration of Herman rings with bounded type rotation number, arXiv: 2302.07794, 2023. https://doi.org/10.48550/arXiv.2302.07794
    [14] G. Zhang, Jordan mating is always possible for polynomials, Math. Z., 306 (2024), 1–10. https://doi.org/10.1007/s00209-024-03465-0 doi: 10.1007/s00209-024-03465-0
    [15] L. Tan, Matings of quadratic polynomials, Ergod. Theor. Dyn. Syst., 12 (1992), 589–620. https://doi.org/10.1017/s0143385700006957 doi: 10.1017/s0143385700006957
    [16] A. Douady, J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993), 263–297. https://doi.org/10.1007/bf02392534 doi: 10.1007/bf02392534
    [17] B. Bielefeld, Y. Fisher, J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, J. Amer. Math. Soc., 5 (1992), 721–762. https://doi.org/10.1090/s0894-0347-1992-1149891-3 doi: 10.1090/s0894-0347-1992-1149891-3
    [18] K. M. Pilgrim, Canonical Thurston obstructions, Adv. Math., 158 (2001), 154–168. https://doi.org/10.1006/aima.2000.1971 doi: 10.1006/aima.2000.1971
    [19] J. H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 2, Surface homeomorphisms and rational functions, New York: Matrix Editions, 2016. https://doi.org/hal-01297628
    [20] D. P. Thurston, A positive characterization of rational maps, Ann. Math., 192 (2020), 1–46. https://doi.org/10.4007/annals.2020.192.1.1 doi: 10.4007/annals.2020.192.1.1
    [21] J. Milnor, Dynamics in one complex variable, 3 Eds., Princeton University Press, 2006. http://dx.doi.org/10.1177/0300060513509036
    [22] L. Tan, Y. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A, 39 (1996), 39–47.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(448) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog