Fractals exhibit self-similarity across scales and have significant mathematical and artistic appeal. This study proposed a modified fixed-point iteration (MFPI) to generate fractals for the complex polynomial $ y^k + c $. The escape criterion for MFPI was established, enabling the construction of Mandelbrot and Julia sets. Comparative image analysis with M, Picard-Mann, and Mann iterations highlighted visual differences. Numerical metrics, including non-escape area index (NAI), average escape time (AET), fractal dimension (FD), and execution time, assessed the efficiency and performance of MFPI against existing methods.
Citation: Asifa Tassaddiq, Muhammad Tanveer, Muhammad Arshad, Rabab Alharbi, Ruhaila Md Kasmani. Fractal generation and analysis using modified fixed-point iteration[J]. AIMS Mathematics, 2025, 10(4): 9462-9492. doi: 10.3934/math.2025437
Fractals exhibit self-similarity across scales and have significant mathematical and artistic appeal. This study proposed a modified fixed-point iteration (MFPI) to generate fractals for the complex polynomial $ y^k + c $. The escape criterion for MFPI was established, enabling the construction of Mandelbrot and Julia sets. Comparative image analysis with M, Picard-Mann, and Mann iterations highlighted visual differences. Numerical metrics, including non-escape area index (NAI), average escape time (AET), fractal dimension (FD), and execution time, assessed the efficiency and performance of MFPI against existing methods.
| [1] | B. B. Mandelbrot, The fractal geometry of nature, San Francisco: W. H. Freeman and Company, 1983. |
| [2] | M. Rani, V. Kumar, Superior Julia sets, Journal of the Korea society of mathematical education series D: Research in mathematical education, 8 (2004), 261–277. |
| [3] | M. Rani, V. Kumar, Superior Mandelbrot set, Journal of the Korea society of mathematical education series D: Research in mathematical education, 8 (2004), 279–291. |
| [4] |
Ashish, M. Rani, R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 228 (2014), 615–631. https://doi.org/10.1016/j.amc.2013.11.077 doi: 10.1016/j.amc.2013.11.077
|
| [5] |
S. Y. Cho, A. A. Shahid, W. Nazeer, S. M. Kang, Fixed point results for fractal generation in Noor orbit and s-convexity, SpringerPlus, 5 (2016), 1843. https://doi.org/10.1186/s40064-016-3530-5 doi: 10.1186/s40064-016-3530-5
|
| [6] |
S. M. Kang, A. Rafiq, A. Latif, A. A. Shahid, Y. C. Kwun, Tricorns and multicorns of S-iteration scheme, J. Funct. Space., 2015 (2015), 1–7. https://doi.org/10.1155/2015/417167 doi: 10.1155/2015/417167
|
| [7] |
M. Kumari, Ashish, R. Chugh, New Julia and Mandelbrot sets for a new faster iterative process, Int. J. Pure Appl. Math., 107 (2016), 161–177. https://doi.org/10.12732/ijpam.v107i1.13 doi: 10.12732/ijpam.v107i1.13
|
| [8] | C. Zou, A. A. Shahid, A. Tassaddiq, A. Khan, M. Ahmad, Mandelbrot sets and Julia sets in Picard-Mann orbit, IEEE Access, 8 (2020), 64411–64421. |
| [9] |
A. A. Shahid, W. Nazeer, K. Gdawiec, The Picard-Mann iteration with $s$-convexity in the generation of Mandelbrot and Julia sets, Monatsh. Math., 195 (2021), 565–584. https://doi.org/10.1007/s00605-021-01591-z doi: 10.1007/s00605-021-01591-z
|
| [10] |
M. Abbas, H. Iqbal, M. D. la Sen, Generation of Julia and Mandelbrot sets via fixed points, Symmetry, 12 (2020), 86. https://doi.org/10.3390/sym12010086 doi: 10.3390/sym12010086
|
| [11] |
A. Tassaddiq, M. Tanveer, M. Azhar, F. Lakhani, W. Nazeer, Z. Afzal, Escape criterion for generating fractals using Picard-Thakur hybrid iteration, Alex. Eng. J., 100 (2024), 331–339. https://doi.org/10.1016/j.aej.2024.03.074 doi: 10.1016/j.aej.2024.03.074
|
| [12] |
M. Tanveer, W. Nazeer, K. Gdawiec, On the Mandelbrot set of $z^p + \log(c^t)$ via the Mann and Picard-Mann iterations, Math. Comput. Simulat., 209 (2023), 184–204. https://doi.org/10.1016/j.matcom.2023.02.012 doi: 10.1016/j.matcom.2023.02.012
|
| [13] |
M. Tanveer, K. Gdawiec, Application of CR iteration scheme in the generation of Mandelbrot sets of $z^p + \log(c^t)$ function, Qual. Theory Dyn. Sys., 23 (2024), 1–19. https://doi.org/10.1007/s12346-024-01160-3 doi: 10.1007/s12346-024-01160-3
|
| [14] |
S. Kumari, K. Gdawiec, A. Nandal, M. Postolache, R. Chugh, A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method, Chaos Soliton Fract., 163 (2022), 112540. https://doi.org/10.1016/j.chaos.2022.112540 doi: 10.1016/j.chaos.2022.112540
|
| [15] |
A. Tassaddiq, General escape criteria for the generation of fractals in extended Jungck-Noor orbit, Math. Comput. Simulat., 196 (2022), 1–14. https://doi.org/10.1016/j.matcom.2022.01.003 doi: 10.1016/j.matcom.2022.01.003
|
| [16] | S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck-SP orbit with s-convexity, Ann. Univ. Craiova Math. Comput. Sci. Ser., 42 (2019), 344–365. |
| [17] |
X. Y. Li, M. Tanveer, M. Abbas, M. Ahmad, Y. C. Kwun, J. Liu, Fixed point results for fractal generation in extended Jungck-SP orbit, IEEE Access, 7 (2019), 160472–160481. https://doi.org/10.1109/ACCESS.2019.2951385 doi: 10.1109/ACCESS.2019.2951385
|
| [18] |
Y. C. Kwun, M. Tanveer, W. Nazeer, M. Abbas, and S. M. Kang, Fractal generation in modified Jungck-S orbit, IEEE Access, 7 (2019), 35060–35071. https://doi.org/10.1109/ACCESS.2019.2904677 doi: 10.1109/ACCESS.2019.2904677
|
| [19] |
H. X. Qi, M. Tanveer, M. S. Saleem, Y. M. Chu, Anti Mandelbrot sets via Jungck-M iteration, IEEE Access, 8 (2020), 194663–194675. https://doi.org/10.1109/ACCESS.2020.3033733 doi: 10.1109/ACCESS.2020.3033733
|
| [20] |
L. O. Jolaoso, S. H. Khan, Some escape time results for general complex polynomials and biomorphs generation by a new iteration process, Mathematics, 8 (2020), 2172. https://doi.org/10.3390/math8122172 doi: 10.3390/math8122172
|
| [21] | B. Prasad, B. Katiyar, Fractals via Ishikawa iteration, In: Communications in Computer and Information Science, Berlin: Springer, 140, (2011), 197–203. |
| [22] |
K. Gdawiec, Inversion fractals and iteration processes in the generation of aesthetic patterns, Comput. Graph. Forum, 36 (2015), 35–45. https://doi.org/10.1111/cgf.12783 doi: 10.1111/cgf.12783
|
| [23] |
K. Gdawiec, W. Kotarski, A. Lisowska, On the robust Newton's method with the Mann iteration and the artistic patterns from its dynamics, Nonlinear Dyn., 104 (2021), 297–331. https://doi.org/10.1007/s11071-021-06306-5 doi: 10.1007/s11071-021-06306-5
|
| [24] |
L. O. Jolaoso, S. H. Khan, K. O. Aremu, Dynamics of RK iteration and basic family of iterations for polynomiography, Mathematics, 10 (2022), 3324. https://doi.org/10.3390/math10183324 doi: 10.3390/math10183324
|
| [25] |
S. M. Kang, A. Rafiq, Y. C. Kwun, A new second-order iteration method for solving nonlinear equations, Abstr. Appl. Anal., 2013 (2013), 487062. https://doi.org/10.1155/2013/487062 doi: 10.1155/2013/487062
|
| [26] |
L. Zhou, J. Y. Cai, S. F. Ding, The identification of ice floes and calculation of sea ice concentration based on a deep learning method, Remote Sens., 15 (2023), 2663. https://doi.org/10.3390/rs15102663 doi: 10.3390/rs15102663
|
| [27] |
J. Y. Cai, S. F. Ding, Q. Zhang, R. W. Liu, D. H. Zeng, L. Zhou, Broken ice circumferential crack estimation via image techniques, Ocean Eng., 259 (2022), 111735. https://doi.org/10.1016/j.oceaneng.2022.111735 doi: 10.1016/j.oceaneng.2022.111735
|
| [28] |
G. Q. Zhou, X. X. Liu, Orthorectification model for extra-length linear array imagery, IEEE T. Geosci. Remote Sens., 60 (2022). https://doi.org/10.1109/TGRS.2022.3223911 doi: 10.1109/TGRS.2022.3223911
|
| [29] |
G. B. Cai, X. Z. Zheng, J. Guo, W. J. Gao, Real-time identification of borehole rescue environment situation in underground disaster areas based on multi-source heterogeneous data fusion, Safety Sci., 181 (2025), 106690. https://doi.org/10.1016/j.ssci.2024.106690 doi: 10.1016/j.ssci.2024.106690
|
| [30] |
H. G. Pan, S. Y. Tong, X. Q. Wei, B. Y. Teng, Fatigue state recognition system for miners based on a multimodal feature extraction and fusion framework, IEEE T. Cogn. Dev. Syst., 17 (2025), 410–420. https://doi.org/10.1109/TCDS.2024.3461713 doi: 10.1109/TCDS.2024.3461713
|
| [31] |
M. Y. Li, T. Jia, H. Wang, B. W. Ma, H. Lu, S. Y. Lin, Ao-DETR, Anti-overlapping DETR for X-ray prohibited items detection, IEEE T. Neur. Net. Lear. Syst., 2024, 1–15. https://doi.org/10.1109/TNNLS.2024.3487833 doi: 10.1109/TNNLS.2024.3487833
|
| [32] |
J. Y. Xia, Z. X. Yang, S. X. Li, S. H. Zhang, Y. W. Fu, D. Gndz, Blind super-resolution via meta learning and markov chain monte carlo simulation, IEEE T. Pattern Anal. Mach. Intell., 46 (2024), 8139–8156. https://doi.org/10.1109/TPAMI.2024.3400041 doi: 10.1109/TPAMI.2024.3400041
|
| [33] |
H. Chen, Y. C. Bei, W. B. Huang, S. Y. Chen, F. R. Huang, X. Huang, Graph cross-correlated network for recommendation, IEEE T. Knowl. Data Eng., 37 (2025), 710–723. https://doi.org/10.1109/TKDE.2024.3491778 doi: 10.1109/TKDE.2024.3491778
|
| [34] | H. Jin, S. Y. Tian, J. T. Hu, L. Zhu, S. Zhang, Robust ratio-typed test for location change under strong mixing heavy-tailed time series model, Commun. Stat-Theory Meth., 2025, 1–24. https://doi.org/10.1080/03610926.2024.2446396 |
| [35] |
Y. X. Wu, Y. H. Fan, S. X. Zhou, X. Z. Wang, Q. C. Chen, X. X. Li, Research on the cross-sectional geometric parameters and rigid skeleton length of reinforced concrete arch bridges: A case study of yelanghu bridge, Structures, 69 (2024), 107423. https://doi.org/10.1016/j.istruc.2024.107423 doi: 10.1016/j.istruc.2024.107423
|
| [36] | W. F. Song, X. Wang, S. Zheng, S. Li, A. M. Hao, X. Hou, Talkingstyle: Personalized speech-driven 3d facial animation with style preservation, IEEE T. Vis. Comput. Gr., 2024. https://doi.org/10.1109/TVCG.2024.3409568 |
| [37] |
W. F. Song, X. Wang, Y. M. Jiang, S. Li, A. M. Hao, X. Hou, Expressive 3d facial animation generation based on local-to-global latent diffusion, IEEE T. Vis. Comput. Gr., 30 (2024), 7397–7407. https://doi.org/ 10.1109/TVCG.2024.3456213 doi: 10.1109/TVCG.2024.3456213
|
| [38] |
G. Q. Zhou, H. X. Li, R. H. Song, Q. Y. Wang, J. S. Xu, B. Song, Orthorectification of fisheye image under equidistant projection model, Remote Sens., 14 (2022), 4175. https://doi.org/10.3390/rs14174175 doi: 10.3390/rs14174175
|
| [39] |
G. Q. Zhou, Z. Y. Wang, Q. Li, Spatial negative co-location pattern directional mining algorithm with join-based prevalence, Remote Sens., 14 (2022), 2103. https://doi.org/10.3390/rs14092103 doi: 10.3390/rs14092103
|
| [40] | M. F. Barnsley, Fractals everywhere, New York: Dover Publication, 2014. |
| [41] | R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9780429503481 |
| [42] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210. |
| [43] |
W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
|
| [44] |
S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013). https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
|
| [45] |
K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
|
| [46] |
S. M. Kang, A. Rafiq, Y. C. Kwun, A new second-order iteration method for solving nonlinear equations, Abstr. Appl. Anal., 2013 (2013), 487062. https://doi.org/10.1155/2013/487062 doi: 10.1155/2013/487062
|
| [47] |
B. Nawaz, K. Ullah, K. Gdawiec, Generation of Mandelbrot and Julia sets by using M-iteration process, Chaos Soliton. Fract., 188 (2024), 115516. https://doi.org/10.1016/j.chaos.2024.115516 doi: 10.1016/j.chaos.2024.115516
|