In this paper, we study the stability of a nonlinear population system with a weighted total size of scale structure and migration in a polluted environment, where fertility and mortality depend on the density in different ways. We first prove the existence and uniqueness of the equilibrium point via a contraction mapping and give the expression for the equilibrium point. Some conditions for asymptotic stability and instability are presented by means of a characteristic equation. When the effect of density restriction on mortality is not considered, the threshold value of equilibrium stability can be obtained as Λ=0. When Λ<0, the equilibrium is asymptotically stable, and when Λ>0, the equilibrium is unstable. In addition, the upwind difference method is used to discrete the model, and two examples are given to show the evolution of species.
Citation: Wei Gong, Zhanping Wang. Stability of nonlinear population systems with individual scale and migration[J]. AIMS Mathematics, 2023, 8(1): 125-147. doi: 10.3934/math.2023006
[1] | Feng Qi, Da-Wei Niu, Bai-Ni Guo . Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170 |
[2] | Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148 |
[3] | Takao Komatsu, Wenpeng Zhang . Several expressions of truncated Bernoulli-Carlitz and truncated Cauchy-Carlitz numbers. AIMS Mathematics, 2020, 5(6): 5939-5954. doi: 10.3934/math.2020380 |
[4] | Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541 |
[5] | Hye Kyung Kim . Note on r-central Lah numbers and r-central Lah-Bell numbers. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161 |
[6] | Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820 |
[7] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
[8] | Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate r-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322 |
[9] | Taekyun Kim, Dae San Kim, Hye Kyung Kim . Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 2022, 7(9): 17357-17368. doi: 10.3934/math.2022956 |
[10] | Zhi-Hong Sun . Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153 |
In this paper, we study the stability of a nonlinear population system with a weighted total size of scale structure and migration in a polluted environment, where fertility and mortality depend on the density in different ways. We first prove the existence and uniqueness of the equilibrium point via a contraction mapping and give the expression for the equilibrium point. Some conditions for asymptotic stability and instability are presented by means of a characteristic equation. When the effect of density restriction on mortality is not considered, the threshold value of equilibrium stability can be obtained as Λ=0. When Λ<0, the equilibrium is asymptotically stable, and when Λ>0, the equilibrium is unstable. In addition, the upwind difference method is used to discrete the model, and two examples are given to show the evolution of species.
The Bernoulli numbers are defined by the exponential generating function:
yey−1=∞∑n=0Bnynn!. |
For their wide applications to classical analysis (cf. Stromberg [47, Chapter 7], number theory (cf. Apostol [3, §12.12]), combinatorics [44, §3.4] and numerical mathematics (cf. Arfken [5]), these numbers appear frequently in the mathematical literature (see Comtet [17, §1.14], Graham et al. [26, §6.5] and Hansen [27, §50]).
There exist numerous interesting properties (cf. [2,4,8,13,24]); in particular, about recurrence relations (cf. [1,21,30,37]), reciprocities (cf. [12,25,41,42,49]), convolutions (cf. [14,15,16,22,34]), multiple sums (cf. [10,11,19,32]) and combinatorial applications (cf. [6,31,35,38]). A few of them are recorded here as examples:
● Arithmetic sums
m∑k=1kn=n∑j=0(m+1)j+1n+1(n+1j+1)Bn−j. |
● Binomial recurrences
n∑k=0(nk)Bk=(−1)nBn,n≥0;n−2∑k=1(nk)kBk=−n2Bn−1,n≥3;n∑k=0(nk)Bk2+n−k=Bn+1n+1,n≥0. |
● Convolutions of the Miki type (cf. [12,22,34,36,40])
ℓ−1∑k=1BkBℓ−kk−ℓ−1∑k=2(ℓk)BkBℓ−kk=HℓBℓ,ℓ∑k=0BkBℓ−k−2ℓ∑k=2(ℓ+1k+1)BkBℓ−kk+2=(ℓ+1)Bℓ. |
● Riemann zeta series
∞∑k=11k2n=(−1)n−122n−1B2n(2n)!π2n,∞∑k=1(−1)k−1k2n=(−1)n(1−22n−1)B2n(2n)!π2n,∞∑k=11(2k−1)2n=(−1)n(1−22n)B2n2(2n)!π2n. |
The aim of this paper is to examine and review systematically explicit formulae of Bernoulli numbers. Among known double sum expressions, the simplest one reads as
Bn=n∑j=0j∑k=0(−1)kj+1(jk)kn=n∑k=0knn∑j=k(−1)kj+1(jk). |
We observe that when the upper limit n is replaced by m≥n, the last formula is still valid. Letting Ω(m,k) be the connection coefficients
Ω(m,k)=m∑j=k(−1)kj+1(jk), |
we have the following formula (see Theorem 1) with an extra parameter m:
Bn=m∑k=0knΩ(m,k),wherem≥n. |
Three remarkable formulae can be highlighted in anticipation as exemplification (see Eqs (2.20), (3.14) and (4.1)), where for m=n, the last two identities resemble those found respectively by Bergmann [7] and Gould [24, Eq (1.4)]:
n+Bn=m∑k=0(k+2)nm∑j=k(−1)kj+1(jk),m≥n≥2;Bn=m∑k=1knm∑j=k(−1)j−1j(j+1)(mj),m≥n≥2;Bn=m∑k=1knm∑j=k(−1)k−1(j−1k−1)Hj,m>n≥1. |
The rest of the paper will be organized as follows. In the next section, we shall establish several representation formulae of Bn by parameterizing known double sums with m. Then in Section 3, by examining equivalent expressions for Ω(m,k) and another connection coefficient ω(m,k), we shall prove further explicit formulae for Bernoulli numbers. Finally, the paper will end in Section 4, where more summation formulae will be shown.
Throughout the paper, we shall frequently make use of the following notations. Let N be the set of natural numbers with N0={0}∪N. For n∈N0 and an indeterminate x, the shifted factorial is defined by
(x)0≡1and(x)n=n−1∏k=0(x+k)forn∈N. |
The harmonic numbers Hn are given by the partial sums Hn=∑nk=11k,wheren∈N.
Denote by [yn]ϕ(y) the coefficient of yn in the formal power series ϕ(y). Recall the exponential generating function of the Bernoulli numbers
yey−1=∞∑n=0Bnn!yn. |
Expanding this function into the series
yey−1=ln{1+(ey−1)}ey−1=∞∑j=0(−1)jj+1(ey−1)j, |
we get, for m≥n, the following expression
Bn=n![yn]m∑j=0(−1)jj+1(ey−1)j=n!m∑j=0(−1)jj!j+1[yn](ey−1)jj!=m∑j=0(−1)jj!j+1S2(n,j), |
where S2(n,j) is the Stirling number of the second kind
S2(n,j)=njj!=1j!j∑k=0(−1)j−k(jk)kn. | (2.1) |
Therefore, we have established, by substitution, the following explicit formula.
Theorem 1 (m,n∈N0 with m≥n).
Bn=m∑j=0j∑k=0(−1)kj+1(jk)kn=m∑k=0knm∑j=k(−1)kj+1(jk). |
This fundamental result will be the starting point for us to examine explicit formulae of Bernoulli numbers. When m=n+1, the corresponding formula can be located in Jordan [29, §78, Page 236]. Instead, its m=n case is well-known; that can be found in Cook [18], Gould [23, Eq (1)] and [24, Eq (1.3)], Higgens [28], Quaintance and Gould [43, Eq (15.2)].
Define the coefficients Ω(m,k) by
Ω(m,k):=m∑j=k(−1)kj+1(jk). | (2.2) |
We can rewrite the basic formula in Theorem 1 as
Bn=m∑k=0knΩ(m,k),wherem≥n. | (2.3) |
Lemma 2. For m≥k, the coefficients Ω(m,k) satisfy the recurrence relations:
Ω(m,k)−Ω(m−1,k)=(−1)km+1(mk), | (2.4) |
Ω(m,k)−Ω(m,k−1)=(−1)kk(m+1k). | (2.5) |
Proof. The first one (2.4) follows directly from the definition of Ω(m,k). The second one can be done as follows
Ω(m,k)−Ω(m,k−1)=m∑j=k(−1)kj+1(jk)+m∑j=k−1(−1)kj+1(jk−1)=m∑j=k−1(−1)kj+1{(jk)+(jk−1)}=m∑j=k−1(−1)kj+1(j+1k)=(−1)kkm∑j=k−1(jk−1), |
which confirms (2.5) after having evaluated the binomial sum
m∑j=k−1(jk−1)=(m+1k). |
In addition, the lower triangular matrix
Ωm:=[Ω(i,j)]1≤i,j≤m |
with diagonal elements
Ω(k,k)=(−1)kk+1 |
is invertible. We can determine its inverse explicitly by
Ω−1m=[(−1)j(ij)1+2i+ij1+j]1≤i,j≤m. |
Similar to the formula in Theorem 1, we have the following three variants.
Proposition 3 (m,n∈N).
Bn=m∑k=1kn+1m∑j=k(−1)k−1j2(jk),m>n≥2; | (2.6) |
Bn=m∑k=1knm∑j=k(−1)k−1j(j+1)(jk),m≥n≥2; | (2.7) |
Bn=m∑k=1knm∑j=k(−1)k2j+1j(j+1)(jk),m≥n≥2. | (2.8) |
Among these formulae, the first two reduce, for m=n+1 and m=n, to Fekih-Ahmed [20, Eqs (5) and (6)], respectively.
Proof. According to (2.5), we have, for m≥n>1, the following equalities:
Bn=m∑k=1knΩ(m,k)=m∑k=1(−1)k(m+1k)kn−1+m∑k=1knΩ(m,k−1)=(−1)m(m+1)n−1+m∑k=1knm∑i=k−1(−1)k−1i+1(ik−1). |
Simplifying the last line
Bn=m+1∑k=1knm∑i=k−1(−1)k−1i+1(ik−1),(m≥n≥2) | (2.9) |
and then reformulating it as
Bn=m+1∑k=1kn+1m∑i=k−1(−1)k−1(i+1)2(i+1k), |
we confirm (2.6) under the replacements "m→m−1" and "i→j−1".
Observe further that for m≥n, the double sum vanishes
m∑k=1knm∑j=k(−1)kj(jk)=0,(m≥n≥2), | (2.10) |
which is justified by the finite differences
m∑k=1(−1)kkn−1m∑j=k(j−1k−1)=m∑k=1(−1)k(mk)kn−1=0. |
Then (2.7) and (2.8) follow respectively from the difference and sum between Eq (2.10) and that in Theorem 1.
Besides (2.10) and the formula in Theorem 1, we also have the following counterparts.
Theorem 4 (m,n∈N with m≥n≥1).
m∑k=1knm∑j=k(−1)kj+2(jk)={Bn,n≡20;Bn+1,n≡21. | (2.11) |
m∑k=1knm∑j=k(−1)kj+3(jk)={Bn+12Bn+2,n≡20;32Bn+1,n≡21. | (2.12) |
Proof. In accordance with the binomial relation
(jk)=(j+1k)−(jk−1), | (2.13) |
we can write the sum in (2.11) as "A+B", where
A=m∑k=0knm∑j=k(−1)kj+2(j+1k),B=m∑k=0knm∑j=k(−1)k−1j+2(jk−1). |
Replacing the summation index j by i−1 in "A", we can reformulate it as follows:
A=m∑k=0knm+1∑i=k+1(−1)ki+1(ik)=m+1∑k=0knm+1∑i=k(−1)ki+1(ik)−m+1∑k=0(−1)kknk+1. |
Recalling Theorem 1, we deduce the expression
A=Bn−m+1∑k=0(−1)kknk+1. | (2.14) |
When n>1, applying first the partial fractions and then making the replacement "j→i−1", we can rewrite "B" as
B=m∑k=1kn+1m∑j=k(−1)k−1(j+1)(j+2)(j+1k)=m∑k=1kn+1m∑j=k(−1)k−1j+1(j+1k)+m∑k=1kn+1m∑j=k(−1)kj+2(j+1k)=m∑k=1kn+1m+1∑i=k+1(−1)ki+1(ik)−m∑k=1kn+1m+1∑i=k+1(−1)ki(ik). |
By appealing to Theorem 1 and (2.10), we reduce the last expression to the following one:
B=Bn+1+m+1∑k=1(−1)kkn−m+1∑k=1(−1)kkn+1k+1=Bn+1+m+1∑k=1(−1)kknk+1. | (2.15) |
Putting together (2.14) and (2.15), we find that
A+B=Bn+Bn+1, |
which is equivalent to the expression in (2.11).
Similarly, by making use of (2.13), we can write the sum (2.12) as "C+D", where
C=m∑k=1knm∑j=k(−1)kj+3(j+1k),D=m∑k=1knm∑j=k(−1)k−1j+3(jk−1). |
Replacing the summation index j by i−1 in "C", we can manipulate it as follows:
C=m∑k=1knm+1∑i=k+1(−1)ki+2(ik)=m+1∑k=1knm+1∑i=k(−1)ki+2(ik)−m+1∑k=1(−1)kknk+2. |
Evaluating the first sum by (2.11), we obtain the expression
C=Bn+Bn+1−m+1∑k=1(−1)kknk+2. | (2.16) |
We can analogously treat "D" as follows:
D=m∑k=1kn+1m∑j=k(−1)k+1(j+1)(j+3)(j+1k)=12m∑k=1kn+1m∑j=k(−1)kj+3(j+1k)−12m∑k=1kn+1m∑j=k(−1)kj+1(j+1k)=12m∑k=1kn+1m+1∑i=k+1(−1)ki+2(ik)−12m∑k=1kn+1m+1∑i=k+1(−1)ki(ik). |
Applying (2.10) and (2.11), we can further simplify the last expression
D=Bn+1+Bn+22−12m+1∑k=1(−1)kkn+1k+2+12m+1∑k=1(−1)kkn=Bn+1+Bn+22+m+1∑k=1(−1)kknk+2. | (2.17) |
Finally, putting (2.16) and (2.17), we arrive at
C+D=Bn+3Bn+1+Bn+22, |
which proves the second identity (2.12).
Furthermore, there are four similar sums that can be expressed in closed forms in Bernoulli numbers.
Theorem 5 (m,n∈N).
m∑k=0(k+1)nm∑i=k(−1)ki+1(ik)=Bn,m≥n≥2; | (2.18) |
m∑k=0(k+1)nm∑i=k(−1)ki+2(ik)=Bn+1,m≥n≥1; | (2.19) |
m∑k=0(k+2)nm∑i=k(−1)ki+1(ik)=n+Bn,m≥n≥2; | (2.20) |
m∑k=0(k+2)nm∑i=k(−1)ki+2(ik)=1−Bn+Bn+1,m≥n≥1. | (2.21) |
Proof. The first one (2.18) is deduced from (2.9) under the replacement "k→k+1".
By splitting the sum in (2.19) into two, then making the replacements "i→j−1,k→k−1" for the former and "k→k−1" for the latter, we can confirm the second identity (2.19) as follows:
m∑k=0(k+1)nm∑i=k(−1)ki+2(ik)=m∑k=0(k+1)nm∑i=k(−1)ki+2{(i+1k+1)−(ik+1)}=m+1∑k=1knm+1∑j=k(−1)k−1j+1(jk)+m+1∑k=1knm∑i=k−1(−1)ki+2(ik)=m∑k=1knm∑i=k(−1)ki+2(ik)−m+1∑k=1knm+1∑j=k(−1)kj+1(jk)=(Bn+Bn+1)−Bn=Bn+1. |
According to (2.13), we can write the third sum in (2.20) as "E+F", where
E=m∑k=0(k+2)nm∑i=k(−1)ki+1(i+1k+1),F=m∑k=0(k+2)nm∑i=k(−1)k−1i+1(ik+1). |
The sum "E" can be evaluated by
E=m∑k=0(−1)k(k+2)nk+1m∑i=k(ik)=m∑k=0(−1)k(k+2)nk+1(m+1k+1)=n∑i=0(ni)m∑k=0(−1)k(m+1k+1)(k+1)i−1. |
Because the above inner sum results in zero for 2≤i≤n, there remain, for "E", only two terms corresponding to i=1 and i=0:
E=n+m∑k=0(−1)kk+1(m+1k+1)=n+Hm+1. | (2.22) |
The sum "F" can be restated, under "k→k−1", as
F=m+1∑k=1(k+1)nm∑i=k−1(−1)ki+1(ik)=m∑k=1(k+1)nm∑i=k(−1)ki+1(ik)=m∑k=0(k+1)nm∑i=k(−1)ki+1(ik)−m∑i=01i+1. |
Evaluating the former sum by (2.18), we find that
F=Bn−Hm+1. | (2.23) |
Then the third identity (2.20) follows by putting (2.22) and (2.23) together.
Finally, for (2.21), write that sum as "G+H", where
G=m∑k=0(k+2)nm∑i=k(−1)ki+2(i+1k+1),H=m∑k=0(k+2)nm∑i=k(−1)k−1i+2(ik+1). |
By making use of (2.18) and (2.7), we can evaluate
G=m+1∑k=1(k+1)nm+1∑j=k(−1)k−1j+1(jk)=Hm+2−Bn,H=m∑k=0(k+2)n+1m∑i=k(−1)k−1(i+1)(i+2)(i+1k+2)=m+1∑k=2kn+1m+1∑j=k(−1)k+1j(j+1)(jk)=Bn+1−m+1∑j=11j+1=1+Bn+1−Hm+2. |
It follows consequently that
G+H=1−Bn+Bn+1, |
which coincides with the right-hand side of (2.21).
In this section, we shall first prove a binomial identity. Then it will be utilized to derive equivalent expressions for the connection coefficients Ω(m,k) and ω(m,k). These equivalent forms will be useful in proving further explicit formulae for Bernoulli numbers.
We begin with the following binomial identity.
Theorem 6. For two indeterminates x,y and m,k∈N0 with m≥k, the following algebraic identity holds:
m∑j=k(x−j)k(1+y)k(1−x+y+j)=m∑i=k{(x−i)k(1+y+m−i)k+1+(x−k)k+1(1−x+y+i)(1+y−k+i)k+1}=m∑i=k{(x−m+i−k)k(1+y−k+i)k+1+(x−k)k+1(1−x+y+i)(1+y−k+i)k+1}. |
Proof. We prove the theorem by examining the double sum
S:=m∑i=km∑j=iΛ(i,j),whereΛ(i,j):=(k+1)(x−i)k(y−i+j)k+2. |
For the given λ′j-sequence below, it is routine to check its difference
λ′j=(x−i)k(y−i+j)k+1,λ′j−λ′j+1=Λ(i,j). |
Therefore, we can manipulate S by telescoping as follows:
S=m∑i=km∑j=iΛ(i,j)=m∑i=km∑j=i{λ′j−λ′j+1}=m∑i=k{λ′i−λ′m+1}, |
which can be restated as
S=m∑i=k{(x−i)k(y)k+1−(x−i)k(1+y−i+m)k+1}. | (3.1) |
Alternatively, for another λ″i-sequence, we have
λ″i:=(x−i)k+1(1+y−i+j)k+1,λ″i−λ″i+1=(1−x+y+j)Λ(i,j). |
Hence, we can reformulate S analogously as follows:
S=m∑j=kj∑i=kΛ(i,j)=m∑j=kj∑i=kλ″i−λ″i+11−x+y+j=m∑j=kλ″k−λ″j+11−x+y+j, |
which can be rewritten explicitly
S=m∑j=k{(x−k)k+1(1−x+y+j)(1+y−k+j)k+1−(x−j−1)k+1(1−x+y+j)(y)k+1}. | (3.2) |
By relating (3.1) to (3.2), we derive the equality
m∑i=k(x−i)k(1+y−i+m)k+1+m∑j=k(x−k)k+1(1−x+y+j)(1+y−k+j)k+1=m∑i=k(x−i)k(y)k+1+m∑j=k(x−j−1)k+1(1−x+y+j)(y)k+1=m∑j=k(x−j)k(1−x+y+j)(1+y)k, |
which is equivalent to the expression in the theorem.
When x=y=0, Theorem 6 reduces to the crucial identity used by Komatsu and Pita-Ruiz [31, Eq (27)].
m∑j=km+1j+1(jk)=m∑i=k(m+1i−k)(mi)=m∑i=k(m+1m−i)(mi−k). |
From this, we deduce the equivalent expressions below
Ω(m,k)=m∑i=k(−1)km+1(m+1i−k)(mi)=m∑i=k(−i)k(1+m−i)k+1. | (3.3) |
This leads us to the following formula which reduces, for m=n, to Munch [39] (cf. Gould [24, Eq (1.8)], Quaintance and Gould [43, Eq (15.7)]).
Theorem 7 (m≥n≥1).
Bn=m∑k=1knm∑i=k(−i)k(1+m−i)k+1=m∑k=1knm∑i=k(−1)km+1(m+1i−k)(mi). |
Consider the difference
m∑k=1knm∑i=k{(1−i)k−1(2+m−i)k−(−i)k(1+m−i)k+1}=m∑k=1knm∑i=k(1−i)k−1(1+m−i)k+1(m+1)=m∑k=1knm∑i=kλi−λi+1k where λi=(1−i)k(2+m−i)k=m∑k=1(−1)k−1(mk)kn−1=0,m≥n>1. |
We infer that the formula in Theorem 7 is equivalent to the following one.
Theorem 8 (m≥n≥2).
Bn=m∑k=1knm∑i=k(−1)k−1m+1(m+1i−k)(mi−1). | (3.4) |
Its special case m=n can be found in Gould [24, Eq (1.9)], Quaintance and Gould [43, Eq (15.5)] and Shanks [45]. However, the formula produced by Komatsu and Pita–Ruiz [31, Eq (2)] is incorrect.
The last formula can be rewritten as
Bn=m∑k=1knω(m,k), | (3.5) |
where the connection coefficients are defined by
ω(m,k)=m∑i=k(1−i)k−1(2+m−i)k=m∑i=k(−1)k−1m+1(m+1i−k)(mi−1). | (3.6) |
It is obvious that the matrix of the connection coefficients
ωm:=[ω(i,j)]1≤i,j≤m |
with diagonal entries
ω(k,k)=(−1)k+1k(k+1) |
is lower triangular and invertible. It is not difficult to check that its inverse is given explicitly by
ω−1m=[(−1)j+1(ij)(2i−j+ij)]1≤i,j≤m. |
Observing further that
ω(m,k)=m−1∑j=k−1(−j)k−1(1+m−j)k, |
we can prove the following interesting lemma.
Lemma 9. The connection coefficients satisfy the properties:
● Relations between Ω(m,k) and ω(m,k)
ω(m,k)=Ω(m,k−1)−(−m)k−1k!,Ω(m,k)=ω(m,k+1)+(−m)k(k+1)!. | (3.7) |
● Recurrence relations: m,k∈N
ω(m,k)−ω(m,k−1)=(−1)k−1k(k−1)(mk−1), | (3.8) |
ω(m,k)−ω(m−1,k)=(−1)k−1m(m+1)(mk). | (3.9) |
● Equivalent expression: m,k∈N
ω(m,k)=m∑j=k(−1)k−1j(j+1)(jk). | (3.10) |
Proof. The recurrence relations (3.8) and (3.9) follow by combining (3.7) with (2.4) and (2.5). The equivalent expression displayed in (3.10) is obtained by iterating (3.9), which has already appeared in (2.7).
The connection coefficients Ω(m,k) and ω(m,k) are related to the harmonic numbers in the following manners.
Proposition 10 (Equivalent expressions: m,k∈N).
Ω(m,k)=Hm+1+k∑i=1(−1)ii(m+1i)=m∑i=k(−1)ii+1(m+1i+1), | (3.11) |
ω(m,k)=Hm+1−1+k−1∑i=1(−1)ii(i+1)(mi)=m∑i=k(−1)i−1i(i+1)(mi). | (3.12) |
Proof. By iterating the relation (2.5) k-times, we find that
Ω(m,k)=Ω(m,0)+k∑i=1(−1)ii(m+1i) |
which becomes the first expression in (3.11) since Ω(m,0)=Hm+1. The second expression in (3.11) follows by the inverse pair
Hn=n∑i=1(−1)i−1i(ni)and1n=n∑i=1(−1)i−1(ni)Hi. |
Analogously, by iterating the relation (3.8) k-times, we have that
ω(m,k)=ω(m,1)+k−1∑i=1(−1)ii(i+1)(mi), |
which gives the first expression in (3.12) since ω(m,1)=Hm+1−1. The second expression in (3.12) follows by another inverse pair
Hm+1−1=m∑i=1(−1)i−1i(i+1)(mi)and1m(m+1)=m∑i=1(−1)i−1(mi)(Hi+1−1). |
We have therefore the following four explicit formulae.
Theorem 11 (m,n∈N0).
Bn=m∑i=0(−1)ii+1(m+1i+1)i∑k=0kn,m≥n≥0; | (3.13) |
Bn=m∑i=1(−1)i−1i(i+1)(mi)i∑k=1kn,m≥n≥2; | (3.14) |
Bn=m∑i=0(−1)ii+1(m+1i+1)i+1∑k=0kn,m≥n≥2; | (3.15) |
Bn=(−1)nn!χ(m=n)n+1+m∑i=0(−1)ii+1(mi+1)i∑k=0kn,m≥n≥0. | (3.16) |
In the last line, χ stands for the logical function with χ(true)=1 and χ(false)=0. When m=n, the first identity recovers Bergmann [7] (cf. Gould [23, Eq (5)], [24, Eq (1.10)]), and the two variants (3.15) and (3.16) reduce to Gould [24, Eqs (1.11) and (1.12)]. In addition, we remark that when m>n, (3.15) is substantially the same as (3.13).
Proof. The first two identities follow directly by (3.11) and (3.12). In comparison with (3.13), the third identity (3.15) is equivalent to
m∑i=0(−1)i(m+1i+1)(i+1)n−1=m+1∑j=1(−1)j−1(m+1j)jn−1=0, |
because for m≥n>1, the order m+1 of the differences is higher than the polynomial degree n−1.
By means of the binomial relation
(n+1i+1)=(ni+1)+(ni), |
we can rewrite (3.13) as
Bn=m∑i=0(−1)ii+1(mi+1)i∑k=0kn+m∑i=0(−1)ii+1(mi)i∑k=0kn. |
Recall that the power sum ∑j−1k=0kn results in a polynomial of degree n+1 in j with the leading coefficient being equal to 1n+1. We can evaluate the second sum above in closed form as follows:
m∑i=0(−1)ii+1(mi)i∑k=0kn=(−1)mm+1m∑j=0(−1)1+m−j(m+1j)j−1∑k=0kn=(−1)mm+1Δm+1xn+1n+1|x=0=(−1)nn!n+1χ(m=n). |
This confirms identity (3.16) and completes the proof of Theorem 11.
Consider the partial fraction decomposition
(x)ℓ(1+m+x)ℓ+1=ℓ∑j=0(−1)j+ℓ1+m+x+j(ℓj)(1+m+jℓ). |
In the above equation, letting "x→−i,ℓ→k" and "x→1−i,ℓ→k−1", we have, respectively, the two equalities:
(−i)k(1+m−i)k+1=k∑j=0(−1)j+k1+m−i+j(kj)(1+m+jk),(1−i)k−1(2+m−i)k=k∑j=1(−1)j+k1+m−i+j(k−1j−1)(m+jk−1). |
Substituting them into (3.3) and (3.6), respectively, then manipulating the double sums by exchanging the summation order, we derive the following equivalent expressions in terms of harmonic numbers.
Proposition 12 (m,k∈N0).
Ω(m,k)=k∑j=0(−1)j+k(kj)(1+m+jk){H1+m−k+j−Hj},m≥k≥0;ω(m,k)=k∑j=1(−1)j+k(k−1j−1)(m+jk−1){H1+m−k+j−Hj},m≥k≥1. |
Consequently, we find two further explicit formulae involving harmonic numbers.
Theorem 13 (m,n∈N).
Bn=m∑k=1knk∑j=0(−1)j+k(kj)(1+m+jk){H1+m−k+j−Hj},m≥n≥1;Bn=m∑k=1knk∑j=1(−1)j+k(k−1j−1)(m+jk−1){H1+m−k+j−Hj},m≥n≥2. |
We are going to review, finally in this section, more summation formulae involving harmonic numbers and Stirling numbers of the second kind by intervening with an extra integer parameter m.
There exist two formulae expressing Bn in terms of harmonic numbers, that are quite different from those in Theorem 13.
Theorem 14 (m>n≥1).
Bn=m∑i=1Hii∑k=1(−1)k−1(i−1k−1)kn=m∑k=1knm∑i=k(−1)k−1(i−1k−1)Hi, | (4.1) |
Bn=2n+1m∑i=1Hii+1i∑k=1(−1)k−1(ik)kn+1=2n+1m∑k=1kn+1m∑i=k(−1)k−1(ik)Hii+1. | (4.2) |
When m=n, the second formula (4.2) recovers Gould [24, Eq (1.4)].
Proof. Recalling the generating function
∞∑i=1Hiyi=−ln(1−y)1−y, |
we can proceed with
Bn=n![xn]xex−1=n![xn]ex1−ex×−ln{1−(1−ex)}1−(1−ex)=n![xn]m∑i=1Hiex(1−ex)i−1m>n=n![xn]m∑i=1Hii∑k=1(−1)k−1(i−1k−1)ekx, |
which results in the first formula (4.1).
The second formula (4.2) is a variant of (4.1), which can be verified by making use of another generating function
∞∑i=1Hii+1yi+1=ln2(1−y)2. |
In fact, we can similarly extract the coefficient as follows:
Bn=n![xn]xex−1=n![xn]2ln2{1−(1−ex)}2x(ex−1)=−2n![xn+1]m∑i=1Hii+1(1−ex)im>n=−2n![xn+1]m∑i=1Hii+1i∑k=1(−1)k(ik)ekx=2n+1m∑i=1Hii+1i∑k=1(−1)k−1(ik)kn+1. |
Here we offer three formulae containing the Stirling numbers of the second kind, extending those by Shirai [46, Theorem 6 and Corollary 7] (cf. Morrow [38, Eq (1.5)]).
Theorem 15 (λ≠0 and m,n∈N with m≥n≥0).
Bn=m∑j=0(−1)j(m+1j+1)(n+jj)S2(n+j,j), | (4.3) |
Bn=nn−1m+1∑j=1(−1)j(m+2j+1)(n+j−1j)S2(n+j,j), | (4.4) |
Bn=nn−1m+2∑j=1(−1)jλ+j+1λ(m+3j+1)(n+j−1j)S2(n+j,j). | (4.5) |
When m=n, the first formula (4.3) can be found in Gould [23, Eq (11)], [24, Eq (1.5)] (see also Luo [33], Quaintance and Gould [43, Eq (15.10)], Shirai [46, Theorem 6]). Two variants (4.4) and (4.5) with m=n and λ=n+23 are due to Shirai [46, Corollary 7].
Proof. Recall the exponential generating function
(ex−1)jj!=∞∑n=0xn+j(n+j)!S2(n+j,j). |
We can extract the coefficient
Bn=n![xn]xex−1=n![xn]11−{1−ex−1x}=n![xn]m∑i=0{1−ex−1x}im≥n=n!m∑i=0i∑j=0(−1)j(ij)[xn+j](ex−1)j=n!m∑j=0(−1)j[xn+j](ex−1)jm∑i=j(ij). |
Evaluating the last sum
m∑i=j(ij)=(m+1j+1), |
we get the expression
Bn=n!m∑j=0(−1)j(m+1j+1)[xn+j](ex−1)j=m∑j=0(−1)j(m+1j+1)(n+jj)S2(n+j,j), |
which proves the first formula (4.3).
The second sum (4.4) can be evaluated as follows:
m+1∑j=1(−1)jnn−1(m+2j+1)(n+j−1j)S2(n+j,j)=n![xn]m+1∑j=1(−1)j(m+2j+1)n+jn−1(ex−1x)j=n![xn]m+1∑j=1(−1)j(m+2j+1)(1+j+1n−1)(ex−1x)j=Bn+n!(m+2)n−1[xn]m+1∑j=0(−1)j(m+1j)(ex−1x)j=Bn+n!(m+2)n−1[xn](1−ex−1x)m+1, |
because the last coefficient vanishes, thanks to the fact that m+1>n and the constant term of (1−ex−1x) is equal to zero.
Finally, writing
λ+j+1λ=1+j+1λ, |
we can reformulate the third sum in (4.5) as
m+2∑j=1(−1)jn(λ+j+1)(n−1)λ(m+3j+1)(n+j−1j)S2(n+j,j)=nn−1m+2∑j=1(−1)j(m+3j+1)(n+j−1j)S2(n+j,j)+n(m+3)(n−1)λm+2∑j=1(−1)j(m+2j)(n+j−1j)S2(n+j,j). |
The first term on the right equals Bn in view of (4.4). The second term on the right vanishes again, which is justified analogously as follows:
m+2∑j=1(−1)j(m+2j)(n+j−1j)S2(n+j,j)=(n−1)!m+2∑j=1(−1)j(n+j)(m+2j)[xn](ex−1x)j=n(n−1)![xn]m+2∑j=0(−1)j(m+2j)(ex−1x)j+(m+2)(n−1)![xn]m+2∑j=1(−1)j(m+1j−1)(ex−1x)j=n(n−1)m+2−(m+2)(n−1)m+1(ex−1x). |
Theorem 16 (m≥n≥2).
Bn=n2n−1m∑i=1(−1)i−1i!2i+1S2(n−1,i) | (4.6) |
=n2n−1m∑k=1kn−1m∑i=k(−1)k−12i+1(ik),Bn=n2n−1m∑k=1kn−1m∑i=k(−1)k−12i(i−1k−1). | (4.7) |
The special case m=n−1 of the first formula (4.6) was found by Worptzky [50] (see also Carlitz [9, Eq (6)], Garabedian [21], Gould [23, Eq (2)], [24, Eq (3.22)]). Instead, the variant (4.7) reduces, for m=n, to Carlitz [9, Eq (5)].
Proof. By making use of the algebraic identity
F(x):={2xe2x−1−1}−{xex−1−1}=−x1+ex, |
we can extract the coefficient
2n−1n!Bn=[xn]F(x)=[xn]−x1+ex=−[xn−1]12−(1−ex)=−[xn−1]m∑i=1(−1)i2i+1(ex−1)i1+m≥n>0=m∑i=1(−1)i−12i+1i!(n−1)!S2(n−1,i), |
which proves the first identity (4.6). Analogously, we have
2n−1n!Bn=[xn]F(x)=[xn−1]−11+ex=[xn−1]{12(1−1−ex2)−11−1−ex2}=m∑i=1(−1)i−12i[xn−1]{(ex−1)i+(ex−1)i−1}m≥n−1=m∑i=1(−1)i−12i(n−1)!{i!S2(n−1,i)+(i−1)!S2(n−1,i−1)}. |
By invoking the expression
S2(n,i)=i∑j=1(−1)i+ji!(ij)jn, |
we can further manipulate the last sum
2n−1nBn=m∑i=1(−1)k−12ii∑k=1{(ik)−(i−1k)}kn−1=m∑i=1(−1)k−12ii∑k=1(i−1k−1)kn−1=m∑i=1(−1)k−1i2ii∑k=1(ik)kn. |
This confirms the second formula (4.7).
The formulae in Theorem 16 imply the following results, that recover, for m=n−1 and m=n, the two formulae due to Todorov [48, Eqs (8) and (9)] (see also Gould [24, Eq (3.23)] for the former one).
Theorem 17 (m≥n≥2).
Bn=n2m+1(2n−1)m∑j=0j∑k=0(−1)k−1(m+1j+1)kn−1, | (4.8) |
Bn=n2m(2n−1)m∑j=1j∑k=1(−1)k−1(mj)kn−1. | (4.9) |
Proof. By means of the binomial transform
m∑i=k(ik)2m−i=m∑i=k(ik)m∑j=i(m−ij−i)=m∑j=kj∑i=k(ik)(m−im−j)=m∑j=k(m+1j−k)=m∑j=k(m+1j+1), |
we can reformulate the sum in (4.6) as
Bn=n2n−1m∑k=0(−1)k−1kn−12m+1m∑i=k2m+12i+1(ik)=n2n−1m∑k=0(−1)k−1kn−12m+1m∑j=k(m+1j+1)=n2m+1(2n−1)m∑j=0j∑k=0(−1)k−1(m+1j+1)kn−1, |
which confirms the first identity (4.8). The second one (4.8) can be done analogously by applying another binomial transform
m∑i=k(i−1k−1)2m−i=m∑i=k(i−1k−1)m∑j=i(m−ij−i)=m∑j=kj∑i=k(i−1k−1)(m−im−j)=m∑j=k(mj−k)=m∑j=k(mj) |
to (4.6) and then manipulate the double sum as follows:
Bn=n2n−1n∑k=1knn∑i=k(−1)k−1i2i(ik)=n2n−1m∑k=1kn−1(−1)k−12mm∑i=k(i−1k−1)2m−i=n2n−1m∑k=1kn−1(−1)k−12mm∑j=k(mj)=n2m(2n−1)m∑j=1j∑k=1(−1)k−1(mj)kn−1. |
Nadia Na Li: Computation, Writing, and Editing; Wenchang Chu: Original draft, Review, and Supervision. Both authors have read and agreed to the published version of the manuscript.
The authors express their sincere gratitude to the three reviewers for the careful reading, critical comments, and valuable suggestions that contributed significantly to improving the manuscript during revision.
Prof. Wenchang Chu is the Guest Editor of special issue "Combinatorial Analysis and Mathematical Constants" for AIMS Mathematics. Prof. Wenchang Chu was not involved in the editorial review and the decision to publish this article. The authors declare no conflicts of interest.
[1] | F. R. Sharpe, A. Lotka, A problem in age-distribution, In: Mathematical demography, Berlin: Springer, 1977. https://doi.org/10.1007/978-3-642-81046-6_13 |
[2] |
M. E. Gurtin, R. C. Maccamy, Nonlinear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281–300. https://doi.org/10.1007/bf00250793 doi: 10.1007/bf00250793
![]() |
[3] |
K. Kamioka, Mathematical analysis of an age-structured population model with space-limited recruitment, Math. Biosci., 198 (2005), 27–56. https://doi.org/10.1016/j.mbs.2005.08.006 doi: 10.1016/j.mbs.2005.08.006
![]() |
[4] |
V. Barbu, M. Iannelli, Optimal control of population dynamics, J. Optimiz. Theory App., 102 (1999), 1–14. https://doi.org/10.1023/A:1021865709529 doi: 10.1023/A:1021865709529
![]() |
[5] | R. Fister, Optimal control of harvesting in a predator-prey parabolic system, Houston J. Math., 23 (1997), 341–355. |
[6] |
K. R. Fister, S. Lcnhart, Optimal control of a competitive system with age-structure, J. Math. Anal. Appl., 291 (2004), 526–537. https://doi.org/10.1016/j.jmaa.2003.11.031 doi: 10.1016/j.jmaa.2003.11.031
![]() |
[7] |
B. Zhang, L. Zhai, J. Bintz, S. M. Lenhart, W. Valega-Mackenzie, J. D. Van Dyken, The optimal controlling strategy on a dispersing population in a two-patch system: Experimental and theoretical perspectives, J. Theor. Biol., 528 (2021), 110835. https://doi.org/10.1016/j.jtbi.2021.110835 doi: 10.1016/j.jtbi.2021.110835
![]() |
[8] |
H. Kang, S. Ruan, Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions, J. Differ. Equ., 278 (2021), 430–462. https://doi.org/10.1016/j.jde.2021.01.004 doi: 10.1016/j.jde.2021.01.004
![]() |
[9] |
I. López, Z. Varga, M. Gámez, J. Garay, Monitoring in a discrete-time nonlinear age-structured population model with changing environment, Mathematics, 10 (2022), 2707. https://doi.org/10.3390/math10152707 doi: 10.3390/math10152707
![]() |
[10] |
H. Kiliç, N. Topsakal, F. Kangalgîl, Stability analysis of a discrete time prey-predator population model with immigration, Cumhur. Sci. J., 41 (2020), 884–900. https://doi.org/10.17776/csj.779203 doi: 10.17776/csj.779203
![]() |
[11] |
Z. R. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real, 13 (2012), 1369–1378. https://doi.org/10.1016/j.nonrwa.2011.11.001 doi: 10.1016/j.nonrwa.2011.11.001
![]() |
[12] |
Y. Liu, Z. R. He, Stability results for a size-structured population model with resources-dependence and inflow, J. Math. Anal. Appl., 360 (2009), 665–675. https://doi.org/10.1016/j.jmaa.2009.07.005 doi: 10.1016/j.jmaa.2009.07.005
![]() |
[13] |
K. R. Fister, S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1–15. https://doi.org/10.1007/s00245-005-0847-9 doi: 10.1007/s00245-005-0847-9
![]() |
[14] |
F. Dercole, K. Niklas, R. Rand, Self-thinning and community persistence in a simple size-structured dynamical model of plant growth, J. Math. Biol., 51 (2005), 333–354. https://doi.org/10.1007/s00285-005-0322-x doi: 10.1007/s00285-005-0322-x
![]() |
[15] |
À. Calsina, J. Salda\ddot {\rm{n}}a, Asymptotic behaviour of a model of hierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967–987. https://doi.org/10.1007/s002850050085 doi: 10.1007/s002850050085
![]() |
[16] |
À. Calsina, M. Sanchón, Stability and instability of equilibria of an equation of size structured population dynamics, J. Math. Anal. Appl., 286 (2003), 435–452. https://doi.org/10.1016/s0022-247x(03)00464-5 doi: 10.1016/s0022-247x(03)00464-5
![]() |
[17] |
J. Z. Farkas, T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119–136. https://doi.org/10.1016/j.jmaa.2006.05.032 doi: 10.1016/j.jmaa.2006.05.032
![]() |
[18] |
J. Z. Farkas, T. Hagen, Linear stability and positivity results for a generalized size-structured Daphnia model with inflow, Appl. Anal., 86 (2007), 1087–1103. https://doi.org/10.1080/00036810701545634 doi: 10.1080/00036810701545634
![]() |
[19] |
J. Z. Farkas, Structured populations: The stabilizing effect of the inflow of newborns from an external source and the net growth rate, Appl. Math. Comput., 199 (2008), 547–558. https://doi.org/10.1016/j.amc.2007.10.018 doi: 10.1016/j.amc.2007.10.018
![]() |
[20] |
H. Kang, X. Huo, S. Ruan, Nonlinear physiologically-structured population models with two internal variables, J. Nonlinear Sci., 30 (2020), 2847–2884. https://doi.org/10.1007/s00332-020-09638-5 doi: 10.1007/s00332-020-09638-5
![]() |
[21] |
J. A. Ademosu, S. Olaniyi, S. O. Adewale. Stability analysis and optimal measure for controlling eco-epidemiological dynamics of prey-predator model, Adv. Syst. Sci. Appl., 21 (2021), 83–103. https://doi.org/10.25728/assa.2021.21.2.1064 doi: 10.25728/assa.2021.21.2.1064
![]() |
[22] |
A. Singh, B. Emerick, Generalized stability conditions for host-parasitoid population dynamics: Implications for biological control, Ecol. Model., 456 (2021), 109656. https://doi.org/10.1016/j.ecolmodel.2021.109656 doi: 10.1016/j.ecolmodel.2021.109656
![]() |
[23] |
H. Molla, M. Rahman, S. Sarwardi, Dynamical study of a prey-predator model incorporating nonlinear prey refuge and additive Allee effect acting on prey species, Model. Earth Syst. Environ., 7 (2021), 749–765. https://doi.org/10.1007/s40808-020-01049-5 doi: 10.1007/s40808-020-01049-5
![]() |
[24] |
P. Wu, Z. R. He, Optimal balancing harvesting of size-structured populations with elastic growth (Chinese), Appl. Math., 30 (2017), 162–167. https://doi.org/10.13642/j.cnki.42-1184/o1.2017.01.020 doi: 10.13642/j.cnki.42-1184/o1.2017.01.020
![]() |
[25] |
M. Liu, K. Wang, Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input, Chaos Soliton. Fract., 45 (2012), 1541–1550. https://doi.org/10.1016/j.chaos.2012.08.011 doi: 10.1016/j.chaos.2012.08.011
![]() |
[26] |
Q. Quan, W. Y. Tang, J. Jiao, Y. Wang, Dynamics of a new stage-structured population model with transient and nontransient impulsive effects in a polluted environment, Adv. Differ. Equ., 2021 (2021), 518. https://doi.org/10.1186/s13662-021-03667-4 doi: 10.1186/s13662-021-03667-4
![]() |
[27] |
F. Y. Wei, L. H. Chen, Psychological effect on single-species population models in a polluted environment, Math. Biosci., 290 (2017), 22–30. https://doi.org/10.1016/j.mbs.2017.05.011 doi: 10.1016/j.mbs.2017.05.011
![]() |
[28] |
A. Ma, S. Lyu, Q. Zhang, Stationary distribution and optimal control of a stochastic population model in a polluted environment, Math. Biosci. Eng., 19 (2022), 11260–11280. https://doi.org/10.3934/mbe.2022525 doi: 10.3934/mbe.2022525
![]() |
[29] |
W. Gong, Z. P. Wang, Optimal control of nonlinear periodic population dynamic systems with individual scale in a polluted environment (Chinese), Appl. Math., 33 (2020), 789–799. https://doi.org/10.13642/j.cnki.42-1184/o1.2020.03.025 doi: 10.13642/j.cnki.42-1184/o1.2020.03.025
![]() |
[30] |
F. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real, 6 (2005), 962–969. https://doi.org/10.1016/j.nonrwa.2004.06.002 doi: 10.1016/j.nonrwa.2004.06.002
![]() |
1. | Aimin Xu, Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials, 2025, 10, 2473-6988, 3197, 10.3934/math.2025148 |