Research article Special Issues

Analysis of positivity results for discrete fractional operators by means of exponential kernels

  • In this study, we consider positivity and other related concepts such as αconvexity and αmonotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete Δ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.

    Citation: Pshtiwan Othman Mohammed, Donal O'Regan, Aram Bahroz Brzo, Khadijah M. Abualnaja, Dumitru Baleanu. Analysis of positivity results for discrete fractional operators by means of exponential kernels[J]. AIMS Mathematics, 2022, 7(9): 15812-15823. doi: 10.3934/math.2022865

    Related Papers:

    [1] Sarkhel Akbar Mahmood, Pshtiwan Othman Mohammed, Dumitru Baleanu, Hassen Aydi, Yasser S. Hamed . Analysing discrete fractional operators with exponential kernel for positivity in lower boundedness. AIMS Mathematics, 2022, 7(6): 10387-10399. doi: 10.3934/math.2022579
    [2] Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . On analysing discrete sequential operators of fractional order and their monotonicity results. AIMS Mathematics, 2023, 8(6): 12872-12888. doi: 10.3934/math.2023649
    [3] Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824
    [4] Thabet Abdeljawad . Two discrete Mittag-Leffler extensions of the Cayley-exponential function. AIMS Mathematics, 2023, 8(6): 13543-13555. doi: 10.3934/math.2023687
    [5] Ihtisham Ul Haq, Shabir Ahmad, Sayed Saifullah, Kamsing Nonlaopon, Ali Akgül . Analysis of fractal fractional Lorenz type and financial chaotic systems with exponential decay kernels. AIMS Mathematics, 2022, 7(10): 18809-18823. doi: 10.3934/math.20221035
    [6] Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650
    [7] Karmina K. Ali, Resat Yilmazer . Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061
    [8] Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593
    [9] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [10] Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham . On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667
  • In this study, we consider positivity and other related concepts such as αconvexity and αmonotonicity for discrete fractional operators with exponential kernel. Namely, we consider discrete Δ fractional operators in the Caputo sense and we apply efficient initial conditions to obtain our conclusions. Note positivity results are an important factor for obtaining the composite of double discrete fractional operators having different orders.



    Recent years have witnessed the development of distributed discrete fractional operators based on singular and nonsingular kernels with the aim of solving a large variety of discrete problems arising in different application fields such as biology, physics, robotics, economic sciences and engineering (see for example [1,2,3,4,5,6,7,8,9]). These operators depend on their corresponding kernels overcoming some limits of the order of discrete operators, for example the most popular operators are Riemann-Liouville and Caputo with standard kernels, Caputo-Fabrizio with exponential kernels, Attangana-Baleanu with Mittag-Leffler kernels (see for example [10,11,12,13]). We also refer the reader to [14,15,16,17,18] for discrete fractional operators. Modeling and positivity simulations have been developed or adapted for discrete fractional operators, ranging from continuous fractional models to discrete fractional frameworks; see for example [1,19,20]). For other results on positivity and monotonicity we refer the reader to [21,22,23,24,25] and for discrete fractional models with monotonicity and positivity which is important in the context of discrete fractional calculus we refer the reader to [26,27,28,29].

    In this work, we are interested in finding positivity and monotonicity results for the following single and composition of delta fractional difference equations:

    (CFC     aΔνG)(t)

    and

    (CFCa+1ΔνCFC     aΔμG)(t),

    where we will assume that G is defined on Na:={a,a+1,}, and ν and μ are two different positive orders.

    The paper is structured as follows. The mathematical backgrounds and preliminaries needed are given in Section 2. Section 3 presents the problem statement and the main results. Conclusions are provided in Section 4.

    Let us start this section by recalling the notions of discrete delta Caputo-Fabrizio fractional operators that we will need.

    Definition 2.1 (see [30,31]). Let (ΔG)(t)=G(t+1)G(t) be the forward difference operator. Then for any function G defined on Na with aR, the discrete delta Caputo-Fabrizio fractional difference in the Caputo sense and Caputo-Fabrizio fractional difference in the Riemann sense are defined by

    (CFC     aΔαG)(t)=B(α)1αt1κ=a(ΔκG)(κ)(1+λ)tκ1=B(α)12αt1κ=a(ΔκG)(κ)(1+λ)tκ,[tNa+1], (2.1)

    and

    (CFR      aΔαG)(t)=B(α)1αΔtt1κ=aG(κ)(1+λ)tκ1=B(α)12αΔtt1κ=aG(κ)(1+λ)tκ,[tNa+1], (2.2)

    respectively, where λ=α1α for α[0,1), and B(α) is a normalizing positive constant.

    Moreover, for the higher order case when q<α<q+1 with q0, we have

    (CFC     aΔαG)(t)=(CFC     aΔαqΔqG)(t),[tNa+1]. (2.3)

    Remark 2.1. It should be noted that

    0<1+λ=12α1α<1,

    if α(0,12), where (as above) λ=α1α.

    Definition 2.2 (see [29,32]). Let G be defined on Na and α[1,2]. Then G is αconvexiff(ΔG) is (α1)monotone increasing. That is,

    G(t+1)αG(t)+(α1)G(t1)0,[tNa+1].

    This section deals with convexity and positivity of the Caputo-Fabrizio operator in the Riemann sense (2.2). We first present some necessary lemmas.

    Lemma 3.1. Let G:NaR be a function satisfying

    (CFC     aΔαΔG)(t)0

    and

    (ΔG)(a)0,

    for α(0,12) and t in Na+2. Then (ΔG)(t)0, for every t in Na+1.

    Proof. From Definition 2.1, we have for each tNa+2:

    (CFC     aΔαΔG)(t)=B(α)12αt1κ=a(Δ2κf)(κ)(1+λ)tκ=B(α)12α[t1κ=a(ΔG)(κ+1)(1+λ)tκt1κ=a(ΔG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+λt1κ=a(ΔG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)(1+λ)ta(ΔG)(a)+λt1κ=a+1(ΔG)(κ)(1+λ)tκ]. (3.1)

    Since B(α)12α>0,1+λ>0 and (CFC     aΔαΔG)(t)0 for all tNa+2, then (3.1) gives us

    (ΔG)(t)(1+λ)ta1(ΔG)(a)λ1+λt1κ=a+1(ΔG)(κ)(1+λ)tκ. (3.2)

    We will now show that (ΔG)(a+i+1)0 if we assume that (ΔG)(a+i)0 for some iN1. Note from our assumption we have that (ΔG)(a)0. But then from the lower bound for (ΔG)(a+i+1) in (3.2) and our assumption we have

    (ΔG)(a+i+1)(1+λ)i(ΔG)(a)0λ1+λa+iκ=a+1(ΔG)(κ)(1+λ)a+i+1κ000,

    where we used λ1+λ<0. Thus, the result follows by induction.

    Lemma 3.2. Let G be defined on Na and

    (CFC     aΔαG)(t)0withtheinitialvaluesG(a+1)G(a)0,

    for α(1,32) and tNa+1. Then G is monotone increasing, positive and (12α)convex on Na.

    Proof. From the definition with q=1 we have

    0(CFC     aΔαG)(t)=(CFC     aΔα1ΔG)(t),[tNa+1].

    Since (ΔG)(a)0 is given we have

    (ΔG)(t)0,[tNa+1],

    by Lemma 3.1. This implies that G is a monotone increasing function. Therefore,

    G(t)G(t1)G(a+1)G(a)0,[tNa+1],

    and hence G is positive.

    From the idea in Lemma 3.1 we have (here λ=α12α for α(1,32)),

    (ΔG)(t)(1+λ)ta1(ΔG)(a)λ1+λt1κ=a+1(ΔG)(κ)(1+λ)tκ=(1+λ)ta1(ΔG)(a)0λ(ΔG)(t1)λ1+λt2κ=a+1(ΔG)(κ)(1+λ)tκ0since(ΔG)(t)0λ(ΔG)(t1)=(α12α)(ΔG)(t1)=(12α1)(ΔG)(t1).

    Consequently we have that G is (12α)convex on the set Na.

    Lemma 3.3. Let G be defined on Na and

    (CFC     aΔαG)(t)0with(Δ2G)(a)0,

    for α(2,52) and tNa+1. Then, Then (Δ2G)(t)0, for all tNa. Furthermore, one has G convex on the set Na.

    Proof. Let (CFC     aΔαG)(t):=F(t) for each tNa+1. Since α(2,52), we have:

    (CFC     aΔαG)(t)=(CFC     aΔα2Δ2G)(t)=(CFC     aΔα2ΔF)(t)0,

    for each tNa+1, and by assumption we have

    (ΔF)(a)=(Δ2G)(a)0.

    Then, using Lemma 3.2, we get

    (ΔF)(t)=(Δ2G)(t)0

    for each tNa+1. Hence, G is convex on Na.

    Lemma 3.4. Let G be defined on Na and

    Δ2(CFC     aΔαG)(t)0

    and

    (ΔG)(a+1)(ΔG)(a)0,

    for α(0,12) and tNa+1. Then (Δ2G)(t)0, for each tNa.

    Proof. For tNa+1, we have

    Δ(CFC     aΔαG)(t)=B(α)12αΔ[t1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[tκ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+t1κ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=B(α)12α[(1+λ)(ΔG)(t)+λt1κ=a(ΔκG)(κ)(1+λ)tκ], (3.3)

    where λ=α1α. It follows from (3.3) that,

    Δ2(CFC     aΔαG)(t)=B(α)12αΔ[(1+λ)(ΔG)(t)+λt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[tκ=a(ΔκG)(κ)(1+λ)t+1κt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[(1+λ)t+1a(ΔG)(a)+t1κ=a(ΔκG)(κ+1)(1+λ)tκt1κ=a(ΔκG)(κ)(1+λ)tκ]=(1+λ)B(α)12α(Δ2G)(t)+λB(α)12α[(1+λ)t+1a(ΔG)(a)+t1κ=a(Δ2κG)(κ)(1+λ)tκ]. (3.4)

    Due to the nonnegativity of (1+λ)B(α)12α, from (3.4) we deduce

    (Δ2G)(t)λ1+λ[(1+λ)t+1a(ΔG)(a)+t1κ=a(Δ2κG)(κ)(1+λ)tκ]. (3.5)

    By substituting t=a+1 into (3.5), we get

    (Δ2G)(a+1)λ1+λ[(1+λ)2(ΔG)(a)+(Δ2G)(a)(1+λ)]=α(1α)>0[(1+λ)(ΔG)(a)0+(Δ2G)(a)0]0.

    Also, if we substitute t=a+2 into (3.5), we obtain

    (Δ2G)(a+2)λ1+λ[(1+λ)3(ΔG)(a)+(1+λ)2(Δ2G)(a)+(1+λ)(Δ2G)(a+1)]=α(1α)>0[(1+λ)2(ΔG)(a)0+(1+λ)(Δ2G)(a)0+(Δ2G)(a+1)0]0.

    By continuing this process, we obtain that (Δ2G)(t)0 for each tNa as desired.

    Now, we are in a position to state the first result on convexity. Furthermore, three representative results associated to different subregions in the space of (μ,ν)-parameter will be provided.

    Theorem 3.1. Let G be defined on Na with ν(0,12) and μ(2,52), and

    (CFCa+1ΔνCFC     aΔμG)(t)0

    and

    (Δ2G)(a+1)(Δ2G)(a)0,

    for each tNa+1. Then G is convex on the set Na.

    Proof. Let (CFC     aΔμG)(t):=F(t) for each tNa+1. Then, by assumption we have

    (CFCa+1ΔνCFC     aΔμG)(t)=(CFCa+1ΔνF)(t)0,

    for each tNa+1. From the definition with q=2 we have

    F(a+1)=(CFC     aΔμG)(a+1)=(CFC     aΔμ2Δ2G)(a+1)=B(μ2)52μaκ=a(Δ3κG)(κ)(1+λμ)aκ=B(μ2)52μ>0(Δ3G)(a)0byassumption0,

    where λμ=μ23μ. Since (Δ2G)(a)0, we find that (Δ2G)(t)0 for each tNa. Furthermore, we see that G is convex on Na from Lemma 3.3.

    Theorem 3.2. Let G be defined on Na with ν(1,32) and μ(2,52), and

    (CFCa+1ΔνCFC     aΔμG)(t)0,(Δ2G)(a+2)13μ(ΔG2)(a+1)0,

    and

    (Δ2G)(a+1)(Δ2G)(a)0,

    for each tNa+1. Then G is convex on Na.

    Proof. Let F(t):=(CFC     aΔμG)(t). Note that:

    (CFCa+1ΔνCFC     aΔμG)(t)=(CFCa+1ΔνF)(t)0,

    for tNa+1. Then we have

    F(a+1)=(CFC     aΔμ2Δ2G)(a+1)=B(μ2)52μaκ=a(Δ3G)(κ)(1+λμ)a+1κ=B(μ2)52μ(1+λμ)(Δ3G)(a)0, (3.6)

    and

    F(a+2)=(CFC     aΔμ2Δ2G)(a+2)=B(μ2)52μa+1κ=a(Δ3G)(κ)(1+λμ)a+2κ=B(μ2)52μ[(1+λμ)2(Δ3G)(a)+(1+λμ)(Δ3G)(a+1)]=(1+λμ)B(μ2)52μ[(1+λμ)[(Δ2G)(a+1)(Δ2G)(a)]+[(Δ2G)(a+2)(Δ2G)(a+1)]](1+λμ)B(μ2)52μ[13μ1]0, (3.7)

    where λμ=μ252μ. On the other hand, one has

    F(a+2)F(a+1)=(1+λμ)B(μ2)52μ[(1+λμ)(Δ3G)(a)+(Δ3G)(a+1)(Δ3G)(a)](1+λμ)B(μ2)52μ(λμ1+13μ)(Δ2G)(a+1)0. (3.8)

    Then, from Eqs (3.6)–(3.8), we see that F(a+2)F(a+1)0. Therefore, Lemma 3.2 gives

    F(t)=(CFCa+1ΔνG)(t)0

    for all t in Na+1. Moreover, by considering (Δ2G)(a)0 in Lemma 3.3, we can deduce that G is convex on the set Na.

    Theorem 3.3. Let G be defined on Na with ν(2,52) and μ(0,12), and

    (CFCa+1ΔνCFC     aΔμG)(t)0,(ΔG)(a+2)11μ(ΔG)(a+1)0,

    and

    (ΔG)(a+1)(ΔG)(a)0,

    for each tNa+1. Then we have that G is convex on Na.

    Proof. Again, we write F(t):=(CFC     aΔμG)(t), and therefore, (CFCa+1ΔνF)(t)0 by assumption, for each tNa+1. Then, we see that

    (Δ2F)(a+1)Δ2(CFC     aΔμG)(a+1)by=(3.4)(1+λμ)B(μ)12μ(Δ2G)(a+1)+λμB(μ)12μ[(1+λμ)2(ΔG)(a)+aκ=a(Δ2κG)(κ)(1+λμ)a+1κ]=(1+λμ)B(μ)12μ[(Δ2G)(a+1)+λμ(1+λμ)(ΔG)(a)+λμ(Δ2G)(a)]=(1+λμ)B(μ)12μ[(ΔG)(a+2)+(λμ1)(ΔG)(a+1)+λ2μ(ΔG)(a)](1+λμ)B(μ)12μ[11μ(ΔG)(a+1)+(λμ1)(ΔG)(a+1)+λ2μ(ΔG)(a)0](1+λμ)B(μ)12μ[11μ+λμ1](ΔG)(a+1)0,

    where λμ=μ1μ. It follows that,

    (Δ2F)(t)=Δ2(CFC     aΔμG)(t)0,

    for each tNa by Lemma 3.3. Considering, (Δ2G)(a)0, we can deduce that G is convex on Na by Lemma 3.4.

    In Figure 1, we demonstrate the regions of the (μ,ν)-parameter space in which the above three Theorems 3.1–3.3 are applied.

    Figure 1.  Three different regions concerning Theorems 3.1–3.3.

    In this study, we present some new positivity results for discrete fractional operators with exponential kernels in the sense of Caputo. In particular new positivity, αconvexity and αmonotonicity were presented. We now refer the reader to observations for discrete generalized fractional operators in [33] which combined with this paper may motivate future work.

    Conceptualization, P.O.M., D.O., A.B.B. and D.B.; methodology, P.O.M., D.O.; software, D.O., D.B., K.M.A., A.B.B.; validation, P.O.M., D.O., D.B. and A.B.B.; formal analysis, K.M.A.; investigation, P.O.M., D.O., K.M.A.; resources, A.B.B.; writing-original draft preparation, P.O.M., D.O., D.B., K.M.A., A.B.B.; writing-review and editing, D.O., D.B. and A.B.B.; funding acquisition, D.B. and K.M.A. All authors read and approved the final manuscript.

    This Research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no conflicts of interest.



    [1] C. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [2] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [3] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [4] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. https://doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [5] C. Lizama, M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math., 339 (2018), 356–366. https://doi.org/10.1016/j.cam.2017.07.027 doi: 10.1016/j.cam.2017.07.027
    [6] H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, Y. S. Hamed, Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations, Discrete Contin. Dyn. Syst., 15 (2021), 427–440. http://dx.doi.org/10.3934/dcdss.2021083 doi: 10.3934/dcdss.2021083
    [7] İlhane, E. Analysis of the spread of Hookworm infection with Caputo-Fabrizio fractional derivative, Turk. J. Sci., 7 (2022), 43–52.
    [8] M. A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett., 25 (2022), 1270–1273. https://doi.org/10.1016/j.aml.2011.11.022 doi: 10.1016/j.aml.2011.11.022
    [9] S. Rezapour, A. Boulfoul, B. Tellab, M. E. Samei, S. Etemad, R. George, Fixed point theory and the Liouville-Caputo integro-differential FBVP with multiple nonlinear terms, J. Funct. Spaces, 2022 (2022), 6713533. https://doi.org/10.1155/2022/6713533 doi: 10.1155/2022/6713533
    [10] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
    [11] T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), 4149320. https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
    [12] T. Abdeljawad, F. Jarad, A. Atangana, P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Fract. Calc. Nonlinear Syst., 1 (2020), 46–74.
    [13] T. Abdeljawad, Different type kernel h-fractional differences and their fractional h-sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [14] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121.
    [15] C. R. Chen, M. Bohner, B. G. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [16] G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [17] F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [18] B. Ghanbari, On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators, Adv. Differ. Equ., 2020 (2020), 585. https://doi.org/10.1186/s13662-020-03040-x doi: 10.1186/s13662-020-03040-x
    [19] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x
    [20] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [21] C. S. Goodrich, M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446–452. https://doi.org/10.1016/j.aml.2019.07.003 doi: 10.1016/j.aml.2019.07.003
    [22] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597. https://doi.org/10.1007/s00013-015-0765-2 doi: 10.1007/s00013-015-0765-2
    [23] C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equ. Appl., 25 (2019), 801–814. https://doi.org/10.1080/10236198.2018.1542431 doi: 10.1080/10236198.2018.1542431
    [24] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [25] P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2021 (2021), 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2
    [26] L. Erbe, C. S. Goodrich, B. Jia, A. Peterson, Survey of the qualitative properties of fractional difference operators: Monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ. Equ., 2016 (2016), 43. https://doi.org/10.1186/s13662-016-0760-3 doi: 10.1186/s13662-016-0760-3
    [27] C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769–779. https://doi.org/10.7153/MIA-19-57 doi: 10.7153/MIA-19-57
    [28] C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. http://dx.doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [29] C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Isr. J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
    [30] D. Mozyrska, D. F. M. Torres, M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32 (2019), 168–176. https://doi.org/10.1016/j.nahs.2018.12.001 doi: 10.1016/j.nahs.2018.12.001
    [31] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [32] C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Meth. Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
    [33] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
  • This article has been cited by:

    1. Shuhua Wang, Convergence of online learning algorithm with a parameterized loss, 2022, 7, 2473-6988, 20066, 10.3934/math.20221098
    2. Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan Luis G. Guirao, Dumitru Baleanu, Eman Al-Sarairah, Rashid Jan, A Study of Positivity Analysis for Difference Operators in the Liouville–Caputo Setting, 2023, 15, 2073-8994, 391, 10.3390/sym15020391
    3. Emad Fadhal, Arzu Akbulut, Melike Kaplan, Muath Awadalla, Kinda Abuasbeh, Extraction of Exact Solutions of Higher Order Sasa-Satsuma Equation in the Sense of Beta Derivative, 2022, 14, 2073-8994, 2390, 10.3390/sym14112390
    4. PSHTIWAN OTHMAN MOHAMMED, DUMITRU BALEANU, EMAN AL-SARAIRAH, THABET ABDELJAWAD, NEJMEDDINE CHORFI, THEORETICAL AND NUMERICAL COMPUTATIONS OF CONVEXITY ANALYSIS FOR FRACTIONAL DIFFERENCES USING LOWER BOUNDEDNESS, 2023, 31, 0218-348X, 10.1142/S0218348X23401837
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2038) PDF downloads(91) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog