Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

On analysing discrete sequential operators of fractional order and their monotonicity results

  • Received: 14 February 2023 Revised: 18 March 2023 Accepted: 28 March 2023 Published: 31 March 2023
  • MSC : 39A12, 39B62, 33B10, 26A48, 26A51

  • In this study, we consider the analysis of monotonicity for the Riemann-Liouville fractional differences of sequential type. The results are defined on the subsets of (0,1)×(0,1) with a certain restriction. By analysing the difference operator in the point-wise form into a delta form, we use the standard sequential formulas as stated in Theorems 2.1 and 2.2 to establish the positivity of the delta difference operator of the proposed the discrete sequential operators. Finally, some numerical experiments are conducted which confirm our theoretical monotonicity results.

    Citation: Pshtiwan Othman Mohammed, Musawa Yahya Almusawa. On analysing discrete sequential operators of fractional order and their monotonicity results[J]. AIMS Mathematics, 2023, 8(6): 12872-12888. doi: 10.3934/math.2023649

    Related Papers:

    [1] Ying Sun, Yuelin Gao . An improved composite particle swarm optimization algorithm for solving constrained optimization problems and its engineering applications. AIMS Mathematics, 2024, 9(4): 7917-7944. doi: 10.3934/math.2024385
    [2] Juhe Sun, Guolin Huang, Li Wang, Chuanjun Yin, Ning Ma . A multi-strategy upgraded Harris Hawk optimization algorithm for solving nonlinear inequality constrained optimization problems. AIMS Mathematics, 2025, 10(5): 11783-11812. doi: 10.3934/math.2025533
    [3] Bothina El-Sobky, Yousria Abo-Elnaga, Gehan Ashry . A nonmonotone trust region technique with active-set and interior-point methods to solve nonlinearly constrained optimization problems. AIMS Mathematics, 2025, 10(2): 2509-2540. doi: 10.3934/math.2025117
    [4] Aziz Belmiloudi . Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928
    [5] Yu Yuan, Qicai Li . Maximizing the goal-reaching probability before drawdown with borrowing constraint. AIMS Mathematics, 2021, 6(8): 8868-8882. doi: 10.3934/math.2021514
    [6] Yunjae Nam, Dongsun Lee . Efficient one asset replacement scheme for an optimized portfolio. AIMS Mathematics, 2022, 7(9): 15881-15903. doi: 10.3934/math.2022869
    [7] Jun Moon . A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 2023, 8(10): 22924-22943. doi: 10.3934/math.20231166
    [8] Hengdi Wang, Jiakang Du, Honglei Su, Hongchun Sun . A linearly convergent self-adaptive gradient projection algorithm for sparse signal reconstruction in compressive sensing. AIMS Mathematics, 2023, 8(6): 14726-14746. doi: 10.3934/math.2023753
    [9] Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151
    [10] Regina S. Burachik, Bethany I. Caldwell, C. Yalçın Kaya . Douglas–Rachford algorithm for control- and state-constrained optimal control problems. AIMS Mathematics, 2024, 9(6): 13874-13893. doi: 10.3934/math.2024675
  • In this study, we consider the analysis of monotonicity for the Riemann-Liouville fractional differences of sequential type. The results are defined on the subsets of (0,1)×(0,1) with a certain restriction. By analysing the difference operator in the point-wise form into a delta form, we use the standard sequential formulas as stated in Theorems 2.1 and 2.2 to establish the positivity of the delta difference operator of the proposed the discrete sequential operators. Finally, some numerical experiments are conducted which confirm our theoretical monotonicity results.



    Fractional calculus has been widely and deeply used in many fields, for example, continuum mechanics, control theory of dynamical systems, and so on. For this reason, fractional differential equations (FDEs, in short), as a useful tool to model the dynamics of numerous physical systems, have gained considerable popularity in physics, population dynamics, chemical technology, control of dynamical systems, etc. For further details on FDEs, see [1,2,3] and their references.

    In the last few decades, as a significant branch of FDEs, impulsive differential equation (IDE, for short), which provides a natural description of observed evolution processes, has been emerging as a very meaningful research area. In addition, IDEs are also as important mathematical tools for better understanding real-world problems (see, for instance, [4,5,6,7,8]). Hence, many authors have used IDEs to describe some phenomenon with abrupt changes, such as, harvest, disease, control theory of dynamical systems and so on. For example, [9,10,11] researched some different types IDEs, which are nonlinear impulsive differential systems with infinite delays, impulsive neural networks, singularly perturbed nonlinear impulsive differential systems with delays of small parameter, respectively. Moreover, [12] studied persistence of delayed cooperative models by means of impulsive control method.

    Meanwhile, boundary value problems (BVPs, for short) of IDEs have been researched extensively and deeply. Correspondingly, many scholars have studied some BVPs of fractional differential equations (FIDEs, for short) and obtain lots of important conclusions. For example, [13] researched singular semipositive BVPs of fourth-order differential systems with parameters. [14] studied a class of BVPs for nonlinear fractional Kirchhoff equations and obtained the existence of multiple sign-changing solutions.

    As far as we know, continuity is a fundamental assumption in degree theory. However, there are a lot of discontinuous differential equations in many areas, such as, automatic control, neural network, etc. Because of the corresponding operators are not continuous, general topological degree theory is invalid to studying the existence of solutions for most discontinuous differential equations, such as, [20,21]. To overcome this problem, a new definition of topological degree for a class of discontinuous operators is introduced by R. Figueroa et al. Subsequently, a number of fixed point theorems for such operators are derived in [16], such as, Schauder-type and Krasnoselskii's theorem for discontinuous operators. Then they are used to solve discontinuous differential systems. For example, [17] considered the existence for a class of second-order discountious BVPs by constructing a closed-convex Krasovskij envelope and Schauder-type theorem for discontinuous operators. [18] researched a class of BVPs of second-order discontinuous differential equations with impulse effects by using the nonlinear alternative of Krasnoselskii's fixed point theorem for discontinuous operators on cones.

    However, to our best knowledge, there are few studies on multiple solutions for integral boundary value problems of fractional discontinuous differential equations with impulse effects. The purpose of present paper is to fill this gap.

    Motivated by the above discussions, this paper studies multiple solutions for the following boundary value problem:

    {CtDR0+Λ(t)=E(t)F(t,Λ(t)), a.e. tQ,Λ|t=tκ=Φκ(Λ(tκ)), κ=1, 2, , m,Λ|t=ti=0,  κ=1, 2, , m,ϑΛ(0)χΛ(1)=10ϱ1(υ)Λ(υ)dυ,ζΛ(0)δΛ(1)=10ϱ2(υ)Λ(υ)dυ, (1.1)

    where CtDR0+ is the Caputo fractional derivative with t, 1<R<2, ϑ>χ>0, ζ>δ>0, EkC( R +, R +), E, ϱ1, ϱ20 a.e. on J=[0,1], Q=Q{t1, , tm}, E, ϱ1, ϱ2L1(0,1), ϝ:Q× R + R +,  R +=[0,+), 0<t1<t2<<tm<1. Λ|t=tk, Λ|t=tk denote the jump of Λ(t) and Λ(t) at t=tk, respectively. This paper has the following innovations and features. Firstly, BVP (1.1) is of fractional discontinuous differential equations with instantaneous impulse effects. The nonlinearity F here is discontinuous over countable families of curve[22]. Secondly, the boundary value condition considered here is of integral type. It makes BVP (1.1) more widely applicable in solving practical problems. Thirdly, the used approach in this paper has certain advantages over some reference as above. In detail, the distinctive tool used here is multivalued analysis in the study of discontinuous problems and the novelty is the use of multivalued analysis to obtain results for single-valued operators. Compared with [18], we redefine the admissible continuous curves for the new system (1.1). At the same time, a suitable cone is established by researching properties of Green's function deeply. Therefore, the positive solutions can be obtained by means of Krasnoselskii's fixed point theorem for discontinuous operators on cones.

    The rest of this paper is organized as follows. Some basic definitions and notations are contained in Section 2. Section 3 presents the main results. Finally, an illustrative example is given in Section 4.

    In this section, we first introduce some definitions and lemmas that are used in this paper.

    Definition 2.1. [3] The Riemann-Liouville fractional integral of order R+ of a function ϝ on interval (α,β) is defined as follows:

    (I0+ϝ)(t)=1Γ()tα(tυ)R1ϝ(υ)dυ.

    Definition 2.2. [3] The Caputo fractional derivative of order R+ of a function ϝ on interval (α,β) is defined as follows:

    (CtDR0+)ϝ(t)=1Γ(nR)tα(tυ)nR1ϝ(n)(υ)dυ.

    Let

    PC(Q)={Λ:[0,1]R,ΛC(Q), and Λ(t+κ), Λ(tκ) exists,and Λ(tκ)=Λ(tκ), 1κm},

    and

    PC1(Q)={Λ:[0,1]R,ΛPC(Q), CtD10+ΛPC(Q), CtD10+Λ(t+κ), CtD10+Λ(tκ)exists, and CtD10+Λ(tκ)= CtD10+Λ(tκ), 1κm}.

    Obviously, they are Banach spaces with the norm

    Λ0=sup0t1|Λ(t)|

    and

    Λ1=max{Λ0, CtD10+Λ0},

    respectively.

    For the sake of simplicity, let Aj=10ϱj(υ)dυ, Qj=1ϑχAj (j=1,2) , Pj=10(ϑχ)υ+χ(ϑχ)(ζδ)ϱj(υ)dυ, Γ1=(1P2)(1Q1)P1Q2 and QM=max{Q2Γ(ζδ),1Q1Γ(ζδ)}.

    Lemma 2.3. If (1P2)(1Q1)P1Q2, for HL(Q,  R +), the following boundary value problem

    {CtD0+Λ(t)=H(t), a.e. tQ,Λ|t=tκ=Φκ(Λ(tκ)), κ=1, 2, , m,Λ|t=tκ=0, κ=1, 2, , m,ϑΛ(0)χΛ(1)=10ϱ1(υ)Λ(υ)dυ,ζΛ(0)δΛ(1)=10ϱ2(υ)Λ(υ)dυ, (2.1)

    has a solution

    Λ(t)=10H1(t,υ)H(υ)dυ+mi=1H2(t,ti)Φi(Λ(ti)),

    where

    H1(t,υ)=(t,υ)+2n=1φn(t)10(υ,t)ϱn(t)dt,
    H2(t,ti)={χϑχ+χϑχ2n=1Anφn(t),0tti1;ϑϑχ+ϑϑχ2n=1Anφn(t),0ti<t1,
    φ1(t)=(ζδ)(1P2)+[χ+(ϑχ)t]Q2(ϑβ)(ζδ)Γ1,
    φ2(t)=(ζδ)P1+[χ+(ϑχ)t](1Q1)(ϑχ)(ζδ)Γ1.

    and

    (t,υ)={χ(1υ)1(ϑχ)Γ()+[χδ+(ϑχ)δt](1υ)2(ϑβ)(ζδ)Γ(1)+(tυ)q1Γ(),0υt1;χ(1υ)1(ϑχ)Γ()+[χδ+(ϑχ)δt](1υ)2(ϑχ)(ζδ)Γ(1),0tυ1.

    Proof. Let Λ be a general solution on each interval (tκ,tκ+1] (κ=0, 1, 2, , m). By integrating both sides of Eq (2.1), one can obtain that

    Λ(t)=1Γ()t0(tυ)1H(υ)dυcκdt, for t(tκ,tκ+1], (2.2)

    where t0=0, tm+1=1. Then,

    Λ(t)=1Γ(1)t0(tυ)2H(υ)dυd, t(tκ,tκ+1].

    In view of Eq (2.1), we get

    ϑc0χ[1Γ()10(1υ)1H(υ)dυcmd]=10ϱ1(υ)Λ(υ)dυ, (2.3)
    ζdδ[1Γ(1)10(1υ)2H(υ)dυd]=10ϱ2(υ)Λ(υ)dυ, (2.4)
    cκ1cκ=Φκ(Λ(tκ)), (2.5)

    and

    d=10ϱ2(υ)Λ(υ)dυ+δΓ(1)10(1υ)2H(υ)dυζδ. (2.6)

    From (2.3), (2.5) and (2.6), one can easily get that

    c0 = 1ϑχ[10ϱ1(υ)Λ(υ)dυ+χΓ()10(1υ)1H(υ)dυ+χmi=1Φi(Λ(ti))+χ(10ϱ2(υ)Λ(υ)dυ+δΓ(1)10(1υ)2H(υ)dυ)ζδ], (2.7)

    and

    cκ = c0κi=1Φi(Λ(ti))= 1ϑχ[10ϱ1(υ)Λ(υ)dυ+χΓ()10(1υ)1H(υ)dυ+χmi=1Φi(Λ(ti))+χ(10ϱ2(υ)Λ(υ)dυ+δΓ(1)10(1υ)2H(υ)dυ)ζδ]κi=1Φi(Λ(ti)). (2.8)

    Hence, (2.7) and (2.8) imply that

    cκ+dt=1ϑχ[10ϱ1(υ)Λ(υ)dυ+χΓ()10(1υ)1H(υ)dυ+χmi=1Φi(Λ(ti))+χ(10ϱ2(υ)Λ(υ)dυ+δΓ(1)10(1υ)2H(υ)dυ)ζδ]κi=1Φi(Λ(ti))+[10ϱ2(υ)Λ(υ)dυ+δΓ(1)10(1υ)2H(υ)dυζδ]t=10ϱ1(υ)Λ(υ)dυϑχ(ϑχ)t+χ(ϑχ)(ζδ)10ϱ2(s)Λ(υ)dυχ(ϑχ)Γ()10(1υ)1H(υ)dυδ[(ϑχ)t+χ](ϑχ)(ζδ)1Γ(1)10(1υ)2H(υ)dυχϑχmi=1Φi(Λ(ti))κi=1Φi(Λ(ti)), (2.9)

    for κ=0, 1, 2, , m. Now substituting (2.9) into (2.2), for tQ0=[0,t1],

    Λ(t)=1Γ()t0(tυ)1H(υ)dυ+10ϱ1(υ)Λ(υ)dυϑχ+(ϑβ)t+χ(ϑχ)(ζδ)10ϱ2(υ)Λ(υ)dυ+χ(ϑχ)Γ()10(1υ)1H(υ)dυ+δ[(ϑχ)t+χ](ϑχ)(ζδ)1Γ(1)10(1υ)2H(υ)dυ+χϑχmi=1Φi(Λ(ti))=t0[(tυ)1Γ()+χ(1υ)1(ϑχ)Γ()+χδ+(ϑχ)δt(ϑχ)(ζδ)(1υ)2Γ(1)]H(υ)dυ+1t[χ(1υ)1(ϑχ)Γ()+χδ+(ϑχ)δt(ϑχ)(ζδ)(1υ)2Γ(1)]H(υ)dυ+1ϑχ10ϱ1(υ)Λ(υ)dυ+(ϑχ)t+χ(ϑχ)(ζδ)10ϱ2(s)Λ(υ)dυ+χϑχmi=1Φi(Λ(ti))=10(t,s)H(υ)dυ+1ϑχ10ϱ1(υ)Λ(υ)dυ+(ϑχ)t+χ(ϑχ)(ζδ)10ϱ2(υ)Λ(υ)dυ+χϑχmi=1Φi(Λ(ti)).

    Then,

    10ϱ1(υ)10(υ,˜t)h(˜t)d˜tdυ=(1Q1)10ϱ1(υ)Λ(υ)dυP110ϱ2(υ)Λ(υ)dυA1χϑχ[mi=1Φi(Λ(ti))],
    10ϱ2(υ)10(υ,˜t)h(˜t)d˜tdυ=Q210ϱ1(υ)Λ(υ)dυ+(1P2)10ϱ2(υ)Λ(υ)dυA2χϑχ[mi=1Φi(Λ(ti))],

    Hence,

    10ϱ1(υ)Λ(υ)dυ=1Γ1[(1P2)(10ϱ1(υ)10(υ,˜t)H(˜t)d˜tdυ+A1χϑχmi=1Φi(Λ(ti)))+P1(10ϱ2(υ)10(υ,˜t)H(˜t)d˜tdυ+A2χϑχmi=1Φi(Λ(ti)))],
    10ϱ2(υ)Λ(υ)dυ=1Γ1[Q2(10ϱ1(υ)10(υ,˜t)H(˜t)d˜tdυ+A1χϑχmi=1Φi(Λ(ti)))+(1Q1)(10ϱ2(υ)10(υ,˜t)H(˜t)d˜tdυ+A2χϑχmi=1Φi(Λ(ti)))],

    which show that

    Λ(t)=10(t,υ)H(υ)dυ+1ϑχ10ϱ1(υ)Λ(υ)dυ+(ϑχ)t+χ(ϑχ)(ζδ)10ϱ2(υ)Λ(υ)dυ+χϑχmi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+φ1(t)[10ϱ1(υ)10(υ,˜t)H(˜t)d˜tdυ+A1χϑχmi=1Φi(Λ(ti))]+φ2(t)[10ϱ2(υ)10(υ,˜t)H(˜t)d˜tdυ+A2χϑχmi=1Φi(Λ(ti))]+χϑχmi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10ϱn(υ)10(υ,˜t)H(˜t)d˜tdυ+Anχϑχmi=1Φi(Λ(ti))]+χϑχmi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10ϱn(˜t)10(˜t,υ)H(υ)dυd˜t+Anχϑχmi=1Φi(Λ(ti))]+χϑχmi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10H(υ)10(˜t,s)ϱn(˜t)d˜tdυ+Anχϑχmi=1Φi(Λ(ti))]+χϑχmi=1Φi(Λ(ti))=10[(t,υ)+2n=1φn(t)10(˜t,s)ϱi(˜t)d˜t]H(υ)dυ+[χϑχ+(2n=1χϑχAnφn(t))]mi=1Φi(Λ(ti))=10H1(t,υ)H(υ)dυ+mi=1H2(t,ti)Φi(Λ(ti)).

    Similar to the above process, for tQκ=(tκ,tk+1], we have

    Λ(t)=10(t,υ)H(υ)dυ+1ϑχ10ϱ1(υ)Λ(υ)dυ+(ϑχ)t+χ(ϑχ)(ζδ)10ϱ2(υ)Λ(υ)dυ+χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+φ1(t)[10ϱ1(υ)10(υ,˜t)H(˜t)d˜tdυ+A1(χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti)))]+φ2(t)[10ϱ2(υ)10(υ,˜t)H(˜t)d˜tdυ+A2(χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti)))]+χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10ϱn(υ)10(υ,˜t)H(˜t)d˜tdυ+An(χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti)))]+χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10ϱn(t)10Φ(˜t,υ)H(υ)dυd˜t+An(χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti)))]+χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti))=10(t,υ)H(υ)dυ+2n=1φn(t)[10H(υ)10Φ(˜t,υ)ϱn(˜t)d˜tdυ+An(χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti)))]+χϑχmi=1Φi(Λ(ti))+κi=1Φi(Λ(ti))=10[(t,υ)+2n=1φn(t)10(˜t,υ)ϱn(˜t)d˜t]H(υ)dυ+[χϑχ+(2n=1χϑχAnφn(t))]mi=k+1Φi(Λ(ti))+[ϑϑχ+(2n=1ϑϑχAnφn(t))]κi=1Φi(Λ(ti))=10H1(t,υ)H(υ)dυ+mi=1H2(t,ti)Φi(Λ(ti)).

    The proof is completed.

    We assume that the following condition is satisfied in this paper:

    (H1) Q1<1, P2<1, (1Q1)(1P2)>P1Q2.

    Lemma 2.4. The functions H1 and H2 have the following properties:

    (1) for all t, υ[0,1], i=1, , m, H1(t,υ)0, H2(t,ti) >0;

    (2) for all t, υ[0,1], d1M(υ)  m(υ) H1(t,υ)  M(υ);

    (3) for all t[0,1], i=1, , m, d2H2(1,0)  H2(t,ti) H2(1,0);

    (4) for all υ[0,1], maxt[0,1] CtD10+H1(t,υ)1Γ(3)M(υ);

    (5) maxt[0,1] CtD10+H2(t,ti) 1Γ(3)H2(1,0), i=1, 2, , m,

    where

    M(υ)=g(υ)+2n=1φn(1)10(υ,˜t)ϱn(˜t)d˜t,
    m(υ)=d1g(υ)+2n=1φn(0)10(υ,˜t)ϱn(˜t)d˜t,
    g(υ)=χ(1υ)1(ϑχ)Γ()+ϑδ(1υ)2(ϑχ)(ζδ)Γ(1)+1Γ(),
    Π=1+2n=1Anφn(0)1+2n=1Anφn(1), Π1=minυ[0,1][χ(1υ)1(ϑχ)Γ()+χδ(1υ)2(ϑχ)(ζδ)Γ(1)],

    and d1=χΓ()Π1ϑΓ()Π1+χ, d2=χϑΠ.

    Proof. First, it is easy to see that

    H1(t,s), H2(t,ti)>0,

    for all t, υ[0,1], i=1, 2, , m. For given υ[0,1], we can get (t,υ) is increasing with respect to t for tQ by the definition of (t,υ). Then,

    (t,υ)χ(1υ)1(ϑχ)Γ()+ϑδ(1υ)2(ϑχ)(ζδ)Γ(1)+1Γ()=g(υ),

    and

    (t,υ)g(υ)χ(1υ)1(ϑχ)Γ()+χδ(1υ)2(ϑχ)(ζδ)Γ(1)+(tυ)1Γ()χ(1υ)1(ϑχ)Γ()+ϑδ(1υ)2(ϑχ)(ζδ)Γ(1)+1Γ()χ(1υ)1(ϑχ)Γ()+χδ(1υ)2(ϑχ)(ζδ)Γ(1)χ(1υ)1(ϑχ)Γ()+ϑδ(1υ)2(ϑχ)(ζδ)Γ(1)+1Γ()1ϑχ+1Γ()[χ(1υ)1(ϑχ)Γ()+χδ(1υ)2(ϑχ)(ζδ)Γ(1)]1ϑχ+1Γ()Π1=d1.

    Hence,

    d1g(υ)(t,υ)g(υ), for all t, υ [0,1],

    and

    d1M(υ)  m(υ) H1(t,υ)  M(υ), for all t, υ[0,1].

    The proof of (3) is given below.

    On the one hand, from the definition of H2(t,ti) and φn(t)(n=1,2), for 0tti1, it is easily to see that

    H2(t,ti)H2(1,0)=χϑχ+χϑχ2n=1Anφn(t)ϑϑχ+ϑϑχ2n=1Anφn(1)χϑ[1+2n=1Anφn(0)1+2n=1Anφn(1)]=χϑΠ=d2.

    On the other hand, for 0ti<t1, we get

    H2(t,ti)H2(1,0)=ϑϑχ+ϑϑχ2n=1Anφn(t)ϑϑχ+ϑϑχ2n=1Anφn(1)>1+2n=1Anφn(0)1+2n=1Anφn(1)=Π.

    Therefore,

    d2H2(1,0)  H2(t,ti) H2(1,0),

    for all t[0,1], i=1, 2, , m.

    Next, by calculation, one can obtain that

    CtD10+(t,υ)={δ(1υ)2t2(ζδ)Γ(1)Γ(3)+1,0υ<t1;δ(1υ)2t2(ζδ)Γ(1)Γ(3),0tυ1,
    CtD10+H1(t,υ)= CtD10+(t,υ)+2n=1[ CtD10+φn(t)]10(υ,˜t)ϱn(˜t)d˜t,

    and

    CtD10+H2(t,υ)={χϑχ2n=1An[ CtD10+φn(t)],0tti1;ϑϑχ2n=1An[ CtD10+φn(t)],0ti<t1.

    Hence,

    maxt[0,1] CtD10+(t,υ)1Γ(3)g(υ), for all υ[0,1],
    maxt[0,1] CtD10+H1(t,υ)1Γ(3)M(υ), for all υ[0,1],
    maxt[0,1] CtD10+H2(t,ti) 1Γ(3)H2(1,0), i=1, 2, , m.

    Hence, (4) and (5) are valid.

    Lemma 2.5. [19] The set ΥPC([0,1],Rn) is relatively compact if and only if

    (1) Υ is bounded, that is, ϕC for each ϕΥ and some C>0.

    (2) Υ is quasi-equicontinuous in (tκ1,tκ](κN), that is to say, for any ε>0, there exists δ>0 such that

    |ϕ(t1)ϕ(t2)|<ε

    for all ϕΥ, t1,t2(tκ1,tκ] with |t1t2|<δ.

    Let Ω be a nonempty open subset of a Banach space (X, ). T:¯ΩX is an operator, where T may be discontinuous.

    Definition 2.6. [15] The closed-convex Krasovskij envelope (cc-envelope, for short) of an operator T:¯ΩX is the multivalued mapping T:¯Ω2X given by

    TΛ=ε>0¯coT(¯Bε(Λ)¯Ω) for every Λ¯Ω,

    where ¯co means closed convex hull, ¯Bε(Λ) is the closed ball centered at Λ and radius ε.

    Lemma 2.7. [15] ˜ΛTΛ if for every ε>0 and every p>0 there exist mN and a finite family of vectors Λi¯Bε(Λ)¯Ω and coefficients πi[0,1](i=1,2,,m) such that mi=1πi=1 and

    ˜Λmi=1πiTΛi<p.

    Next, we introduce Krasnoselskii's fixed point theorems for discontinuous operators on cones. Let P be a cone of Banach space X. Then, P defines the partial ordering in given by Λ˜Λ if and only if ˜ΛΛP. For Λ,˜ΛP, the set [Λ,˜Λ]={ˆΛP:ΛˆΛ˜Λ} is an order interval with Λ˜Λ. Denote PR={ΛP:Λ<R}, for given R>0.

    Lemma 2.8. [16] Let R>0, 0ΩiPR be relatively open subsets of P (i=1,2). T:¯PRP is a mapping, where T¯PR is relatively compact and it fulfills condition

    ΛTΛ{TΛ} (2.10)

    in ¯PR.

    (a)For all ΛΩ1(λ1), if λΛTΛ, then i(T, Ω1, P)=1.

    (b)For every 0 and all ΛP with ΛΩ2, if there exists P(0) such that ΛTΛ+ω, then i(T, Ω2, P)=0.

    Lemma 2.9. [16] Assume that one of the following two conditions holds:

    (i) ˜ΛΛ for all ˜ΛTΛ with ΛP and Λ=r1.

    (ii) ˜Λ<Λ for all ˜ΛTΛ and all ΛP with Λ=r1.

    Then, Condition (a) in Lemma 2.8 is satisfied.

    Analogously, if one of the following two conditions holds:

    (i) ˜ΛΛ for all ˜ΛTΛ with ΛP and Λ=r1.

    (ii) If ˜Λ>Λ for all ˜ΛTΛ and all ΛP with Λ=r2.

    Then, assumption (b) in Lemma 2.8 holds.

    For the discontinuous nonlinearities ϝ, we define the admissible discontinuities curves.

    Definition 2.10. We say that :Q R +, PC1(Q) is an admissible discontinuity curve for the differential system (1.1) if satisfies |t=ti=0(i=1, , m), the boundary value conditions of (1.1) and one of the following conditions holds:

    (i)

    { CtD0+(t)=E(t)ϝ(t,(t)), a.e. tQ,|t=tκ=Φκ((tκ)), κ=1, , m, (2.11)

    (ii) there exist G, ¯GL1(J), G(t), ¯G(t)>0 a.e. for t[0,1], S, ΘJ, m(SΘ)=0, m(SΘ)>0, and ε>0 such that

    {CtD0+(t)+¯G(t)<E(t)ϝ(t,x), a.e. tΘ, x[(t)ε,(t)+ε],CtD0+(t)G(t)>E(t)ϝ(t,x), a.e. tS, x[(t)ε,(t)+ε],CtD0+(t)=E(t)ϝ(t,(t)), a.e. tQ(SΘ),|t=tκ=Φκ((tκ)), k=1, , m, (2.12)

    (iii) there exist κ{1, 2, , m} such that

    {CtD0+(t)=E(t)ϝ(t,(t)), a.e. tQ,|t=tκΦκ((tκ)), (2.13)

    (iv) there exists G, ¯GL1(Θ), G(t), ¯G(t)>0 a.e. for t[0,1], S, ˜ΘΘ, m(S˜Θ)=0, m(S˜Θ)>0, and ε>0, κ{1, 2, , m} such that

    {CtD0+(t)+¯G(t)<E(t)ϝ(t,Λ), a.e. tΘ, x[(t)ε,(t)+ε],CtDq0+(t)G(t)>E(t)ϝ(t,x), a.e. tS, x[(t)ε,(t)+ε],CtDq0+(t)=E(t)ϝ(t,(t)), a.e. tQ(SΘ),|t=tκΦκ((tκ)). (2.14)

    Then, we assert that is viable for BVP (1.1) if (i) is satisfied; we say that is inviable if one of (ii)-(iv) is satisfied.

    Let Ξ=PC1[0,1], P:={ΛΞ:Λ(t)dΛ1, t[0,1]}(d=Γ(3)d3, d3=min{d1, d2}) and Pr:={ΛP: Λ1r}. In order to apply Krasnoselskii's compression-expansion type fixed point theorems for discontinuous operators to BVP (1.1), we recall that if Λ is a solution of the following equation:

    Λ(t)=10H1(t,s)E(s)ϝ(s,Λ(υ))dυ+mi=1H2(t,ti)Φi(Λ(ti)), (3.1)

    then ΛΞ is a solution of BVP (1.1).

    Define an operator T:PΞ as follows:

    TΛ(t):=10H1(t,s)E(s)ϝ(s,Λ(υ))dυ+mi=1H2(t,ti)Φi(Λ(ti)), ΛP. (3.2)

    For any ΛP, TΛ is well defined by EL(0,1), the continuity of H1 and the assumption of ϝ. One can see that the existence of positive fixed points of T implies the existence of positive solutions for BVP (1.1).

    Subsequently, let

    N1=(10M(υ)g(υ)dυ)1, N2=(10m(υ)g(υ)dυ)1,
    N3=(supt[0,1]10 CtD10+H1(t,υ)g(υ)dυ)1, N4=(inft[0,1]10 CtD10+H1(t,υ)g(υ)dυ)1,
    N5=supt[0,1], i{1, ,m}H2(t,ti), N6=inft[0,1], i{1, ,m}H2(t,ti),
    N7=supt[0,1], i{1, ,m} CtD10+H2(t,ti), N8=inft[0,1], i{1, ,m} CtD10+H2(t,ti).

    Now, we are in position to give the assumptions satisfied throughout the paper.

    (H2)ϝ:Q× R + R + satisfies:

    (a) tQϝ(,Λ) is measurable for any Λ R +;

    (b) For a.e. tQ and all Λ[0,r], there exists R>0 such that ϝ(t,Λ)R for each r>0.

    (H3) E(t)0 almost everywhere for t[0,1] and E is measurable.

    (H4) Admissible discontinuity curves n:Q R +(nN) satisfy that the function Λϝ(t,Λ) is continuous in [0,)nN{n(t)} for a.e. tQ.

    (H5) lim, \lim\limits_{\Lambda\rightarrow 0^{+}}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} > { }\frac{5}{4\mathfrak{d}}[{ }\frac{1}{ \mathcal {N}_{2}}+m\mathcal{N}_{6}]^{-1} ,

    (H6) \lim\limits_{\Lambda\rightarrow +\infty}\sup \limits_ {t\in [0, 1]}{ }\frac{\digamma(t, \Lambda)}{\Lambda} < { }\frac{5}{6}[{ }\frac{1}{ \mathcal {N}_{1}}+m\mathcal{N}_{5}]^{-1} , \lim\limits_{\Lambda\rightarrow +\infty}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} < { }\frac{5}{6} [{ }\frac{1}{ \mathcal {N}_{1}}+m\mathcal{N}_{5}]^{-1} ,

    (H7) \lim\limits_{\Lambda\rightarrow 0^{+}}\sup \limits_ {t\in[0, 1]}{ }\frac{\digamma(t, \Lambda)}{\Lambda} < { }\frac{5}{6}[{ }\frac{1}{ \mathcal {N}_{1}}+m\mathcal{N}_{5}]^{-1}, \ \lim\limits_{\Lambda\rightarrow 0^{+}}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} < { }\frac{5}{6} [{ }\frac{1}{ \mathcal {N}_{1}}+m\mathcal{N}_{5}]^{-1} ,

    (H8) \lim\limits_{\Lambda\rightarrow +\infty}\inf \limits_ {t\in [0, 1]}{ }\frac{\digamma(t, \Lambda)}{\Lambda} > { }\frac{5}{4\mathfrak{d}}[{ }\frac{1}{ \mathcal {N}_{2}} +m\mathcal{N}_{6}]^{-1}, \ \lim\limits_{\Lambda\rightarrow +\infty}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} > { }\frac{5}{4\mathfrak{d}} [{ }\frac{1}{ \mathcal {N}_{2}}+m\mathcal{N}_{6}]^{-1} .

    Lemma 3.1. The operator \mathcal{T}:\ \mathcal{P} \rightarrow \mathcal{P} is well-defined and maps bounded sets into relatively compact sets.

    Proof. In view of the nonnegativity of \digamma, \ \mathcal {H}_{1}, \ \mathcal {H}_{2} , \Phi_{{\kappa}}({\kappa} = 1, \ \cdots, \ m) and \mathcal {E}(t)\geq 0 for a.e.\ t\in\ Q , we conclude that \mathcal{T}\Lambda(t)\geq0 for t\in [0, 1]. Hence, \mathcal{T}:\ \mathcal{P} \rightarrow \mathcal{P} is well-defined.

    Then, by calculation, for \Lambda\in P, it is easy to see

    \ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}(\mathcal{T}\Lambda) (t) = \int_{0}^{1}[\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon})] \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m}[\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i})] \Phi_{i}(\Lambda(t_{i})),

    where

    _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\aleph(t, {\upsilon}) = \begin{cases}{ } \frac{{\zeta}(1-{\upsilon})^{\Re -2}t^{2-\Re }}{({\zeta}-{\delta})\Gamma(\Re -1)\Gamma(3-\Re )}+1, &{ 0\leq {\upsilon} < t\leq 1 };\\ { }\frac{{\zeta}(1-{\upsilon})^{\Re -2}t^{2-\Re }}{({\zeta}-{\delta})\Gamma(\Re -1)\Gamma(3-\Re )}, &{ 0\leq t \leq {\upsilon}\leq 1 }, \end{cases}
    _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon}) = \ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\aleph(t, {\upsilon})+\sum\limits_{n = 1}^{2} [\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\varphi_{n}(t)]\int_{0}^{1} \aleph({\upsilon}, \widetilde{t})\varrho_{n}(\widetilde{t})d\widetilde{t} ,

    and

    _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i}) = \begin{cases}{ }\frac{{\chi}}{{\vartheta}-{\chi}} \sum\limits_{n = 1}^{2}\mathfrak{A}_{n}[\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\varphi_{n}(t)] , &{ 0\leq t \leq t_{i}\leq 1 };\\ { }\frac{{\vartheta}}{{\vartheta}-{\chi}}\sum\limits_{n = 1}^{2}\mathfrak{A}_{n}[\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\varphi_{n}(t)] , &{ 0\leq t_{i} < t \leq 1 }.\end{cases}

    By Lemma 2.4, one can get that

    \begin{array}{l} \mathfrak{d}\|_{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {T} \Lambda\|_{0}& = &\mathfrak{d}\ max_{t\in[0, 1]}[\int_{0}^{1}(_{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon})) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon}\\ &&+\sum\limits_{i = 1}^{m}( _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i})) \Phi_{i}(\Lambda(t_{i}))]\\ &\leq&\mathfrak{d}_{3}[\int_{0}^{1} \mathcal {M}({\upsilon}) \mathcal {E}({\upsilon}) \digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(1, 0) \Phi_{i}(\Lambda(t_{i}))]\\ &\leq&\int_{0}^{1}m({\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon} +\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(0, 1)\Phi_{i}(\Lambda(t_{i}))\\ & = &min_{t\in[0, 1]}\mathcal{T}\Lambda({\tau}). \end{array}

    Thinking about it from the other side, we have

    \begin{array}{l} \mathfrak{d}\| \mathcal {T}\Lambda\|_{0}&\leq&\mathfrak{d}_{3} [\int_{0}^{1} \mathcal {M}({\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon} +\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(1, 0)\Phi_{i}(\Lambda(t_{i}))]\\ &\leq&\int_{0}^{1}m({\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda({\upsilon}))d{\upsilon} +\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(0, 1)\Phi_{i}(\Lambda(t_{i}))\\ & = &min_{t\in[0, 1]} \mathcal {T}\Lambda(t). \end{array}

    Therefore,

    min_{t\in[0, 1]} \mathcal {T}\Lambda(t)\geq\mathfrak{d}({\upsilon})\ max\{\| \mathcal {T}\Lambda\|_{0}, \|\ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}} \mathcal {T}\Lambda\|_{0}\} = \mathfrak{d}({\upsilon})\| \mathcal {T}\Lambda\|_{1}.

    Next, we notice that there exists \mathcal{M}_{{\kappa}} > 0 such that

    \Phi_{{\kappa}}(\Lambda)\leq \mathcal{M}_{{\kappa}}, \ for\ \Lambda\in [0, r],

    where {\kappa} = 1, \ 2, \ \cdots, \ m for each r > 0 . Therefore, \mathcal {T}(\mathcal {P}_{r}) is bounded by (H2).

    Moreover, we have

    _{t}^{C} \mathcal {D} ^{q}_{0^{+}} \mathcal {T}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t))\leq R \mathcal {E}(t),

    for any \Lambda\in \mathcal {P}_{r} and a.e. t\in Q_{{\kappa}} .

    Therefore,

    |_{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}( \mathcal {T}\Lambda)(\widehat{t}_{2})-\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}( \mathcal {T}\Lambda)(\widehat{t}_{1})|\leq\int_{\widehat{t}_{1}}^{\widehat{t}_{2}}|_{r}^{C}D^{q}_{0^{+}}( \mathcal {T}\Lambda)(r)|dr\\ \leq\int_{\widehat{t}_{1}}^{\widehat{t}_{2}}R \mathcal {E}(r)dr,

    where \widehat{t}_{1}, \ \widehat{t}_{2}\in Q_{{\kappa}} . Hence, \mathcal{T}(\mathcal {P}_{r}) is relatively compact.

    Lemma 3.2. Let \mathbb{T} be the cc-envelope of the operator \mathcal{T} : \mathcal {P}_{R} \rightarrow \mathcal{P} . If (H4) is satisfied, then

    {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\}, \ for\ all\ \Lambda\in {\mathcal{P}}_{R}.

    Proof. Let \mathfrak{W}_{n} = \{t \in Q: \Lambda(t) = \hbar_{n}(t)\}(n\in { \mathbb{N} }) . Fix \Lambda \in \mathcal {P}_{R} and we think about three cases below.

    Case 1: m(\mathfrak{W}_{n}) = 0 for all n \in { \mathbb{N} } .

    If \Lambda_{{\kappa}} \rightarrow \Lambda in \mathcal {P}_{R} , by (H4), it is easy to see that \digamma(t, \Lambda_{{\kappa}}(t)) \rightarrow \digamma(t, \Lambda(t)) for a.e. t \in Q . This, together with (H2) and (H3), implies that

    \mathcal {T}\Lambda_{{\kappa}} \rightarrow \mathcal {T}\Lambda\ {\rm in}\ \mathcal {P}_{R}.

    Hence \mathcal{T} is continuous at \Lambda . Hence, \mathbb{T}\Lambda = { \mathcal {T}\Lambda} .

    Case 2: there exists n \in { \mathbb{N} } such that \hbar_{n} is inviable and m(\mathfrak{W}_{n}) > 0 . Let \mathbb {B} = \{n: m(\mathfrak{W}_{n}) > 0, \ \hbar_{n}\ is\ inviable\} . Case 2 will be demonstrated in three subcases.

    Case 2.1: The above \hbar_{n} satisfies (ii) in Definition 2.10.

    By (ii) in Definition 2.10, there exist \mathcal {G}, \ \overline{ \mathcal {G}}\in L^{1}(Q'), \ \mathcal {G}(t), \ \overline{ \mathcal {G}}(t) > 0\ for\ a.e.\ t\in[0, 1] , S_{n}, \ \Theta_{n}\subset Q, m(S_{n}\cap \Theta_{n}) = 0 , m(S_{n}\cup \Theta_{n}) > 0 , and \varepsilon > 0 such that

    \begin{equation} \left\{ \begin{array}{l} _{t}^{C} \mathcal {D} ^{\Re }_{0^{+}}\hbar(t)+\overline{ \mathcal {G}}(t) < \mathcal {E}(t)\digamma(t, \hbar_{n}(t)), \ a.e.\ t\in \Theta_{n}, \ \Lambda\in [\hbar_{n}(t)-\varepsilon, \hbar_{n}(t)+\varepsilon], \\ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\hbar(t)- \mathcal {G}(t) > \mathcal {E}(t)\digamma(t, \hbar_{n}(t)), \ a.e.\ t\in S_{n}, \ \Lambda\in [\hbar_{n}(t)-\varepsilon, \hbar_{n}(t)+\varepsilon], \\ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\hbar(t) = \mathcal {E}(t)\digamma(t, \hbar_{n}(t)), \ a.e.\ t\in Q'\setminus(S_{n}\cup \Theta_{n}), \\ \triangle\hbar_{n}|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\hbar_{n}(t_{{\kappa}})), \ {\kappa} = 1, \ \cdots, \ m.\end{array} \right. \end{equation} (3.3)

    (I) m(\{t\in S_{n}\cup \Theta_{n}|\Lambda(t) = \hbar_{n}(t)\}) = 0 for all n\in \mathbb {B} .

    By m(\{t\in S_{n}\cup \Theta_{n}|\Lambda(t) = \hbar_{n}(t)\}) = 0 , for a.e.\ t\in \mathfrak{W}_{n} , one can obtain that

    _{t}^{C} \mathcal {D}^{\Re }_{0^{+}} \hbar_{n}(t) = \mathcal {E}(t)\digamma(\Lambda, \hbar_{n}(t)).

    This is,

    _{t}^{C} \mathcal {D} ^{\Re }_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda), \ t\in \bigcup\limits_{n\in \mathbb {B}}\mathfrak{W}_{n}.

    For each {\kappa} \in { \mathbb{N} } , on account of \Lambda \in \mathbb{T}\Lambda , there exist functions \Lambda_{p, i} \in B_{\frac{1}{p}}(\Lambda)\cap \mathcal {P}_{R} and coefficients \lambda_{p, i} \in [0, 1] (i = 1, \ 2, \cdots, \ m(p)) such that

    \sum\limits_{i = 1}^{m(p)}\lambda_{p, i} = 1,

    and

    \|\Lambda-\sum\limits_{i = 1}^{m(p)}\lambda_{p, i} \mathcal {T}\Lambda_{p, i}\| < { }\frac{1}{p},

    by Lemma 2.7 with \varepsilon = \mathfrak{p} = { }\frac{1}{p} .

    Denote V_{p} = \sum\limits_{i = 1}^{m(p)}\lambda_{p, i} \mathcal {T}\Lambda_{p, i}. If p\rightarrow \ \infty in Q , we can see that V_{p}\rightarrow \Lambda uniformly.

    For a.e.\ t \in Q \setminus \bigcup\limits_{n\in \mathbb {B}}\mathfrak{W}_{n} , one can see that \mathcal {E}(t)\digamma(t, \cdot) is continuous at \Lambda(t) . Consequently, for any \varepsilon > 0 , there is some p_{0} = p(t) \in { \mathbb{N} } such that, for all {\kappa} \in { \mathbb{N} } , p \geq p_{0} , we have

    | \mathcal {E}(t)\digamma(t, \Lambda_{p, i}(t))- \mathcal {E}(t)\digamma(t, \Lambda(t))| < \varepsilon,

    for all i\in\{1, \ 2, \ \cdots, \ m(p)\} . Then,

    | _{t}^{C} \mathcal {D} ^{\Re }_{0^{+}}V_{p}(t)- \mathcal {E}(t)\digamma(t, \Lambda(t))|\leq\sum\limits_{i = 1}^{m(p)}\lambda_{p, i} | \mathcal {E}(t)\digamma(t, \Lambda_{p, i}(t))- \mathcal {E}(t)\digamma(t, \Lambda(t))| < \varepsilon.

    This is,

    _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}V_{p}(t)\rightarrow \mathcal {E}(t)\digamma(t, \Lambda(t)), \ {\rm when}\ p\rightarrow \infty,

    for a.e.\ t \in Q \setminus \bigcup\limits_{n\in \mathbb {B}}\mathfrak{W}_{n} .

    On the other hand,

    \begin{array}{l} |_{t}^{C} \mathcal {D}^{\Re }_{0^{+}}V_{p}(t)-\ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t)|& = &{ }\frac{1} {\Gamma(\Re )}|\int_{0}^{t}(t-{\upsilon})^{\Re -1}V_{p}({\upsilon})d{\upsilon} -\int_{0}^{t}(t-{\upsilon})^{\Re -1}\Lambda({\upsilon})d{\upsilon}|\\ &\leq&{ }\frac{1}{\Gamma(\Re )}\int_{0}^{t} (t-{\upsilon})^{\Re -1}|V_{p}({\upsilon})-\Lambda({\upsilon})|d{\upsilon}\\ &\leq&\varepsilon_{1}({ }\frac{1}{\Gamma(\Re )} \int_{0}^{t}(t-{\upsilon})^{\Re -1}d{\upsilon})\\ &\leq&{ }\frac{1}{\Gamma(\Re +1)}\varepsilon_{1}, \end{array}

    which guarantees that _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda) for a.e.\ t\in Q \setminus\bigcup\limits_{n\in \mathbb {B}}\mathfrak{W}_{n}. The process above implies \Lambda = \mathcal {T}\Lambda if \Lambda \in \mathbb{T}\Lambda .

    (II) There exists n\in \mathbb {B} such that m(\{t\in S_{n}\cup \Theta_{n}|\Lambda(t) = \hbar_{n}(t)\}) > 0 .

    Suppose m(\{t\in S_{n}|\Lambda(t) = \hbar_{n}(t)\}) > 0 . Now we are in position to prove

    \Lambda\notin \mathbb{T}\Lambda.

    For a.e.\ t\in Q , by (H2), there exists \mathcal{H}_{R} > 0 such that \digamma(t, \Lambda(t)) < \mathcal{H}_{R} . Let F(t) = \mathcal {E}(t)\mathcal{H}_{R} and \mathcal{A} = \{t\in S_{n}|\ \Lambda(t) = \hbar_{n}(t)\}(n\in { \mathbb{N} }) . There exists an interval Q_{{\kappa}_{0}}({\kappa}_{0}\in\{1, \ \cdots, \ m\}) such that m(Q_{k_{0}}\cap \mathcal{A}) > 0 . Let \mathbb{A} = Q_{k_{0}}\cap \mathcal{A} . On account of F \in L(Q) and Lemma 3.8 in [15], there is a measurable set A_{0} \subset \mathbb{A} with m(A_{0}) = m(\mathbb{A}) > 0 such that, we obtain

    \begin{equation} lim_{t\rightarrow \widehat{t}_{0}^{+}}{ }\frac{2\int_{[\widehat{t}_{0}, t]\setminus \mathbb{A}}F( {\upsilon})d{\upsilon}}{{ }\frac{1}{4}\int_{\widehat{t}_{0}}^{t} \mathcal {G}( {\upsilon})d{\upsilon}} = 0 = lim_{t\rightarrow \widehat{t}_{0}^{-}}{ }\frac{2\int_{[t, \widehat{t}_{0}]\setminus \mathbb{A}}F( {\upsilon})d{\upsilon}}{{ }\frac{1}{4}\int^{\widehat{t}_{0}}_{t} \mathcal {G}( {\upsilon})d{\upsilon}}, \end{equation} (3.4)

    for all \widehat{t}_{0} \in A_{0} .

    Moreover, by Corollary 3.9 in [15], there exists A_{1}\subset A_{0} with m(A_{0}\setminus A_{1}) = 0 such that,

    \begin{equation} lim_{t\rightarrow \widehat{t}_{0}^{+}}{ }\frac{\int_{[\widehat{t}_{0}, t]\cap A_{0}} \mathcal {G}( {\upsilon})d{\upsilon}}{\int_{\widehat{t}_{0}}^{t} \mathcal {G}( {\upsilon})d{\upsilon}} = 1 = lim_{t\rightarrow \widehat{t}_{0}^{-}}{ }\frac{\int_{[t, \widehat{t}_{0}]\cap A_{0}} \mathcal {G}( {\upsilon})d{\upsilon}}{\int_{\widehat{t}_{0}}^{t} \mathcal {G}( {\upsilon})d{\upsilon}}, \end{equation} (3.5)

    for all \widehat{t}_{0} \in A_{1} .

    Fix a point \widehat{t}_{0}\in A_{1} . By (3.4) and (3.5), we konw that t_{-} < \widehat{t}_{0} , t_{+} > \widehat{t}_{0} exist with t_{+}, \ t_{-} \rightarrow \widehat{t}_{0} . Moreover, t_{+}, \ t_{-} satisfies the following inequalities.

    \begin{equation} 2\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}}F({\upsilon})d{\upsilon} < { }\frac{1}{4}\int_{\widehat{t}_{0}}^{t_{+}} \mathcal {G}({\upsilon})d{\upsilon}, \end{equation} (3.6)
    \begin{equation} \int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}} \mathcal {G}({\upsilon})d{\upsilon}\geq\int_{[\widehat{t}_{0}, t^{+}]\cap A_{0}} \mathcal {G}({\upsilon})d{\upsilon} > { }\frac{1}{2}\int_{\widehat{t}_{0}}^{t_{+}} \mathcal {G}({\upsilon})d{\upsilon}, \end{equation} (3.7)
    \begin{equation} 2\int_{[t^{-}, \widehat{t}_{0}]\setminus \mathbb{A}}F({\upsilon})d{\upsilon} < { }\frac{1}{4}\int^{\widehat{t}_{0}}_{t_{-}} \mathcal {G}({\upsilon})d{\upsilon}, \end{equation} (3.8)
    \begin{equation} \int_{[t^{-}, \widehat{t}_{0}]\cap \mathbb{A}} \mathcal {G}({\upsilon})d{\upsilon} > { }\frac{1}{2}\int^{\widehat{t}_{0}}_{t_{-}} \mathcal {G}({\upsilon})d{\upsilon}. \end{equation} (3.9)

    Now we will prove that \Lambda \notin \mathbb{T}\Lambda .

    Claim: For every finite family \Lambda_{i} \in B_{\varepsilon}(\Lambda) \cap \overline{B}_{R} and \pi_{i} \in [0, 1]\ (i = 1, 2, \ \cdots, m_{1}), there exists \mathfrak{p} > 0 such that

    \|\Lambda-\sum\limits_{i = 1}^{m_{1}}\pi_{i} \mathcal {T}\Lambda_{i}\| \geq\mathfrak{p},

    where \sum\limits_{i = 1}^{m_{1}} \pi_{i} = 1 .

    Denote V = \sum\limits_{i = 1}^{m_{1}} \pi_{i} \mathcal {T}\Lambda_{i} . Then for a.e. t \in \mathbb{A} , we have

    \begin{equation} _{t}^{C} \mathcal {D}^{\Re }_{0^{+}} v(t) = \sum\limits_{i = 1}^{m_{1}}\pi_{i}\ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}( \mathcal {T}\Lambda_{i})(t) = \sum\limits_{i = 1}^{m_{1}}\pi_{i} \mathcal {E}(t)\digamma(t, \Lambda_{i}(t)). \end{equation} (3.10)

    For every i\in \{1, \ 2, \ \cdots, \ m_{1}\} and t\in \mathbb{A} , one can obtain that

    |\Lambda_{i}(t)-\hbar_{n}(t)| = |\Lambda_{i}(t)-\Lambda(t)| < \varepsilon.

    Then, for a.e. t\in A , we have

    \begin{equation} _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}V(t) = \sum\limits_{i = 1}^{m_{1}} \pi_{i} \mathcal {E}(t)\digamma(t, \Lambda_{i}(t)) < \sum\limits_{i = 1}^{m_{1}}\pi_{i}(_{t}^{C} \mathcal {D} ^{\Re }_{0^{+}}\hbar_{n}(t)- \mathcal {G}(t)) = \ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t)- \mathcal {G}(t). \end{equation} (3.11)

    Now we compute

    \begin{array}{l} _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}V(t^{+})-\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} V(\widehat{t}_{0}) & = &\int_{\widehat{t}_{0}}^{t^{+}}[_{s}^{C} \mathcal {D}^{\Re -1}_{0^{+}}V({\upsilon})]'d{\upsilon} = \int_{\widehat{t}_{0}}^{t^{+}}[_{s}^{C} \mathcal {D} ^{\Re }_{0^{+}}V({\upsilon})]d{\upsilon}\\ & = &\int_{[\widehat{t}_{0}, t^{+}]\cap \mathbb{A}}[_{s}^{C} \mathcal {D}^{\Re }_{0^{+}}V({\upsilon})]d{\upsilon}+\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}}[_{t}^{C} \mathcal {D}^{\Re }_{0^{+}}V({\upsilon})]d{\upsilon}\\ & < &\int_{[\widehat{t}_{0}, t^{+}]\cap \mathbb {A}}\ _{s}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda({\upsilon})d{\upsilon} -\int_{[\widehat{t}_{0}, t^{+}]\cap \mathbb {A}} \mathcal {G}({\upsilon})d{\upsilon}\\ &&+\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}}F({\upsilon})d{\upsilon}\\ & = &\ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}}\Lambda(t^{+})-\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \Lambda(\widehat{t}_{0})-\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}}\ _{s}^{C} \mathcal {D}^{\Re }_{0^{+}} \Lambda({\upsilon})d{\upsilon}\\ &&-\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb{A}} \mathcal {G}(s)d{\upsilon} +\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb {A}}F({\upsilon})d{\upsilon}\\ &\leq&\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\Lambda(t^{+})-\ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}} \Lambda(\widehat{t}_{0})-\int_{[\widehat{t}_{0}, t^{+}]\cap \mathbb {A}} \mathcal {G}({\upsilon})d{\upsilon}\\ &&+2\int_{[\widehat{t}_{0}, t^{+}]\setminus \mathbb {A}}F({\upsilon})d{\upsilon}\\ & < &\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\Lambda(t^{+})-\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \Lambda(\widehat{t}_{0})-{ }\frac{1}{4}\int_{\widehat{t}_{0}}^{t^{+}} \mathcal {G}({\upsilon})d{\upsilon}. \end{array}

    Choosing

    \begin{equation} \mathfrak{p} = min\{{ }\frac{1}{4}\int_{t_{-}}^{\widehat{t}_{0}} \mathcal {G}({\upsilon})d{\upsilon}, { }\frac{1}{4}\int^{t_{+}}_{\widehat{t}_{0}} \mathcal {G}({\upsilon})d{\upsilon}\}. \end{equation} (3.12)

    Hence, \|\Lambda-V\|_{1}\geq \ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}}\Lambda(t^{+})-\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}V(t^{+})\geq \mathfrak{p} , provided that _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\Lambda(\widehat{t}_{0})\geq\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}V(\widehat{t}_{0}).

    Using t_{-} instead of t_{+} , we can get that

    _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\Lambda(\widehat{t}_{0})\leq\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}v(\widehat{t}_{0}),

    by similar progress. Hence, we have \|\Lambda-V\|_{1}\geq \mathfrak{p} . The claim is proven.

    By Lemma 2.7, one can see that \Lambda \notin \mathbb{T}\Lambda .

    Case 2.2: The above \hbar_{n} satisfies (iii) in Definition 2.4. Let \mathbb {B}_{1} = \{n: m(\mathfrak{W}_{n}) > 0, \ \hbar_{n}\ satisfies\ (iii)\ in\ Definition\ 2.4\}.

    Then, there exist k\in\{1, \ 2, \ \cdots, \ m\} such that

    \begin{equation} \left\{ \begin{array}{l} _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\hbar(t) = \mathcal {E}(t)\digamma(t, \hbar_{n}(t)), \ a.e.\ t\in Q';\\ \triangle\hbar_{n}|_{t = t_{{\kappa}}}\neq \Phi_{{\kappa}}(\hbar_{n}(t_{{\kappa}})), \ {\kappa} = 1, \ \cdots, \ m.\end{array} \right. \end{equation} (3.13)

    We suppose that there exist Y, \ \varepsilon > 0 such that \triangle\hbar_{n}|_{t = t_{{\kappa}}}+Y < \Phi_{{\kappa}}(z), \ z\in[\hbar_{n}(t_{{\kappa}})-\varepsilon, \hbar_{n}(t_{{\kappa}})+\varepsilon] by the continuity of \Phi_{{\kappa}} .

    (I) \Lambda(t_{{\kappa}})\neq\hbar_{n}(t_{{\kappa}}) or \Lambda(t_{{\kappa}}^{+})\neq\hbar_{n}(t_{{\kappa}}^{+}) .

    By (2.13), for a.e.\ t\in \bigcup_{n\in \mathbb {B}_{1}}\mathfrak{W}_{n} , we have _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)). Similar to the proof of (I) in Case 2.1, it is easy to see that \Lambda \notin \mathbb{T}\Lambda or \Lambda = \mathcal {T}\Lambda if \Lambda \in \mathbb{T}\Lambda . Hence, {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\} for all \Lambda\in {\mathcal{P}}_{R}.

    (II) When \Lambda(t_{{\kappa}}) = \hbar_{n}(t_{{\kappa}}) and \Lambda(t_{{\kappa}}^{+}) = \hbar_{n}(t_{{\kappa}}^{+}) , we assert that \Lambda \notin \mathbb{T}\Lambda .

    Claim: Let \varepsilon > 0 and \mathfrak{p} = { }\frac{Y}{2} , for every finite family \Lambda_{i} \in B_{\epsilon}(\Lambda) \cap \mathcal {P}_{R} and \pi_{i} \in [0, 1] (i = 1, 2, \ \cdots, m_{1}) with \sum\limits_{i = 1}^{m_{1}}\pi_{i} = 1 , we have

    \|\Lambda-\sum\limits_{i = 1}^{m_{1}}\pi_{i} \mathcal {T}\Lambda_{i}\|\geq\mathfrak{p}.

    For simplicity, denote V = \sum\limits_{i = 1}^{m_{1}} \pi_{i} \mathcal {T}\Lambda_{i} . In view of |\Lambda_{i}(t_{{\kappa}})-\Lambda(t_{{\kappa}})| = |\Lambda_{i}(t_{{\kappa}})-\hbar_{n}(t_{{\kappa}})| < \varepsilon_{1} , one can get

    \begin{array}{l} \triangle V|_{t = t_{{\kappa}}}& = &\sum\limits_{i = 1}^{m_{1}}\pi_{i}(\triangle \mathcal {T}\Lambda_{i}|_{t = t_{{\kappa}}}) = \sum\limits_{i = 1}^{m_{1}}\pi_{i}(\Phi_{{\kappa}}(\Lambda_{i}(t_{{\kappa}})))\\ & > &\sum\limits_{i = 1}^{m_{1}}\pi_{i}(\triangle\hbar_{n}|_{t = t_{{\kappa}}}+Y)\\ & = &\triangle\hbar_{n}|_{t = t_{{\kappa}}}+Y\\ & = &\triangle \Lambda|_{t = t_{{\kappa}}}+Y, \end{array}

    which implies that

    V(t_{{\kappa}}^{+})-\Lambda(_{{\kappa}}^{+}) > V(t_{{\kappa}})-\Lambda(t_{{\kappa}})+\Lambda\geq-|V(t_{{\kappa}})-\Lambda(t_{{\kappa}})|+Y.

    That is

    \|\Lambda-V\|_{1}\geq{ }\frac{Y}{2}.

    The claim is proven.

    Case 2.3: The above \hbar_{n} satisfies (iv) in Definition 2.10.

    Hence, one can also obtain that

    {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\}, \ for\ all\ \Lambda\in {\mathcal{P}}_{R}.

    by the process similar to proving Case 2.1 and Case 2.2.

    Case 3: m(\{\mathfrak{W}_{n}\}) > 0 for n \in { \mathbb{N} } such that \hbar_{n} is viable.

    For each n \in { \mathbb{N} } and a.e. t \in \mathfrak{W}_{n} ,

    _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t) = \ _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\hbar_{n}(t) = \mathcal {E}(t)\digamma(t, \hbar_{n}(t)) = \mathcal {E}(t)\digamma(t, \Lambda(t)).

    Therefore,

    _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)) \ {\rm a.e.\ in}\ \mathbb{B} = \bigcup\limits_{n\in { \mathbb{N} }}\mathfrak{W}_{n}.

    If \Lambda \in \mathbb{T}\Lambda , we can obtain that

    _{t}^{C} \mathcal {D}^{\Re }_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t))\ {\rm a.e.\ in}\ Q\setminus \mathbb{B},

    by the process of proving (I) in Case 2.1. Hence, \Lambda = \mathcal {T}\Lambda .

    Theorem 3.3. If (H1)–(H6) hold, then BVP (1.1) admits at least one positive solution.

    Proof. Claim 1: For all \widetilde{\Lambda} \in \mathbb{T}\Lambda and \Lambda\in P , there exists r_{1} > 0 such that \widetilde{\Lambda} \nleq\Lambda , where \|\Lambda\| = \mathfrak{r}_{1} .

    In fact, the condition (H5) means that there exist \widetilde{\varepsilon}_{0} , {\mathfrak{r}}_{1} > 0 such that

    \begin{equation} \digamma(t, \Lambda) > (\lambda+\widetilde{\varepsilon}_{0})\Lambda, \ \Phi_{{\kappa}}(\Lambda) > (\lambda+\widetilde{\varepsilon}_{0})\Lambda, \ t\in[0, 1], \ \Lambda\in[0, { }\frac{6}{5}{\mathfrak{r}}_{1}]. \end{equation} (3.14)

    Suppose \Lambda \in P with \|\Lambda\|_{1} = {\mathfrak{r}}_{1} . For every finite family \Lambda_{i} \in B_{\epsilon}(\Lambda) \cap P and \pi_{i} \in [0, 1] (i = 1, \ 2, \ \cdots, \ m_{2}) , with \sum\limits_{i = 1}^{m_{2}} \pi_{i} = 1 , and \epsilon\in[0, { }\frac{{\mathfrak{r}}_{1}}{5}] , one can obtain that

    \begin{array}{l} \widetilde{\Lambda}(t)& = &\sum\limits_{i = 1}^{m_{2}}\pi_{i} \mathcal {T}\Lambda_{i}(t)\\ & = &\sum\limits_{i = 1}^{m_{2}}\pi_{i}[\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda_{i}({\upsilon}))d{\upsilon} +\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\Lambda_{i}(t_{i}))]\\ & > &\sum\limits_{i = 1}^{m_{2}}\pi_{i}(\lambda +\widetilde{\varepsilon}_{0}) [\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}){\mathfrak{g}}({\upsilon})\Lambda_{i}({\upsilon})d{\upsilon} +\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Lambda_{i}(t_{i})]\\ &\geq&\sum\limits_{i = 1}^{m_{2}}\pi_{i}(\lambda +\widetilde{\varepsilon}_{0})[{ }\frac{\mathfrak{d}({\upsilon})\| \Lambda_{i}\|_{1}}{ \mathcal {N}_{2}}+m \mathcal {N}_{6}\mathfrak{d}({\upsilon})\|\Lambda_{i}\|_{1}]\\ &\geq&\mathfrak{d}({\upsilon})(\|\Lambda\|_{1}-\epsilon) (\lambda+\widetilde{\varepsilon}_{0})[{ }\frac{1}{ \mathcal {N}_{2}}+m \mathcal {N}_{6}]\\ & > &{\mathfrak{r}}_{1} = \|\Lambda\|_{1}. \end{array}

    This implies that \widetilde{\Lambda}\nleq\Lambda for all \widetilde{\Lambda } \in \mathbb{T}\Lambda with \Lambda \in \mathcal{P} and \|\Lambda\|_{1} = {\mathfrak{r}}_{1} . By Lemma 2.8 and 2.9, we get

    \begin{equation} \ i(\mathcal{T}, \mathcal{P}\cap\partial B_{{\mathfrak{r}}_{1}}, \mathcal{P}) = 0. \end{equation} (3.15)

    Claim 2: There exists \Re _{1} > {\mathfrak{r}}_{1} > 0 such that \|\widetilde{\Lambda}\|_{1} < \|\Lambda\|_{1} for all \widetilde{\Lambda} \in \mathbb{T}\Lambda and all \Lambda \in P with \|\Lambda\|_{1} = \Re _{1} .

    In fact, the assumption (H6) implies that there exists 0 < \varepsilon_{1} < \widetilde{\lambda} such that

    \digamma(t, \Lambda) < (\widetilde{\lambda}-\varepsilon_{1})\Lambda, \ \Phi_{{\kappa}}(\Lambda) < (\widetilde{\lambda}-\varepsilon_{1})\Lambda, \ t\in[0, 1], \ \Lambda\geq { }\frac{4}{5}\mathcal{R}_{1}.

    Choosing \Re _{1} > max\{{\mathfrak{r}}_{1}, \ { }\frac{4\mathcal{R}_{1}}{5\mathfrak{d}({\upsilon})} \} , for \Lambda\in \partial \mathcal {P}_{\Re _{1}} , one can see that

    \Lambda(t)\geq\mathfrak{d}({\upsilon})\|\Lambda\|_{1} = \mathfrak{d}({\upsilon}) \Re _{1} > { }\frac{4}{5}\mathcal{R}.

    Suppose \Lambda \in P with \|\Lambda\|_{1} = \Re _{1} . For \pi_{i} \in [0, 1](i = 1, \ 2, \ \cdots, \ m_{3}) , with \sum\limits_{i = 1}^{m_{3}} \pi_{i} = 1 and every finite family \Lambda_{i} \in B_{\epsilon}(\Lambda) \cap P , \epsilon\in[0, { }\frac{{\mathfrak{r}}_{1}}{5}] , one can see that

    \begin{array}{l} \widetilde{\Lambda}(t)& = &\sum\limits_{i = 1}^{m_{3}}\pi_{i} \mathcal {T}\Lambda_{i}(t)\\ & = &\sum\limits_{i = 1}^{m_{3}}\pi_{i}[\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda_{i}({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\Lambda_{i}(t_{i}))]\\ & < & \sum\limits_{i = 1}^{m_{3}}\pi_{i}[\int_{0}^{1} \mathcal {H}_{1} (t, {\upsilon}) {\mathfrak{g}}({\upsilon})(\widetilde{\lambda}-\varepsilon_{1})\Lambda_{i}({\upsilon})d{\upsilon} +\sum\limits_{i = 1}^{m_{3}} \mathcal {H}_{2}(t, t_{i})] (\widetilde{\lambda}-\varepsilon_{1})\Lambda_{i}(t_{i})\\ &\leq&(\Re _{1}+\epsilon)(\widetilde{\lambda} -\varepsilon_{1})[{ }\frac{1}{ \mathcal {N}_{1}}+m \mathcal {N}_{5}]\\ & < &\Re _{1} = \|\Lambda\|_{1}, \end{array}

    and

    \begin{array}{l} _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}}\widetilde{\Lambda}(t)& = &\sum\limits_{i = 1}^{m_{3}}\pi_{i} (_{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {T}\Lambda_{i})(t)\\ & = &\sum\limits_{i = 1}^{m_{3}}\pi_{i}[\int_{0}^{1}\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \Lambda_{i}({\upsilon}))d{\upsilon}\\ &&+\sum\limits_{i = 1}^{m}\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\Lambda_{i}(t_{i}))]\\ & < &\|\Lambda_{i}\|_{1}(\widetilde{\lambda}-\varepsilon_{1})[{ }\frac{1}{ \mathcal {N}_{3}}+m \mathcal {N}_{7}]\\ &\leq&(\Re _{1}+\epsilon)(\widetilde{\lambda}-\varepsilon_{1})[{ }\frac{1}{ \mathcal {N}_{3}}+m \mathcal {N}_{7}]\\ & < &\Re _{1} = \|\Lambda\|_{1}. \end{array}

    Hence, \|\widetilde{\Lambda}\|_{1} < \|\Lambda\|_{1} , for all \widetilde{\Lambda} \in \mathbb{T}\Lambda and all \Lambda \in P with \|\Lambda\|_{1} = \Re _{1} . By Lemma 2.8 and 2.9, we get

    \begin{equation} \ i(\mathcal{T}, \mathcal{P}\cap\partial B_{\Re _{1}}, \mathcal{P}) = 1. \end{equation} (3.16)

    Together with (3.15), we have

    \begin{equation} i(\mathcal{T}, \mathcal{P}\cap(B_{\Re _{1}}\backslash \overline{B}_{{\mathfrak{r}}_{1}}), \mathcal{P} ) = 1-0 = 1. \end{equation} (3.17)

    Hence, BVP (1.1) admits at least one positive solution.

    Theorem 3.2. Assume that (H1)–(H4), (H7) and (H8) hold. In addition, suppose that the following condition is satisfied.

    (H9) There exist R > 0 such that \digamma^{R} < { }\frac{ \mathcal {N}_{1}}{2} and \sum\limits_{k = 1}^{m}\Phi_{{\kappa}}^{R} < { }\frac{1}{2 \mathcal {N}_{5}} , where

    \Phi_{{\kappa}}^{R} : = sup_{\ 0\leq\|\Lambda\|\leq \frac{6R}{5}}\{{ }\frac{\Phi_{{\kappa}}(\Lambda)}{R}\}, \ \digamma^{R} : = sup_{t\in[0, 1], \ 0\leq\|\Lambda\|\leq \frac{6R}{5}}\{{ }\frac{\digamma(t, \Lambda)}{R}\}.

    Then, BVP (1.1) admits at least two positive solutions.

    Proof. We will prove that \mathcal{T} has at least two positive fixed points.

    First, by the condition (H7), one can see that there exist {\mathfrak{r}}_{2} , \widetilde{\varepsilon}_{2}\in (0, \nu) . Moreover, {\mathfrak{r}}_{2} , \widetilde{\varepsilon}_{2} satisfy

    \digamma(t, \Lambda) < (\nu-\widetilde{\varepsilon}_{2})\Lambda, \ \Phi_{{\kappa}}(\Lambda) < (\nu-\widetilde{\varepsilon}_{2})\Lambda, \ t\in[0, 1], \ \Lambda\in[0, { }\frac{6}{5}{\mathfrak{r}}_{2}].

    We claim that

    \begin{equation} \mu \Lambda\notin \mathbb{T}\Lambda, \ \forall \Lambda\in \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}}, \end{equation} (3.18)

    for \mu\geq1. In fact, on the contrary, if there exist \Lambda\in \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}} , \mu\geq 1 such that \mu \Lambda(t) = \mathcal{T}\widetilde{\Lambda}(t) for some \widetilde{\Lambda}\in \overline{B}_{\epsilon}(\Lambda)\cap P, \ i.e.,

    \begin{array}{l} \mu \Lambda(t)& = &\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \widetilde{\Lambda} ({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\widetilde{\Lambda}(t_{i}))\\ & < &(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[({ }\frac{1}{ \mathcal {N}_{1}} +m\mathcal{N}_{5}]\\ & < &{\mathfrak{r}}_{2}. \end{array}

    Then,

    \begin{array}{l} \mu (_{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}}\Lambda(t))& = &\int_{0}^{1}\ _{t}^{C} \mathcal {D}^{\Re -1}_{0^{+}} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma({\upsilon}, \widetilde{\Lambda}({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m}\ _{t}^{C} \mathcal {D} ^{\Re -1}_{0^{+}} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}(\widetilde{\Lambda}(t_{i}))\\ & < &(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[{ }\frac{1}{ \mathcal {N}_{3}} +m \mathcal {N}_{7}]\\ &\leq&(\nu-\widetilde{\varepsilon}_{2})(\|\Lambda\|_{1}+\epsilon)[({ }\frac{1}{ \mathcal {N}_{1}} +m \mathcal {N}_{5}]\\ & < &{\mathfrak{r}}_{2}. \end{array}

    Over t\in [0, 1] , we obtain

    \begin{equation} \mu\|\Lambda\|_{1} = \mu {\mathfrak{r}}_{2} < {\mathfrak{r}}_{2}, \end{equation} (3.19)

    by taking the supremum, which is a contradiction.

    Then, to prove \mu \Lambda \notin co(T(B_{\widetilde{\varepsilon}}(\Lambda) \cap \mathcal{P})) , we consider two cases: \mu = 1 and \mu > 1 . If \mu = 1 , we obtain by the reasonings done above that \Lambda \neq \mathcal {T}\Lambda . This together with condition {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\} implies \Lambda\notin \mathbb{T}\Lambda . If \mu > 1 , by inequality (3.19), it is a contradiction.

    Next, the condition (H8) means that there exist \widetilde{\varepsilon}_{3} > 0 , \mathcal{R} > r_{2} . They satisfy

    \digamma(t, \Lambda) > (\widetilde{\nu}+\widetilde{\varepsilon}_{3})\Lambda, \ \Phi_{{\kappa}}(\Lambda) > (\widetilde{\nu}+\widetilde{\varepsilon}_{3})\Lambda, \ t\in[0, 1], \ \Lambda\geq { }\frac{4}{5}\mathcal{R}.

    Choosing \Re _{2} > max\{{\mathfrak{r}}_{1}, \ { }\frac{4\mathcal{R}}{5\mathfrak{d}(s)}\} , for any \Lambda\in \partial \mathcal {P}_{\Re _{2}} , we have

    \Lambda(t)\geq \mathfrak{d} \|\Lambda\|_{1} = \mathfrak{d}(s) \Re _{2} > { }\frac{4}{5}\mathcal{R}.

    We claim that

    \Lambda\notin \mathbb{T}\Lambda+\mu e, \ e(t)\equiv 1, \ t\in[0, 1],

    for all \Lambda\in \mathcal{P}\cap \partial B_{\Re _{2}} and \mu \geq 0 .

    In fact, on the contrary, suppose that there exist \Lambda\in P\cap \partial B_{\Re _{2}} , \mu\geq 0 such that \Lambda = \mathcal{T}\widetilde{\Lambda}+\mu e for some {\widetilde{\Lambda}}\in \overline{B}_{\epsilon}(\Lambda)\cap \mathcal{P}, \ i.e.,

    \begin{array}{l} \Lambda(t)& = &\int_{0}^{1} \mathcal {H}_{1}(t, {\upsilon}) \mathcal {E}({\upsilon})\digamma ({\upsilon}, {\widetilde{\Lambda}}({\upsilon}))d{\upsilon}+\sum\limits_{i = 1}^{m} \mathcal {H}_{2}(t, t_{i}) \Phi_{i}({\widetilde{\Lambda}}(t_{i}))+\mu\\ &\geq&(\Re _{2}-\epsilon)\mathfrak{d}({\upsilon}) (\widetilde{\nu}+\widetilde{\varepsilon}_{3}) [{ }\frac{1}{ \mathcal {N}_{2}}+m \mathcal {N}_{6}]+\mu\\ & > &\Re _{2}+\mu. \end{array}

    This together with the definition of \|\cdot\|_{1} guarantees that

    \begin{equation} \Re _{2} = \|\Lambda\|_{1}\geq max_{ t\in\ [0, 1]}\Lambda(t) > \Re _{2}+\mu, \end{equation} (3.20)

    which is a contradiction for \mu \geq 0 .

    For p \in { \mathbb{N} } , one can see that \Lambda \neq \sum\limits_{i = 1}^{p}\pi_{i}T{\widetilde{\Lambda}}_{i}+\mu e(\mu\geq0) for \pi_{i}\in[0, 1](i = 1, \ \cdots, \ p) and v_{i}\in B_{\widetilde{\varepsilon}}(\Lambda) \cap P , where \sum\limits_{i = 1}^{p}\pi_{i} = 1 . Hence, \Lambda \notin co(\mathcal{T}(B_{\varepsilon}(\Lambda) \cap \mathcal{P}))+\mu e(\mu\geq0).

    Now we are in a position to prove that \Lambda \notin \mathbb{T}\Lambda+\mu e . If \mu = 0 , we obtain by the reasonings done above that \Lambda \neq \mathcal {T}\Lambda .This together with condition {\Lambda} \cap \mathbb{T}\Lambda \subset \{ \mathcal {T}\Lambda\} implies \Lambda\notin \mathbb{T}\Lambda . If \mu > 0 , in view of inequality (3.20), it is a contradiction.

    By Lemma 2.8, one can get that i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{{\mathfrak{r}}_{2}}, \ \mathcal{P}) = 1 and i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{\Re _{2}}, \ \mathcal{P}) = 0 . Hence,

    \begin{equation} i(\mathcal{T}, \ \mathcal{P}\cap(B_{\Re _{2}}\backslash{\overline{B}}_{{\mathfrak{r}}_{2}}, \ \mathcal{P}) = 0-1 = -1. \end{equation} (3.21)

    Third, (H9) implies that there exist \Re _{3} > \Re _{2} and \epsilon\in[0, { }\frac{{\mathfrak{r}}_{2}}{5}] such that \digamma^{\Re _{3}} < { }\frac{ \mathcal {N}_{1}}{2} and \sum\limits\limits_{k = 1}^{m}\Phi_{{\kappa}}^{\Re _{3}} < { }\frac{1}{2 \mathcal {N}_{5}} .

    Similar to the process above, there exist \Re _{3} > \Re _{2} such that

    i(\mathcal{T}, \ \mathcal{P}\cap \partial B_{\Re _{3}}, \mathcal{ P} ) = 1.

    Hence,

    i(\mathcal{T}, \ \mathcal{P}\cap(B_{R_{3}}\backslash{\overline{B}}_{\Re _{2}}, \mathcal{P}) = 1-0 = 1.

    Together with (3.21), BVP (1.1) admits at least two positive solutions in \mathcal{P}\cap(B_{\overline{\Re }_{2}}\backslash{\overline{B}}_{{\mathfrak{r}}_{2}}) and \mathcal{P}\cap(B_{\overline{\Re }_{3}}\backslash{\overline{B}}_{\Re _{2}}), respectively.

    Example 4.1. Consider the following BVP

    \begin{equation} \hskip 3mm\left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{1.5}_{0^{+}}\Lambda(t) = \digamma(t, \Lambda), \ a.e.\ t\in[0, 1], \\ \triangle \Lambda|_{t = t_{1}} = \Phi_{1}(\Lambda(t_{1})), \\ \triangle \Lambda'|_{t = t_{1}} = 0, \\ 3 \Lambda(0)- \Lambda(1) = \int_{0}^{1}\frac{1}{2}\Lambda({\upsilon})d{\upsilon}, \\ 3 \Lambda'(0)- \Lambda'(1) = \int_{0}^{1}\Lambda({\upsilon})d{\upsilon}, \end{array}\right. \end{equation} (4.1)

    where 0 < t_{1} < 1, \Phi_{1}(\Lambda) = { }\frac{\Lambda^{2}}{10^{3}} and

    \digamma(t, \Lambda) = \begin{cases} { }\frac{[\Gamma(2.5)]^{2}}{4}{ }\frac{\Lambda^{2}}{10^{3}}[\cos^{2}({ }\frac{\Gamma(2.5)}{2t^{1.5}-\Gamma(2.5)\Lambda})+1], \ \Lambda\neq { }\frac{2t^{1.5}}{\Gamma(2.5)}, \ 0\leq t\leq1;\\ { }\frac{t^{3}}{500}, \ \Lambda = { }\frac{2t^{1.5}}{\Gamma(2.5)}, \ 0\leq t\leq1. \end{cases}

    Conclusion: BVP (4.1) has at least two positive solutions.

    Proof. First, \digamma satisfies condition (H2) by it's expression. On the other hand, the function \Lambda\rightarrow \digamma(t, \Lambda) is continuous on

    { \mathbb{R} }^{+}\setminus\bigcup\limits_{t\in Q} \{\hbar_{n}(t)\},

    where for each n \in \mbox{ $\mathbb{Z}$ } \setminus \{0\} and a.e. t \in Q . The curves \hbar_{n}(t) = { }\frac{2t^{1.5}}{\Gamma(2.5)}-n^{-1} and \hbar_{0}(t) = { }\frac{2t^{1.5}}{\Gamma(2.5)} are admissible discontinuity curves satisfying

    1 = \ _{t}^{C} \mathcal {D}^{1.5}_{0^{+}}\hbar_{n}(t)-1 > \digamma(t, z)

    where z\in [\hbar_{n}(t)-1, \hbar_{n}(t)+1], \ t\in[0, 1].

    By Lemma 2.3, one can obtain that \mathfrak{A}_{1} = { }\frac{1}{2}, \ \mathfrak{A}_{2} = 1 , \mathfrak{P}_{1} = \mathfrak{Q}_{1} = { }\frac{1}{4} , \mathfrak{P}_{2} = \mathfrak{Q}_{2} = { }\frac{1}{2} , \Gamma_{1} = { }\frac{1}{8} > 0 , \varphi_{1}(t) = 2t+2 , \varphi_{2}(t) = 3t+{ }\frac{5}{2} ,

    \aleph(t, {\upsilon}) = \begin{cases} { }\frac{(t-{\upsilon})^{0.5}}{\Gamma(1.5)}+{ }\frac{(1-{\upsilon})^{0.5}}{2\Gamma(1.5)}+{ }\frac{(1+2t)(1-{\upsilon})^{-0.5}}{4\Gamma(0.5)}, \ 0\leq {\upsilon}\leq t\leq1;\\ { }\frac{(1-{\upsilon})^{0.5}}{2\Gamma(1.5)}+{ }\frac{(1+2t)(1-{\upsilon})^{-0.5}}{4\Gamma(0.5)}, \ 0\leq t\leq {\upsilon}\leq 1, \end{cases}
    \begin{equation} \mathcal {H}_{2}(t, t_{i}) = \left\{ \begin{aligned} { }\frac{1}{2}+{ }\frac{1}{2}(4t+{ }\frac{7}{2}), \ 0\leq t\leq t_{i}\leq1;\\ { }\frac{3}{2}+{ }\frac{3}{2}(4t+{ }\frac{7}{2}), \ 0\leq t_{i} < t\leq 1. \end{aligned} \right. \end{equation} (4.2)

    Thus, by calculation, we can get that (\mathcal {N}_{1})^{-1}\approx10.458 , (\mathcal {N}_{2})^{-1}\approx4.375 , (\mathcal {N}_{3})^{-1}\approx5.333 , (\mathcal {N}_{4})^{-1}\approx4.333 , \mathcal {N}_{5} = { }\frac{51}{4} , \mathcal {N}_{6} = { }\frac{9}{4} , \mathcal {N}_{7} = 6 , \mathcal {N}_{8} = 2 . Choosing \nu = 0.03 and \widetilde{\nu} = 2 , which satisfies 5\nu({ }\frac{1}{ \mathcal {N}_{1}}+mN_{5})\leq 4 and 3\mathfrak{d} \widetilde{\nu}({ }\frac{1}{ \mathcal {N}_{2}}+mN_{6})\geq 4 .

    Therefore,

    \lim\limits_{\Lambda\rightarrow 0^{+}}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} = 0 < \nu, \ \lim\limits_{\Lambda\rightarrow 0^{+}}\sup \limits_{t\in [0, 1]}{ }\frac{\digamma(t, \Lambda)}{\Lambda} = 0 < \nu.
    \lim\limits_{\Lambda\rightarrow +\infty}{ }\frac {\Phi_{{\kappa}}(\Lambda)}{\Lambda} = +\infty > \widetilde{\nu}, \ \lim\limits_{\Lambda\rightarrow +\infty}\inf \limits_{t\in [0, 1]}{ }\frac {\digamma(t, \Lambda)}{\Lambda} = +\infty > \widetilde{\nu}.

    Moreover, we have (\mathcal {N}_{1})^{-1}\approx10.458 , \mathcal {N}_{5} = { }\frac{51}{4} and let R_{3} = 10 . Then, (H9) is satisfied.

    Hence, all conditions in Theorem 3.4 are satisfied. The proof is completed.

    In this work, we studies the existence of positive and multiple positive solutions for a class of BVPs of fractional discontinuous differential equations with impulse effects. The main results are obtained by means of the multivalued analysis and Krasnoselskii's fixed point theorem for discontinuous operators on cones.

    For our subsequent work, the following issues will continue to be focused on:

    (i) The system is studied on this topic more extensive and complicated. Therefore, it is valuable to investigate FDEs with generalized derivatives or hybrid FDEs with delay.

    (ii) With the development of the theoretical study on FDEs, the application area of FDEs with generalized derivatives in reality needs to be investigated in depth.

    The authors are thankful to the editor and anonymous referees for their valuable comments and suggestions. This research was funded by NNSF of P.R. China (12271310), Natural Science Foundation of Shandong Province (ZR2020MA007), and Doctoral Research Funds of Shandong Management University(SDMUD202010), QiHang Research Project Funds of Shandong Management University(QH2020Z02).

    The authors declare that there are no conflicts of interest.



    [1] J. L. G. Guirao, P. O. Mohammed, H. M. Srivastava, D. Baleanu, M. S. Abualrub, Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results, AIMS Math., 7 (2022), 18127–18141. https://doi.org/10.3934/math.2022997 doi: 10.3934/math.2022997
    [2] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [3] T. Abdeljawad, Different type kernel h–fractional differences and their fractional h–sums, Chaos Soliton. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [4] P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 doi: 10.3390/sym14081519
    [5] F. M. Atıcı, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. http://dx.doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
    [6] F. M. Atıcı, M. Atıcı, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inf., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [7] F. Atıcı, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9.
    [8] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
    [9] C. R. Chen, M. Bohner, B. G. Jia, Ulam-hyers stability of Caputo fractional difference equations, Math. Meth. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [10] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [11] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827. http://dx.doi.org/10.1090/proc/12895 doi: 10.1090/proc/12895
    [12] H. M. Srivastava, P. O. Mohammed, C. S. Ryoo, Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ.-Sci., 33 (2021), 101497. https://doi.org/10.1016/j.jksus.2021.101497 doi: 10.1016/j.jksus.2021.101497
    [13] Q. Lu, Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Cmput. Appl. Math., 376 (2020), 112884. https://doi.org/10.1016/j.cam.2020.112884 doi: 10.1016/j.cam.2020.112884
    [14] F. M. Atıcı, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [15] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020. https://doi.org/10.1002/mma.7083
    [16] F. M. Atıcı, M. Atıcı, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmaco kinetics pharmaco dynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24.
    [17] A. Silem, H. Wu, D. J. Zhang, Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation, Appl. Math. Lett., 116 (2021), 107049. https://doi.org/10.1016/j.aml.2021.107049 doi: 10.1016/j.aml.2021.107049
    [18] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121.
    [19] G. C. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [20] J. W. He, L. Zhang, Y. Zhou, B. Ahmad, Existence of solutions for fractional difference equations via topological degree methods, Adv. Differ. Equ., 2018 (2018), 153. https://doi.org/10.1186/s13662-018-1610-2 doi: 10.1186/s13662-018-1610-2
    [21] C. S. Goodrich, B. Lyons, Positivity and monotonicity results for triple sequential fractional differences via convolution, Analysis, 40 (2020), 89–103. http://dx.doi.org/10.1515/anly-2019-0050 doi: 10.1515/anly-2019-0050
    [22] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [23] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [24] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Soliton. Fract., 116 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [25] X. Liu, F. Du, D. Anderson, B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Meth. Appl. Sci., 2020 (2020), 1207–1218. https://doi.org/10.1002/mma.6823 doi: 10.1002/mma.6823
    [26] R. Dahal, C. S. Goodrich, B. Lyons, Monotonicity results for sequential fractional differences of mixed orders with negative lower bound, J. Differ. Equ. Appl., 27 (2021), 1574–1593. https://doi.org/10.1080/10236198.2021.1999434 doi: 10.1080/10236198.2021.1999434
    [27] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [28] C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229.
    [29] C. S. Goodrich, Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order, Positivity, 22 (2018), 551–573. https://doi.org/10.1007/s11117-017-0527-4 doi: 10.1007/s11117-017-0527-4
    [30] P. O. Mohammed, C. S. Goodrich, F. K. Hamasalh, A. Kashuri, Y. S. Hamed, On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel, Math. Meth. Appl. Sci., 45 (2022), 6391–6410. https://doi.org/10.1002/mma.8176 doi: 10.1002/mma.8176
    [31] M. Holm, Sum and difference compositions in discrete fractional calculus, Cubo (Temuco), 13 (2011), 153–184. http://dx.doi.org/10.4067/S0719-06462011000300009 doi: 10.4067/S0719-06462011000300009
    [32] P. O. Mohammed, D. Baleanu, T. Abdeljawad, S. K. Sahoo, K. M. Abualnaja, Positivity analysis for mixed order sequential fractional difference operators, AIMS Math., 8 (2023), 2673–2685. http://dx.doi.org/10.3934/math.2023140 doi: 10.3934/math.2023140
    [33] R. Dahal, C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equ. Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351
    [34] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597. http://dx.doi.org/10.1007/s00013-015-0765-2 doi: 10.1007/s00013-015-0765-2
    [35] B. Jia, L. Erbe, A. Peterson, Convexity for nabla and delta fractional differences, J. Differ. Equ. Appl., 21 (2015), 360–373. https://doi.org/10.1080/10236198.2015.1011630 doi: 10.1080/10236198.2015.1011630
    [36] J. Baoguo, L. Erbe, C. S. Goodrich, A. Peterson, The relation between nabla fractional differences and nabla integer differences, Filomat, 31 (2017), 1741–1753.
    [37] J. Baoguo, L. Erbe, C. S. Goodrich, A. Peterson, Monotonicity results for delta fractional difference revisited, Math. Slovaca, 67 (2017), 895–906. http://dx.doi.org/10.1515/ms-2017-0018 doi: 10.1515/ms-2017-0018
    [38] C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Arch. Math., 110 (2018), 145–154.
  • This article has been cited by:

    1. Nauman Raza, Adil Jhangeer, Zeeshan Amjad, Beenish Rani, Dumitru Baleanu, Exploring soliton dynamics and wave interactions in an extended Kadomtsev-Petviashvili-Boussinesq equation, 2025, 16, 20904479, 103395, 10.1016/j.asej.2025.103395
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1472) PDF downloads(53) Cited by(7)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog