Let Iα,m be the multilinear θ-type generalized fractional integrals and →bσ be the vector with each bσi∈~RBMO(μ). The boundedness for Iα,m and the iterated multi-commutators Iα,m,→bσ on Lebesgue spaces over non-homogeneous spaces are showed in this paper.
Citation: Xiangxing Tao, Jiahui Wang. Commutators of multilinear θ-type generalized fractional integrals on non-homogeneous metric measure spaces[J]. AIMS Mathematics, 2022, 7(6): 9627-9647. doi: 10.3934/math.2022535
[1] | Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060 |
[2] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[3] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[4] | Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171 |
[5] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[6] | Guanghui Lu, Li Rui . θ-type generalized fractional integral and its commutator on some non-homogeneous variable exponent spaces. AIMS Mathematics, 2021, 6(9): 9619-9632. doi: 10.3934/math.2021560 |
[7] | Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674 |
[8] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[9] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[10] | Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki . Boundedness of some operators on grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653 |
Let Iα,m be the multilinear θ-type generalized fractional integrals and →bσ be the vector with each bσi∈~RBMO(μ). The boundedness for Iα,m and the iterated multi-commutators Iα,m,→bσ on Lebesgue spaces over non-homogeneous spaces are showed in this paper.
In the last decade, the study on non-homogeneous metric measure spaces, which include both spaces of homogeneous type and non-doubling measure spaces as special cases, has attracted much attention, see for example [1,2,3,4,5,6,7,8,9]. The purpose of the paper is to establish the boundedness of the multilinear θ-type generalized fractional integrals and the iterated commutators of them on Lebesgue spaces over non-homogeneous spaces.
In this paper, we always assume that (X,d,μ) is the non-homogeneous metric measure space in the sense of T. Hytönen [1], i.e., the metric measure space (X,d,μ) have the geometrically doubling and upper doubling properties, which can be defined as follows:
Definition 1.1. A metric measure space (X,d) is called geometrically doubling if there exists some N0∈N such that, for any ball B(x,r)⊂X, there exists a finite ball covering {B(xi,r/2)}i of B(x,r) such that the cardinality of this covering is at most N0.
Definition 1.2. A metric measure space (X,d,μ) is said to be upper doubling if μ is a Borel measure on X and there exists a dominating function
λ:X×R+→R+ |
and a constant Cλ such that
r→λ(x,r)isnon−decreasing, |
μ(B(x,r))≤λ(x,r)≤Cλλ(x,r2), | (1.1) |
for all x∈X and r>0.
We note that we can also assume that, for all x,y∈X with d(x,y)≤r,
λ(x,r)≤Cλλ(y,r). | (1.2) |
In fact, T. Hyt¨onen, D. Yang and D. Yang [3] showed that there exists another function ˜λ≤λ such that, for all x,y∈X with d(x,y)≤r, the inequality (1.2) holds for ˜λ.
Let L∞b(μ) be the space of all L∞(μ) functions with bounded support. For β∈(0,1),f∈L∞b(μ) and x∈X, the fractional integral Iβf(x) is defined by
Iβf(x):=∫Xf(y)dμ(y)[λ(y,d(x,y))]1−β. | (1.3) |
In case X=Rd with Lebesgue measure, Iβf can be rewritten as classical fractional integral, which is bounded from Lt to Ls for 1<t<d/β and 1/s=1/t−β/d. In non-homogeneous metric measure space, we need an additional assumption for μ to get the similar boundedness for Iβf.
Definition 1.3. Let ϵ∈(0,∞). A dominating function λ is said to satisfy the ϵ-weak reverse doubling condition if, for all r∈(0,2diam(X)) and a∈(1,2diam(X)/r), there exists a number C(a)∈[1,∞), depending only on a and X, such that, for all x∈X,
λ(x,ar)≥C(a)λ(x,r) |
and moreover,
∞∑k=11[C(ak)]ϵ<∞. |
Lemma 1.1. [2] Assume that μ(X)=∞. Let 0<β<1,1<t<1/β and 1/s=1/t−β. If λ satisfies the ϵ-weak reverse doubling condition for some ϵ∈(0,inf{β,1−β,1/s}), then Iβ, defined by (1.3), is bounded from Lt(μ) to Ls(μ).
Suppose that θ is a non-negative nondecreasing function on (0,+∞) satisfying, for n∈(0,∞),
∫10θ(t)t|logt|ndt<∞. |
In this paper, we consider the following multilinear θ-type generalized fractional integral.
Definition 1.4. Let α∈(0,m). We call Kα is a multilinear θ-type generalized fractional integral kernel, if
Kα∈L1loc(Xm+1∖{(x,y1,…,yi,…,ym):x=yi,1≤i≤m}) |
and
(i) there exists a positive constant CKα depending on Kα such that
|Kα(x,y1,…,ym)|≤CKα[m∑i=1λ(x,d(x,yi))]m−α, | (1.4) |
for all (x,y1,…,yi,…,ym)∈Xm+1 with x≠yi for some i;
(ii) there exists θ∈(0,1] and a positive constant CKα depending on Kα such that
|Kα(x,y1,…,ym)−Kα(x′,y1,…,ym)|≤CKαθ(d(x,x′)m∑i=1d(x,yi))1[m∑i=1λ(x,d(x,yi))]m−α | (1.5) |
for all (x,y1,…,ym)∈Xm+1 with CKαd(x,x′)≤max1≤j≤md(x,yj), and for every j,
|Kα(x,y1,…,yj,…,ym)−Kα(x,y1,…,y′j,…,ym)|≤CKαθ(d(yj,y′j)m∑i=1d(x,yi))1[m∑i=1λ(x,d(x,yi))]m−α | (1.6) |
provided CKαd(yj,y′j)≤max1≤j≤md(x,yj).
For any →f=(f1,…,fm), fi∈L∞b(μ),i=1,2,…,m and x∉∩mi=1suppfi, the multilinear θ-type generalized fractional integral Iα,m is defined by
Iα,m→f(x)=∫XmKα(x,y1,…,ym)m∏i=1fi(yi)dμ(yi) |
with kernel Kα satisfying (1.4)–(1.6).
The first theorem of this paper is the boundedness for the multilinear θ-type generalized fractional integral on Lebesgue spaces.
Theorem 1.2. Assume that μ(X)=∞. Let 0<β<1,1<t<1/β,1/s=1/t−β,0<α<m,1<p1,…,pm<∞ and 0<1/q=1/p1+⋯+1/pm−α<1. Suppose λ satisfies the ϵ-weak reverse doubling condition for some ϵ∈(0,inf{β,1−β,1/s}). Then the multilinear θ-type generalized fractional integral Iα,m defined by Definition 4 is bounded from Lp1(μ)×⋯×Lpm(μ) to Lq(μ), that is, there exists a constant C>0 such that
‖Iα,m→f‖Lq(μ)≤Cm∏i=1‖fi‖Lpi(μ). |
In order to consider the commutators of the multilinear θ-type generalized fractional integral, we need to give the following concepts.
We call B⊂X a (η,β)-doubling ball if μ(ηB)≤βμ(B) for η,β∈(1,+∞). In [1], T. Hytönen pointed out that if a metric measure space (X,d,μ) is upper doubling and η,β∈(1,∞) with β>(Cλ)log2η=:ηv, then for any ball B⊂X, there exists some j∈N such that ηjB is (η,β)-doubling. Meanwhile, let (X,d) be geometrically doubling and β>ηn0 with n0:=log2N0 and μ is a Borel measure on X which is finite on bounded sets, then for μ-a.e. x∈X, there exist arbitrarily small (η,β)-doubling balls centered at x. In fact, their radius may be chosen to be of the form η−jr,j∈N, for any preassigned number r>0.
Throughout this paper, for any η∈(1,∞) and ball B, the smallest (η,βη)-doubling ball of the form ηjB with j∈Z+ is denoted by ˜Bη, where
βη:=max{η3n0,η3v}+30n0+30v. | (1.7) |
In what follows, by a doubling ball we mean a (6,β6)-doubling ball and simply denote ˜B6 by ˜B.
For η>1 and any two balls B⊂Q⊂X, let
˜K(η)B,Q:=1+N(η)B,Q∑k=1μ(ηkB)λ(cB,ηkrB), |
where N(η)B,Q represents the smallest integer k satisfying ηkrB≥rQ, cB and rB represent the center and radius of the ball B, respectively. One always denote N(6)B,Q by NB,Q.
Then we review the concept of the space ~RBMO(μ).
Definition 1.5. Let ρ>1 and γ≥1. We say that a L1loc(μ)-function b∈~RBMOρ,γ(μ) provided there exists a constant C>0 and, for any ball B⊂X, a number bB such that
1μ(ρB)∫B|b(x)−bB|dμ(x)≤C | (1.8) |
and, for two balls B and Q such that B⊂Q,
|bB−bQ|≤C[˜K(ρ)B,Q]γ. | (1.9) |
The smallest constant C satisfying both (1.8) and (1.9) is called the ~RBMOρ,γ(μ) norm of b and denoted by ‖b‖~RBMOρ,γ(μ).
Remark 1. X. Fu, D. Yang and D. Yang [10] pointed that the norms for different choice of ρ>1 and γ≥1 are equivalent. In what follows, we denote ~RBMOρ,γ(μ) simply by ~RBMO(μ). Obviously, ~RBMO(μ)⊂RBMO(μ) (the space regularized BMO(μ) which was introduced by X. Tolsa [11]).
For 1≤r≤m<∞, let Cmr be the cluster of all finite subsets σ={σ1,…,σr} of {1,…,m}. For arbitrary σ∈Cmr, let →bσ={bσ1,…,bσr}, where bσi,i=1,…,m are ~RBMO(μ)-functions. We define the iterated commutators, generated by the multilinear θ-type generalized fractional integral Iα,m and ~RBMO(μ)-functions bσi,σi∈σ,
Iα,m,→bσ→f(x)=:[bσr,⋯,[bσ1,Iα,m]]→f(x)=∫Xm[∏σi∈σ(bσi(x)−bσi(yi))]Kα(x,y1,…,ym)(m∏j=1fj(yj)dμ(yj)). | (1.10) |
The second theorem is the boundedness for the iterated commutators generated by the multilinear θ-type generalized fractional integral operator and ~RBMO(μ)-functions on Lebesgue spaces.
Theorem 1.3. Let 0<β<1,1<t<1/β,1/s=1/t−β,0<α<m,1<p1,…,pm<∞ and 0<1/q=1/p1+⋯+1/pm−α<1. Suppose λ satisfies the ϵ-weak reverse doubling condition for some ϵ∈(0,inf{β,1−β,1/s}) and bσi∈~RBMO(μ),σi∈σ. Then the iterated commutators Iα,m,→bσ of the multilinear θ-type generalized fractional integral with ~RBMO(μ)-functions, defined by (1.10), is bounded from Lp1(μ)×⋯×Lpm(μ) to Lq(μ), that is, there exists a constant C>0 such that
‖Iα,m,→bσ→f‖Lq(μ)≤C(∏σi∈σ‖bσi‖~RBMO(μ))(m∏i=1‖fi‖Lpi(μ)). |
Remark 2. If μ(X)<∞, the boundedness for the multilinear θ-type generalized fractional integral and its iterated multi-commutators with ~RBMO(μ)-functions on Lebesgue spaces also holds as long as Iβ, defined by (1.3), is bounded from Lt(μ) to Ls(μ).
Throughout this paper, the letter r and m stand for the dimensions of →bσ and →f, respectively. C always denotes a positive constant independent of the main parameters involved, but may different in different currents.
This paper is organized as follows. In Section 2, we present some necessary lemmas being used in the proof of the theorems. In Section 3, we establish the boundedness of the multilinear θ-type generalized fractional integral Iα,m and its the iterated commutators Iα,m,→bσ with ~RBMO(μ)-functions on Lebesgue spaces.
In order to prove the theorems, some necessary lemmas are presented in this section. At the beginning, we introduce the fractional coefficient ˜KαB,Q. For α∈[0,1) and any two balls B and Q such that B:=B(cB,rB)⊂Q, ˜KαB,Q is defined by
˜KαB,Q:=1+NB,Q∑k=1[μ(6kB)λ(cB,6krB)]1−α, |
where NB,Q is the smallest integer k satisfying 6krB≥rQ. ˜K0B,Q is denoted by ˜KB,Q.
Now we can introduce the sharp maximal operator associated with ˜KαB,Q.
M♯,(α)f(x)=supB∋x1μ(6B)∫B|f(y)−m˜B(f)|dμ(y)+sup(B,Q)∈Δx|mB(f)−mQ(f)|˜KαB,Q, |
where Δx:={(B,Q):x∈B⊂QandB,Qare(6,β6)−doublingballs} and mE(f) represents the mean value of the function f∈L1loc(μ) over any measurable set E, namely, mE(f):=1μ(E)∫Ef(x)dμ(x).
Then we recall some results about some maximal operators. The non-centered doubling maximal operator is defined by
Nf(x)=supB∋x,Bdoubling1μ(B)∫B|f(y)|dμ(y). | (2.1) |
Notice that for every f∈L1loc(μ) and μ-a.e. x∈X, it holds true that the non-centered doubling maximal operator Nf(x) satisfies |f(x)|≤Nf(x).
Another non-centered maximal operator
M(α)t,(ρ)f(x)=supB∋x{1[μ(ρB)]1−αt∫B|f(y)|tdμ(y)}1/t | (2.2) |
for ρ>1,0≤α<1 and t≥1. When α=0, we simply write M(0)t,(ρ)f(x) as Mt,(ρ)f(x), and when t=1,α=0, M(0)1,(ρ)f(x) is denoted by M(ρ)f(x).
Lemma 2.1. [12] For every p>1 and ρ>1, there exists a constant C1>0 such that, for all f∈Lp(μ), the non-centered maximal operator Mt,(ρ)f satisfies
‖Mt,(ρ)f‖Lp(μ)≤C1‖f‖Lp(μ). |
Let 0<α<1,1<t<p<1α,ρ≥5 and 1q=1p−α, there exists a constant C2>0 such that, for all f∈Lp(μ), the non-centered maximal operator M(α)t,(ρ)f, defined by (2.2), satisfies
‖M(α)t,(ρ)f‖Lq(μ)≤C2‖f‖Lp(μ). |
Lemma 2.2. [2] For f∈L1loc(μ), ∫Xf(x)dμ(x)=0 if μ(X)<∞. Assume 0<α<1 and inf{1,Nf}∈Lp(μ),1<p<∞, then there exists a constant C>0, independing of f, such that
‖Nf‖Lp(μ)≤C‖M♯,(α)f‖Lp(μ). |
Then we focus on the equivalent characterization of the space ~RBMO(μ).
Lemma 2.3. [13] Let ρ∈(1,∞) and β6 be as in (1.7). For b∈L1loc(μ), the following statements are equivalent:
(i) b∈~RBMO(μ);
(ii) there exists a constant C>0 such that, for all balls B,
1μ(ρB)∫B|b(x)−m˜B(b)|dμ(x)≤C, |
and for all (6,β6)-doubling balls B⊂Q,
|mB(b)−mQ(b)|≤C˜KB,Q. |
Moreover, the infimum of the above constant C is equivalent to ‖b‖~RBMO(μ).
Lemma 2.4. [13] Let (X,d,μ) be a non-homogeneous metric measure space. Then, for every ρ∈(1,∞) and p∈[1,∞), there exists a constant C>0 such that, for all b∈~RBMO(μ) and balls B,
(1μ(ρB)∫B|b(x)−bB|pdμ(x))1/p≤C‖b‖~RBMO(μ) |
where bB is as in Definition 1.5.
Because ~RBMO(μ)⊂RBMO(μ), according to Lemma 3.11 in [14], Lemmas 14, 15 in [5] and Lemma 3.2 in [11], we can give the following three lemmas directly.
Lemma 2.5. Let b∈~RBMO(μ),q∈(0,∞). For all x∈X,
bq(x):={b(x),if|b(x)|≤q,qb(x)|b(x)|,if|b(x)|>q, |
then bq∈~RBMO(μ) and there exists a constant C>0 such that ‖bq‖~RBMO(μ)≤C‖b‖~RBMO(μ).
Lemma 2.6. For 1<ρ<∞ and 1≤p<∞, then b∈~RBMO(μ) if and only if for all balls B∈X,
(1μ(ρB)∫B|bB−m˜B(b)|pdμ(x))1p≤C‖b‖~RBMO(μ), |
and for any two (6, β6)-doubling balls B⊂Q,
|mB(b)−mQ(b)|≤C˜KB,Q‖b‖~RBMO(μ). |
Lemma 2.7. For any k∈N+ and b∈~RBMO(μ),
|m~6k65B(b)−m˜B(b)|≤Ck‖b‖~RBMO(μ). |
With Lemmas 2.4, 2.6 and 2.7 in mind, we can give the following lemma, which will be used frequently later.
Lemma 2.8. If b∈~RBMO(μ), then
(i) there exists a constant C1>0 such that, for all balls B∈X,1≤τ<ρ<∞, 1≤η<∞ and 1≤p<∞,
(1μ(ρB)∫τB|b(x)−m~ηB(b)|pdμ(x))1p≤C1‖b‖~RBMO(μ). |
(ii) there exists a constant C2>0 such that, for all balls B∈X,k∈N+ and 1≤p<∞,
(1μ(6k6B)∫6k65B|b(x)−m˜B(b)|pdμ(x))1p≤C2k‖b‖~RBMO(μ). |
Proof. As
(1μ(ρB)∫τB|b(x)−m~ηB(b)|pdμ(x))1p≤(1μ(ρB)∫τB|b(x)−bτB|pdμ(x))1p+(1μ(ρB)∫τB|bτB−m~τB(b)|pdμ(x))1p+(1μ(ρB)∫τB|m~τB(b)−m~ηB(b)|pdμ(x))1p |
and b∈~RBMO(μ), applying Lemmas 2.4 and 2.6, the desired result (i) can be directly obtained.
Then using (i) and Lemma 2.7,
(1μ(6k6B)∫6k65B|b(x)−m˜B(b)|pdμ(x))1p≤(1μ(6k6B)∫6k65B|b(x)−m~6k65B(b)|pdμ(x))1p+(1μ(6k6B)∫6k65B|m~6k65B(b)−m˜B(b)|pdμ(x))1p. |
Therefore, the desired result (ii) can also be directly obtained.
Below we present an important lemma which is crucial in the proof of Theorem 1.3.
Lemma 2.9. Let 0<β<1,1<t<1/β,1<t<q<∞,1/s=1/t−β,0<α<m,1<p1,…,pm<∞ and suppose λ satisfies the ϵ-weak reverse doubling condition for some ϵ∈(0,inf{β,1−β,1/s}) and bσi∈~RBMO(μ),σi∈σ. Then there exists a constant C>0 such that for every x∈X,fi∈Lpi(μ),i=1,…,m,
M♯,(α/m)(Iα,m,→bσ→f)(x)≤Cr∑j=1∑σ(j)(∏σi∈σ(j)‖bσi‖~RBMO(μ))Mt,(6)(Iα,m,→bσ(j)′→f)(x)+C(∏σi∈σ‖bσi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)), | (2.3) |
where σ(j) are the sets consisting of any j elements in σ and σ(j)′=σ∖σ(j).
Proof. By Lemma 2.5 and a standard limit argument, without loss of generality, we may assume that bσi,σi∈σ are bounded functions, that is, bσi∈L∞(μ),σi∈σ. Furthermore, taking bσi=bi,i=1,…,r is feasible. As L∞c(μ) (the set of all L∞(μ) functions with compact support) is dense in Lp(μ) for 1<p<∞, by standard density arguments, it is enough to consider the case that fi∈L∞c(μ),i=1,…,m. Similarly to Theorem 9.1 in [11], let
hB:=mB(Iα,m((m˜B(b1)−b1)f1χX∖65B,…,(m˜B(br)−br)frχX∖65B,fr+1χX∖65B,…,fmχX∖65B)), |
and
hQ:=mQ(Iα,m((mQ(b1)−b1)f1χX∖65Q,…,(mQ(br)−br)frχX∖65Q,fr+1χX∖65Q,…,fmχX∖65Q)). |
In order to prove (2.3), suppose B is an arbitrary ball and Q is a doubling ball containing B, it is sufficient to show that, for every x∈B,
1μ(6B)∫B|[br,⋯,[b1,Iα,m]]→f(z)−hB|dμ(z)≤Cr∑j=1[(r∏i=r−j+1‖bi‖~RBMO(μ))Mt,(6)([br−j,⋯,[b1,Iα,m]]→f)(x)]+C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)), | (2.4) |
and for Q⊃B∋x,
|hB−hQ|≤Cr−1∑j=1r−j−1∑p=0r−j−p∑k=0(r∏i=r−j−p−k+1‖bi‖~RBMO(μ))Mt,(6)([br−j−p−k,⋯,[b1,Iα,m]]→f)(x)+C(˜Kα/mB,Q)r+m(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). | (2.5) |
In fact, for any ball B∋x,
1μ(6B)∫B|[br,⋯,[b1,Iα,m]]→f−m˜B([br,⋯,[b1,Iα,m]]→f)|dμ≤1μ(6B)∫B|[br,⋯,[b1,Iα,m]]→f−hB|dμ+|hB−h˜B|+C1μ(6˜B)∫˜B|[br,⋯,[b1,Iα,m]]→f−h˜B|dμ≤Cr∑j=1r−j∑p=0r−j−p∑k=0(r∏i=r−j−p−k+1‖bi‖~RBMO(μ))Mt,(6)([br−j−p−k,⋯,[b1,Iα,m]]→f)+C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl). |
On the other hand, for all doubling balls B⊂Q with x∈B such that ˜KB,Q≤˜Kα/mB,Q≤P0, where P0 is the constant in Lemma 9.3 in [11], using (2.5), we have
|hB−hQ|≤Cr−1∑j=1r−j−1∑p=0r−j−p∑k=0(r∏i=r−j−p−k+1‖bi‖~RBMO(μ))Mt,(6)([br−j−p−k,⋯,[b1,Iα,m]]→f)(x)+C˜Kα/mB,Q(P0)r+m−1(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
Therefore,
|mB([br,⋯,[b1,Iα,m]]→f)−mQ([br,⋯,[b1,Iα,m]]→f)|≤|mB([br,⋯,[b1,Iα,m]]→f)−hB|+|hB−hQ|+|hQ−mQ([br,⋯,[b1,Iα,m]]→f)|=C˜Kα/mB,Qr∑j=1r−j∑p=0r−j−p∑k=0(r∏i=r−j−p−k+1‖bi‖~RBMO(μ))Mt,(6)([br−j−p−k,⋯,[b1,Iα,m]]→f)+C˜Kα/mB,Q(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl). |
Next we estimate (2.4) and (2.5). Consider (2.4) first. For some fixed balls B∋x, as
Iα,m((m˜B(b1)−b1)f1,…,(m˜B(br)−br)fr,fr+1,…,fm)(z)=r∑j=1∑1≤k1<⋯<kj≤r[j∏p=1(m˜B(bkp)−bkp(z))]∫XmK(z,y1,…,ym)[∏i∈{1,…,r}∖{k1,…,kj}(bi(z)−bi(yi))](m∏l=1fl(yl)dμ(yl))+[br,⋯,[b1,Iα,m]]→f(z), |
thus
(1μ(6B)∫B|[br,⋯,[b1,Iα,m]]→f(z)−hB|ηdμ(z))1η≤r∑j=1∑1≤k1<⋯<kj≤r(1μ(6B)∫B|[j∏p=1(m˜B(bkp)−bkp(z))]∫XmK(z,y1,…,ym)[∏i∈{1,…,r}∖{k1,…,kj}(bi(z)−bi(yi))](m∏l=1fl(yl)dμ(yl))|ηdμ(z))1η+(1μ(6B)∫B|Iα,m((m˜B(b1)−b1)f1,…,(m˜B(br)−br)fr,fr+1,…,fm)(z)−hB|ηdμ(z))1η=:Cr∑j=1I1,j+I2, |
where
I1,j=(1μ(6B)∫B|[r∏p=r−j+1(m˜B(bp)−bp(z))]∫XmK(z,y1,…,ym)[r−j∏i=1(bi(z)−bi(yi))](m∏l=1fl(yl)dμ(yl))|ηdμ(z))1η=(1μ(6B)∫B|[r∏p=r−j+1(m˜B(bp)−bp(z))][br−j,⋯,[b1,Iα,m]]→f(z)|ηdμ(z))1η. |
Estimate I1,j for each j∈{1,…,r}. Let 1t+∑rp=r−j+11tp=1η. For a fixed ball B with x∈B, Hölder's inequality and (i) of Lemma 2.8 give that
I1,j≤C[r∏p=r−j+1(1μ(6B)∫B|m˜B(bp)−bp(z)|tpdμ(z))1tp](1μ(6B)∫B|[br−j,⋯,[b1,Iα,m]]→f(z)|tdμ(z))1t≤C(r∏p=r−j+1‖bp‖~RBMO(μ))Mt,(6)([br−j,⋯,[b1,Iα,m]]→f)(x). |
Next, we turn to estimate I2. For a fixed ball B with x∈B and fi∈L∞c(μ), write fi=fi(y)χ65B(y)+fi(y)χX∖65B(y)=:fi,1(y)+fi,2(y),i=1,…,m. For each j′∈{0,…,m},
Iα,m((m˜B(b1)−b1)f1,…,(m˜B(br)−br)fr,fr+1,…,fm)(z)=m−1∑j′=0∑1≤k1<⋯<kj′≤m∫XmK(z,y1,…,ym)[r∏i=1(m˜B(bi)−bi(yi))](∏l∈{1,…,m}∖{k1,…,kj′}fl,1(yl)dμ(yl))(j′∏l=1fkl,2(yl)dμ(yl))+Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z)=:Cm−1∑j′=0I′2,1,j′+I′2,2, |
where
I′2,1,j′=∫XmK(z,y1,…,ym)[r∏i=1(m˜B(bi)−bi(yi))](r−j′1∏l1=1fl1,1(yl1)dμ(yl1))(r∏l2=r−j′1+1fl2,2(yl2)dμ(yl2))(m−j′2∏l3=r+1fl3,1(yl3)dμ(yl3))(m∏l4=m−j′2+1fl4,2(yl4)dμ(yl4)), |
and j′1∈{0,…,r},j′2∈{0,…,m−r} satisfy j′=j′1+j′2.
Therefore,
I2=C(1μ(6B)∫B|m−1∑j′=0I′2,1,j′+I′2,2−hB|ηdμ(z))1η≤Cm−1∑j′=0(1μ(6B)∫B|I′2,1,j′|ηdμ(z))1η+(1μ(6B)∫B|I′2,2−hB|ηdμ(z))1η=:Cm−1∑j′=0I2,1,j′+I2,2. |
For I2,1,j′,j′∈{0,…,m−1}, using the condition (1.4), interval decomposition, Hölder's inequality, Lemmas 2.6–2.8, Eq (1.1) and Definition 3, we obtain
I2,1,j′≤C(r−j′1∏l1=1∫65B|bl1(yl1)−m˜B(bl1)||fl1(yl1)|dμ(yl1))(m−j′2∏l3=r+1∫65B|fl3(yl3)|dμ(yl3))[1μ(6B)∫B(r∏l2=r−j′1+1∫X∖65B|bl2(yl2)−m˜B(bl2)||fl2(yl2)|dμ(yl2)[λ(z,d(z,yk2))](m−α)/j′)η(m∏l4=m−j′2+1∫X∖65B|fl4(yl4)|dμ(yl4)[λ(z,d(z,yl4))](m−α)/j′)ηdμ(z)]1η≤C(μ(6B))(1−αm)(m−j′)(μ(B)μ(6B))1η[r−j′1∏l1=1(1μ(6B)∫65B|bl1(yl1)−m˜B(bl1)|p′l1dμ(yl1))1p′l1(1(μ(6B))1−αpl1/m∫65B|fl1(yl1)|pl1dμ(yl1))1pl1][r∏l2=r−j′1+1(∞∑k2=1∫6k265B∖6k2−165B|bl2(yl2)−m˜B(bl2)||fl2(yl2)|dμ(yl2)[λ(cB,d(cB,yl2))](m−α)/j′)][m−j′2∏l3=r+1(1(μ(6B))1−αpl3/m∫65B|fl3(yl3)|pl3dμ(yl3))1pl3][m∏l4=m−j′2+1(∞∑k4=1∫6k465B∖6k4−165B|fl4(yl4)|dμ(yl4)[λ(cB,d(cB,yl4))](m−α)/j′)]≤C(μ(6B))(1−αm)(m−j′)(r−j′1∏l1=1‖bl1‖~RBMO(μ)M(α/m)pl1,(5)fl1(x))[r∏l2=r−j′1+1(∞∑k2=1∫6k265B|bl2(yl2)−m˜B(bl2)||fl2(yl2)|dμ(yl2)(λ(cB,6k2−165rB))(m−α)/j′)](m−j′2∏l3=r+1M(α/m)pl3,(5)fl3(x))[m∏l4=m−j′2+1(∞∑k4=1∫6k465B|fl4(yl4)|dμ(yl4)(λ(cB,6k4−165rB))(m−α)/j′)]≤C(μ(6B))(1−αm)(m−j′)(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))[r∏l2=r−j′1+1(∞∑k2=1k2(μ(6k26B))1−α/m(λ(cB,6k2−165rB))(m−α)/j′)][m∏l4=m−j′2+1(∞∑k4=1(μ(6k46B))1−α/m(λ(cB,6k4−165rB))(m−α)/j′)]≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))[r∏l2=r−j′1+1(∞∑k2=1k2[C(6k2)][(m−α)/j′−1+α/m])][m∏l4=m−j′2+1(∞∑k4=11[C(6k4)][(m−α)/j′−1+α/m])]≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
For I2,2, let z,z0∈B, write
I2,2=(1μ(6B)∫B|1μ(B)∫B(Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z)−Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z0))dμ(z0)|ηdμ(z))1η≤[1μ(6B)∫B(1μ(B)∫B|Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z)−Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z0)|dμ(z0))ηdμ(z)]1η. |
Thus, what we need to do is to give the following estimate which is following from the conditions (1.5) and (1.6), interval decomposition and properties of θ,
|Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z)−Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z0)|≤C∫(X∖65B)mθ(d(z,z0)m∑i=1d(z,yi))r∏i=1|bi(yi)−m˜B(bi)|[m∑i=1λ(z,d(z,yi))]m−αm∏l=1|fl(yl)|dμ(yl)≤C∞∑k1,…,km=1∫6k165B∖6k1−165B⋯∫6km65B∖6km−165Bθ(2rBm∑i=1d(cB,yi))r∏i=1|bi(yi)−m˜B(bi)|[m∑i=1λ(cB,d(cB,yi))]m−α(m∏l=1|fl(yl)|)dμ(ym)⋯dμ(y1)≤C∞∑k1,…,km=1θ(2rBm∑i=16ki−165rB)(m∑i=1λ(cB,6ki−165rB))−m+α(r∏l1=1∫6kl165B|bl1(yl1)−m˜B(bl1)||fl1(yl1)|dμ(yl1))(m∏l2=r+1∫6kl265B|fl2(yl2)|dμ(yl2))≤C∞∑kmax=1km−1maxθ(56kmax−13)(λ(cB,6kmax−165rB))−m+α(r∏l1=1∫6kmax65B|bl1(yl1)−m˜B(bl1)||fl1(yl1)|dμ(yl1))(m∏l2=r+1∫6kmax65B|fl2(yl2)|dμ(yl2)), |
where kmax=max1≤i≤mki. Then Hölder's inequality, (ii) of Lemma 2.8, Definition 3 and properties of θ give that
|Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z)−Iα,m((m˜B(b1)−b1)f1,2,…,(m˜B(br)−br)fr,2,fr+1,2,…,fm,2)(z0)|≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))∞∑kmax=1km+r−1maxθ((5/6)kmax)≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))∫10θ(t)t|logtm+r−1|dt≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)), |
where we use the following result
∞>∫10θ(t)t|logtm+r−1|dt≥∞∑k=1∫(56)k−1(56)kθ((5/6)k)(5/6)k−1|log(5/6)km+r−1|dt=C∞∑k=1km+r−1θ((5/6)k). |
Therefore,
I2,2≤C[1μ(6B)∫B(1μ(B)∫B|(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))|dμ(z0))ηdμ(z)]1η≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
Thus,
I2≤Cm−1∑j′=0I2,1,j′+I2,2≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
Furthermore,
(1μ(6B)∫B|[br,⋯,[b1,Iα,m]]→f(z)−hB|ηdμ(z))1η≤Cr∑j=1[(r∏i=r−j+1‖bi‖~RBMO(μ))Mt,(6)([br,⋯,[b1,Iα,m]]→f)(x)]+C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)), |
which completes the proof of (2.4).
Next, we turn to estimate (2.5). For all balls Q⊃B∋x with doubling balls Q, denote N:=NB,Q+1, which means 6NB⊃65Q, then write
|hB−hQ|≤|mB(Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB))−mQ(Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB))|+|mQ(Iα,m((b1−mQ(b1))f1χX∖6NB,…,(br−mQ(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB))−mQ(Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB))|+Cm−1∑j=1j−1∑i1=0|1μ(B)∫B∫(X∖65B)m−j∫(6NB∖65B)i1+1∫(X∖6NB)j−i1−1K(z,y1,…,ym)[r∏i=1(bi(z)−m˜B(bi))](m∏l=1fl(yl)dμ(yl))dμ(z)|+Cm−1∑j=1m−1∑i2=0m−j∑i3=1|1μ(B)∫B∫(6NB∖65B)m−j+i2+1∫(X∖6NB)j−i2−i3−1K(z,y1,…,ym)[r∏i=1(bi(z)−m˜B(bi))](m∏l=1fl(yl)dμ(yl))dμ(z)|+Cm−1∑j=1j−1∑i1=0|1μ(Q)∫Q∫(X∖65Q)m−j∫(6NB∖65Q)i1+1∫(X∖6NB)j−i1−1K(z,y1,…,ym)[r∏i=1(bi(z)−m˜B(bi))](m∏l=1fl(yl)dμ(yl))dμ(z)|+Cm−1∑j=1m−1∑i2=0m−j∑i3=1|1μ(Q)∫Q∫(6NB∖65Q)m−j+i2+1∫(X∖6NB)j−i2−i3−1K(z,y1,…,ym)[r∏i=1(bi(z)−m˜B(bi))](m∏l=1fl(yl)dμ(yl))dμ(z)|=:J1+J2+J3+J4+J5+J6. |
In the above formula, the methods to estimate J3,J4,J5 and J6 are similar to that of J2. Therefore, for the sake of simplicity, we only estimate the first two terms.
For J1, let z,z0∈B, write
J1=|1μ(B)∫B[1μ(Q)∫Q(Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB)(z)−Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB)(z0))dμ(z0)]dμ(z)|. |
Similar to the estimate of I2,2,
J1≤C(r∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
For J2, first consider
Iα,m((b1−mQ(b1))f1χX∖6NB,…,(br−mQ(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB)(z)−Iα,m((b1−m˜B(b1))f1χX∖6NB,…,(br−m˜B(br))frχX∖6NB,fr+1χX∖6NB,…,fmχX∖6NB)(z)=r−1∑j=1∑1≤k1<⋯<kj≤rr−j−1∑p=0∑1≤n1<⋯<np≤r−j[j∏i=1(m˜B(bki)−mQ(bki))][p∏i=1(mQ(bni)−m˜B(bni))]∫(X∖6NB)mK(z,y1,…,ym)[∏i∈({1,…,r}∖{k1,…,kj})∖{n1,…,np}(bi(yi)−mQ(bi))](m∏l=1fl(yl)dμ(yl))=Cr−1∑j=1r−j−1∑p=0(−1)p[r∏i=r−j−p+1(m˜B(bi)−mQ(bi))]Iα,m((b1−mQ(b1))f1χX∖6NB,…,(br−j−p−mQ(br−j−p))fr−j−pχX∖6NB,fr−j−p+1χX∖6NB,…,frχX∖6NB)=:Cr−1∑j=1r−j−1∑p=0J2,j,p. |
As
Iα,m((b1−mQ(b1))f1χX∖6NB,…,(br−j−p−mQ(br−j−p))fr−j−pχX∖6NB,fr−j−p+1χX∖6NB,…,frχX∖6NB)=Iα,m((b1−mQ(b1))f1,…,(br−j−p−mQ(br−j−p))fr−j−p,fr−j−p+1,…,fr)−Iα,m((b1−mQ(b1))f1χ65Q,…,(br−j−p−mQ(br−j−p))fr−j−pχ65Q,fr−j−p+1χ65Q,…,frχ65Q)−r−j−p∑i1=1Iα,m((b1−mQ(b1))f1χ6NB,…,(bi1−1−mQ(bi1−1))fi1−1χ6NB,(bi1−mQ(bi1))fi1χX∖65Q,(bi1+1−mQ(bi1+1))fi1+1χ6NB,…,(br−j−p−mQ(br−j−p))fr−j−pχ6NB,fr−j−p+1χ6NB,…,fmχ6NB)−r∑i2=r−j−p+1Iα,m((b1−mQ(b1))f1χ6NB,…,(br−j−p−mQ(br−j−p))fr−j−pχ6NB,fr−j−p+1χ6NB,…,fi2−1χ6NB,fi2χX∖65Q,fi2+1χ6NB,…,fmχ6NB)+(m−1)Iα,m((b1−mQ(b1))f1χ6NB∖65Q,…,(br−j−p−mQ(br−j−p))fr−j−pχ6NB∖65Q,fr−j−p+1χ6NB∖65Q,…,frχ6NB∖65Q)=:J2,1,j,p+J2,2,j,p+r−j−p∑i1=1J2,3,j,p,i1+r∑i2=r−j−p+1J2,4,j,p,i2+CJ2,5,j,p, |
according to Lemma 2.6,
J2=C|1μ(Q)∫Q(r−1∑j=1r−j−1∑p=0J2,j,p)dμ(z)|≤Cr−1∑j=1r−j−1∑p=0|1μ(Q)∫Q[r∏i=r−j−p+1(m˜B(bi)−mQ(bi))](J2,1,j,p+J2,2,j,p+r−j−p∑i1=1J2,3,j,p,i1+r∑i2=r−j−p+1J2,4,j,p,i2+J2,5,j,p)dμ(z)|≤Cr−1∑j=1r−j−1∑p=0(r∏i=r−j−p+1˜KB,Q‖bi‖~RBMO(μ))(|mQ(J2,1,j,p)|+|mQ(J2,2,j,p)|+r−j−p∑i1=1|mQ(J2,3,j,p,i1)|+r∑i2=r−j−p+1|mQ(J2,4,j,p,i2)|+|mQ(J2,5,j,p)|). |
For |mQ(J2,1,j,p)|, using the property of μ, Hölder's inequality and (i) of Lemma 2.8, we obtain
|mQ(J2,1,j,p)|≤r−j−p∑k=0∑1≤k1<⋯<kk≤r−j−p1μ(Q)∫Q|∫XmK(z,y1,…,ym)[k∏i=1(bki(z)−mQ(bki))][∏i∈{1,…,r−j−p}∖{k1,…,kk}(bi(yi)−bi(z))](m∏l=1fl(yl)dμ(yl))|dμ(z)=Cr−j−p∑k=01μ(6Q)∫Q[r−j−p∏i=r−j−p−k+1|bi(z)−mQ(bi)|]|[br−j−p−k,⋯,[b1,Iα,m]]→f(z)|dμ(z)≤Cr−j−p∑k=0(r−j−p∏i=r−j−p−k+1‖bi‖~RBMO(μ))Mt,(6)([br−j−p−k,⋯,[b1,Iα,m]]→f)(x). |
For |mQ(J2,2,j,p)|, Hölder's inequality, Theorem 1.2, (i) of Lemma 2.8 and property of μ tell us
|mQ(J2,2,j,p)|≤(1μ(Q)∫Q|Iα,m((b1−mQ(b1))f1χ65Q,…,(br−j−p−mQ(br−j−p))fr−j−pχ65Q,fr−j−p+1χ65Q,…,frχ65Q)(z)|sdμ(z))1s≤C(1μ(Q))1s(r−j−p∏l1=1‖(bl1−mQ(bl1))fl1χ65Q‖Lsl1(μ))(m∏l2=r−j−p+1‖fl2χ65Q‖Lsl2(μ))≤C[r−j−p∏l1=1(1μ(6Q)∫65Q|bl1(z)−mQ(bl1)|sl1pl1pl1−sl1dμ(z))1sl1−1pl1(1(μ(6Q))1−αpl1/m∫65Q|fl1(z)|pl1dμ(z))1pl1][m∏l2=r−j−p+1(1(μ(6Q))1−αpl2/m∫65Q|fl2(z)|pl2dμ(z))1pl2]≤C(r−j−p∏i=1‖bi‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)), |
where 1s1,…,1sm∈(1,∞) satisfy 0<1s=1s1+⋯+1sm−α<1.
For ∑r−j−pi1=1|mQ(J2,3,j,p,i1)|, we estimate |J2,3,j,p,i1| first.
|J2,3,j,p,i1|≤C∫(6NB)i1−1∫X∖65Q∫(6NB)m−i1r−j−p∏k=1|bk(yk)−mQ(bk)|[m∑k=1λ(z,d(z,yk))]m−α(m∏l=1|fl(yl)|)dμ(ym)⋯dμ(y1)≤C(∏l1={1,…,r−j−p}∖{i1}∫6NB|bl1(yl1)−mQ(bl1)||fl1(yl1)|dμ(yl1))[m∏l2=r−j−p+1(NB,Q∑γ=1∫6γ+1B∖6γB|fl2(yl2)|dμ(yl2)+∫6B|fl2(yl2)|dμ(yl2))](∞∑k=1∫6k65Q∖6k−165Q|bi(yi)−mQ(bi)||fi(yi)|(λ(cQ,d(cQ,yi)))m−αdμ(yi))≤C(r−j−p∏l1=1‖bl1‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))(˜KB,Q)r−j−p−1(˜Kα/mB,Q)m−r+j+p(λ(CB,6N5rB))(1−αm)(m−1)∞∑k=1k(μ(6k6Q))1−αm(λ(cQ,6k−16rQ/5))m−α. |
The properties of μ and λ give that
|J2,3,j,p,i1|≤C(r−j−p∏l1=1‖bl1‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))(˜KB,Q)r−j−p−1(˜Kα/mB,Q)m−r+j+p∞∑k=1k(μ(6k6Q))1−αm(λ(CQ,6N5rQ))(1−αm)(m−1)[C(6k−N6/5)λ(cQ,6N5rQ)]m−α≤C(r−j−p∏l1=1‖bl1‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x))(˜KB,Q)r−j−p−1(˜Kα/mB,Q)m−r+j+p∞∑k=1k(μ(6k6Q))1−αm[C(6k−N6/5)]m−α(λ(cQ,6N5rQ))1−αm≤C(˜KB,Q)r−j−p−1(˜Kα/mB,Q)m−r+j+p(r−j−p∏l1=1‖bl1‖~RBMO(μ))(m∏l=1M(α/m)pl,(5)fl(x)). |
Therefore,
\begin{align*} \sum\limits_{i_1 = 1}^{r-j-p} \left|m_Q\left(J_{2,3,j,p,i_1}\right)\right| \le C \left({\widetilde{K}_{B,Q}}\right)^{r-j-p-1} \left({\widetilde{K}_{B,Q}^{\alpha/m}}\right)^{m-r+j+p} \left( \prod\limits_{{l_1} = 1}^{r-j-p} \left\|b_{l_1}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}}\right) \left( \prod\limits_{{l} = 1}^m M_{p_l,(5)}^{\left(\alpha/m\right)} f_{l}\left(x\right) \right). \end{align*} |
Similarly, the estimates of \sum_{i_2 = r-j-p+1}^{r} \left|m_Q\left(J_{2, 4, j, p, i_2}\right)\right| and \left|m_Q\left(J_{2, 5, j, p}\right)\right| can be obtained.
Therefore, we get
\begin{align*} J_2 &\le C \sum\limits_{j = 1}^{r-1} \sum\limits_{p = 0}^{r-j-1} \sum\limits_{k = 0}^{r-j-p} \left(\prod\limits_{i = r-j-p-k+1}^r \left\|b_i\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}}\right) M_{t,(6)} \left(\left[b_{r-j-p-k},\cdots,\left[b_1, {\mathcal{I}_{\alpha,m}}\right] \right]\vec{f}\right)(x)\\ &\quad + C\left({\widetilde{K}_{B,Q}}\right)^{r-1} \left({\widetilde{K}_{B,Q}^{\alpha/m}}\right)^{m-1} \left( \prod\limits_{{i} = 1}^{r} \left\|b_{i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}}\right) \left( \prod\limits_{{l} = 1}^m M_{p_l,(5)}^{\left(\alpha/m\right)} f_{l}\left(x\right) \right). \end{align*} |
Hence,
\begin{align*} \left|h_{B} - h_{Q}\right| &\le C \sum\limits_{j = 1}^{r-1} \sum\limits_{p = 0}^{r-j-1} \sum\limits_{k = 0}^{r-j-p} \left(\prod\limits_{i = r-j-p-k+1}^r \left\|b_i\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}}\right) M_{t,(6)} \left(\left[b_{r-j-p-k},\cdots,\left[b_1, {\mathcal{I}_{\alpha,m}}\right] \right]\vec{f}\right)(x)\\ &\quad + C\left({\widetilde{K}_{B,Q}^{\alpha/m}}\right)^{r+m} \left( \prod\limits_{{i} = 1}^{r} \left\|b_{i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}}\right) \left( \prod\limits_{{l} = 1}^m M_{p_l,(5)}^{\left(\alpha/m\right)} f_{l}\left(x\right) \right), \end{align*} |
which completes the proof of (2.5).
Thus, Lemma 2.9 is proved.
In this section, we aim to establish the boundedness of the multilinear \theta -type generalized fractional integral {\mathcal{I}_{\alpha, m}} and its iterated commutators \left[\vec{b}_\sigma, {\mathcal{I}_{\alpha, m}} \right] with {\widetilde{{\rm{RBMO}}}\left(\mu\right)} -functions on Lebesgue spaces.
Proof of Theorem 1.2. Assume \alpha_1, \dots, \alpha_m\in (0, 1) satisfy \alpha = \sum_{i = 1}^m \alpha_i and 1 < p_i < \frac{1}{\alpha_i}, i = 1, \dots, m . For any x\in \mathcal{X} , by applying the (1.4), (1.5) and (1.6), the conditions of the kernel function, we have
\begin{align*} \left|{\mathcal{I}_{\alpha,m}} \vec{f}(x)\right| & \le \int_{\mathcal{X}^m} \left|K(x,y_1,\dots,y_m)\right|\prod\limits_{i = 1}^{m}\left|f_i(y_i)\right|d\mu(y_i)\\ & \le C\int_{\mathcal{X}^m} \frac{\prod\limits_{i = 1}^m \left|f_i(y_i)\right|d\mu(y_i)}{\left[\sum\limits_{j = 1}^{m}\lambda(x,d(x,y_j))\right]^{m-\alpha}}\\ & \le C \prod\limits_{i = 1}^m \int_{\mathcal{X}^m} \frac{\left|f_i(y_i)\right|d\mu(y_i)}{\left[\lambda(x,d(x,y_i))\right]^{1-\alpha_i}}\\ & = C\prod\limits_{i = 1}^m I_{\alpha_i}(|f_i|)(x). \end{align*} |
Let 1 < q_i < \infty satisfy \frac{1}{q_i} = \frac{1}{p_i}-\alpha_i and \frac{1}{q} = \frac{1}{q_1}+\dots+\frac{1}{q_m} , then I_{\alpha_i} is bounded from L^{p_i}(\mu) to L^{q_i}(\mu), i = 1, \dots, m . Combining Lemma 1.1 and Hölder's inequality, we obtain
\begin{align*} \left\| {\mathcal{I}_{\alpha,m}} \vec{f}\right\|_{L^q(\mu)} \le C \left\| \prod\limits_{i = 1}^m I_{\alpha_i}(|f_i|)\right\|_{L^q(\mu)} \le C \prod\limits_{i = 1}^m \left\|I_{\alpha_i}(|f_i|)\right\|_{L^{q_i}(\mu)} \le C \prod\limits_{i = 1}^m \left\|f_i\right\|_{L^{p_i}(\mu)}. \end{align*} |
Proof of Theorem 1.3. Theorem 1.2, Lemmas 2.1, 2.2, 2.9 and Hölder's inequality give that
\begin{align*} \left\| {\mathcal{I}_{\alpha, m, \vec{b}_\sigma}} \vec{f}\right\|_{L^q(\mu)} &\le \left\| N \left({\mathcal{I}_{\alpha, m, \vec{b}_\sigma}} \vec{f}\right)\right\|_{L^q(\mu)}\\ &\le \left\| M^{\sharp,(\alpha/m)} \left({\mathcal{I}_{\alpha, m, \vec{b}_\sigma}}\vec{f}\right)\right\|_{L^q(\mu)}\\ &\le C \sum\limits_{j = 1}^r \sum\limits_{\sigma{(j)}} \left(\prod\limits_{\sigma_i\in \sigma{(j)}} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left\|M_{t,(6)}\left(\mathcal{I}_{\alpha,m, \vec{b}_{\sigma{(j)}^\prime}} \vec{f}\right)\right\|_{L^q (\mu)}\\ &\quad + C \left(\prod\limits_{\sigma_i\in \sigma} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left\|\prod\limits_{l = 1}^m M_{p_l,(5)}^{(\alpha/m)}f_l\right\|_{L^q(\mu)}\\ &\le C \sum\limits_{j = 1}^r \sum\limits_{\sigma{(j)}} \left(\prod\limits_{\sigma_i\in \sigma{(j)}} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left\|\mathcal{I}_{\alpha,m, \vec{b}_{\sigma{(j)}^\prime}} \vec{f}\right\|_{L^q(\mu)}\\ &\quad + C \left(\prod\limits_{\sigma_i\in \sigma} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left(\prod\limits_{l = 1}^m \left\| M_{p_l,(5)}^{(\alpha/m)}f_l\right\|_{L^{q_l}(\mu)}\right)\\ & \le C \left(\prod\limits_{\sigma_i\in \sigma} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left\|{\mathcal{I}_{\alpha,m}} \vec{f}\right\|_{L^q(\mu)} + C \left(\prod\limits_{\sigma_i\in \sigma} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left(\prod\limits_{l = 1}^m \left\|f_l\right\|_{L^{p_l}(\mu)}\right)\\ &\le C \left(\prod\limits_{\sigma_i\in \sigma} \left\|b_{\sigma_i}\right\|_{{\widetilde{{\rm{RBMO}}}\left(\mu\right)}} \right) \left(\prod\limits_{l = 1}^m \left\|f_l\right\|_{L^{p_l}(\mu)}\right), \end{align*} |
where, \frac{1}{q} = \frac{1}{p}-\alpha , and for i = 1, \dots, m , q_i satisfy \frac{1}{q} = \frac{1}{q_1}+\cdots+\frac{1}{q_m} and \frac{1}{q_i} = \frac{1}{p_i}-\alpha_i , \alpha = \alpha_1 + \cdots +\alpha_m .
The proof of Theorem 1.3 is finished.
In this article, we discussed the boundedness for {\mathcal{I}_{\alpha, m}} and its iterated multi-commutators {\mathcal{I}_{\alpha, m, \vec{b}_\sigma}} with {\widetilde{{\rm{RBMO}}}\left(\mu\right)} -functions on Lebesgue spaces over non-homogeneous spaces. It is worth mentioning that the proof of the latter relies on an important lemma, that is, the estimation of the sharp maximal function. At the same time, the case of multilinearity is not replaced by bilinear case because the proof process of the bilinearity can not reflect the idea of the proof completely.
We would like to thank the editors and reviewers for their helpful suggestions. The first author would like to thank the National Natural Science Foundation of China under grant no. 11961056 and 11771399. And the second author would like to thank the New Talent Plan of Zhejiang Province under grant no. 2021R415027 and Zhejiang University of Science and Technology Graduate Research Innovation Fund under grant no. 2020yjskc06.
The authors declare no conflict of interest.
[1] |
T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publ. Mat., 54 (2010), 485–504. http://dx.doi.org/10.5565/PUBLMAT_54210_10 doi: 10.5565/PUBLMAT_54210_10
![]() |
[2] |
X. Fu, D. Yang, W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 18 (2014), 509–557. http://dx.doi.org/10.11650/tjm.18.2014.3651 doi: 10.11650/tjm.18.2014.3651
![]() |
[3] |
T. Hytönen, D. Yang, D. Yang, The Hardy space H^1 on non-homogeneous metric spaces, Math. Proc. Camb. Phil. Soc., 153 (2012), 9–31. https://doi.org/10.1017/S0305004111000776 doi: 10.1017/S0305004111000776
![]() |
[4] |
G. Lu, S. Tao, Generalized Morrey spaces over non-homogeneous metric measure spaces, J. Aust. Math. Soc., 103 (2017), 268–278. http://dx.doi.org/10.1017/S1446788716000483 doi: 10.1017/S1446788716000483
![]() |
[5] |
R. Xie, L. Shu, A. Sun, Boundedness for commutators of bilinear \theta-type Calderón-Zygmund operators on nonhomogeneous metric measure spaces, J. Funct. Space., 2017, 1–10. http://dx.doi.org/10.1155/2017/3690452 doi: 10.1155/2017/3690452
![]() |
[6] |
T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type \omega(t) on non-homogeneous space, J. Inequal. Appl., 2014, 1–18. http://dx.doi.org/10.1186/1029-242X-2014-113 doi: 10.1186/1029-242X-2014-113
![]() |
[7] |
C. Ri, Z. Zhang, Boundedness of \theta-type Calderón-Zygmund operators on non-homogeneous metric measure space, Front. Math. China, 11 (2016), 141–153. http://dx.doi.org/10.1007/s11464-015-0464-0 doi: 10.1007/s11464-015-0464-0
![]() |
[8] |
S. Liu, D. Yang, D. Yang, Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations, J. Math. Anal. Appl., 386 (2012), 258–272. http://dx.doi.org/10.1016/j.jmaa.2011.07.055 doi: 10.1016/j.jmaa.2011.07.055
![]() |
[9] |
X. Tao, T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures, Nonlinear Differ. Equ. Appl., 18 (2011), 287–308. http://dx.doi.org/10.1007/s00030-010-0096-8 doi: 10.1007/s00030-010-0096-8
![]() |
[10] |
X. Fu, D. Yang, D. Yang, The molecular characterization of the Hardy space H^1 on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 410 (2014), 1028–1042. http://dx.doi.org/10.1016/j.jmaa.2013.09.021 doi: 10.1016/j.jmaa.2013.09.021
![]() |
[11] |
X. Tolsa, BMO, H^1, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89–149. http://dx.doi.org/10.1007/PL00004432 doi: 10.1007/PL00004432
![]() |
[12] |
Y. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013, 1–8. http://dx.doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459
![]() |
[13] |
H. Lin, S. Wu, D. Yang, Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys., 7 (2017), 187–218. http://dx.doi.org/10.1007/s13324-016-0136-6 doi: 10.1007/s13324-016-0136-6
![]() |
[14] |
X. Fu, D. Yang, W. Yuan, Boundedness of multilinear commutators of Calderón-Zygmund operators on Orlicz spaces over non-homogeneous spaces, Taiwanese J. Math., 16 (2012), 2203–2238. http://dx.doi.org/10.11650/twjm/1500406848 doi: 10.11650/twjm/1500406848
![]() |
1. | Guanghui Lu, Miaomiao Wang, Shuangping Tao, Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces, 2023, 11, 2299-3274, 10.1515/agms-2023-0101 | |
2. | Guanghui Lu, Shuangping Tao, Miaomiao Wang, Bilinear strongly generalized fractional integrals and their commutators over non-homogeneous metric spaces, 2024, 193, 00074497, 103441, 10.1016/j.bulsci.2024.103441 |