Loading [MathJax]/jax/output/SVG/jax.js
Correction

Correction: On the primitive roots and the generalized Golomb's conjecture

  • Received: 12 February 2022 Accepted: 15 February 2022 Published: 01 March 2022
  • Citation: Jiafan Zhang, Xingxing Lv. Correction: On the primitive roots and the generalized Golomb's conjecture[J]. AIMS Mathematics, 2022, 7(5): 8607-8608. doi: 10.3934/math.2022480

    Related Papers:

    [1] Jiafan Zhang, Xingxing Lv . On the primitive roots and the generalized Golomb's conjecture. AIMS Mathematics, 2020, 5(6): 5654-5663. doi: 10.3934/math.2020361
    [2] Wenpeng Zhang, Tingting Wang . The primitive roots and a problem related to the Golomb conjecture. AIMS Mathematics, 2020, 5(4): 3899-3905. doi: 10.3934/math.2020252
    [3] Gyung Won Hwang, Cheon Seoung Ryoo, Jung Yoog Kang . Some properties for 2-variable modified partially degenerate Hermite (MPDH) polynomials derived from differential equations and their zeros distributions. AIMS Mathematics, 2023, 8(12): 30591-30609. doi: 10.3934/math.20231564
    [4] Ling Zhu . Completely monotonic integer degrees for a class of special functions. AIMS Mathematics, 2020, 5(4): 3456-3471. doi: 10.3934/math.2020224
    [5] Shoufeng Wang . Projection-primitive P-Ehresmann semigroups. AIMS Mathematics, 2021, 6(7): 7044-7055. doi: 10.3934/math.2021413
    [6] Meijin Luo, Qiutao Qin . Exponents of a class of special three-colored primitive digraphs with n vertices in graph theory. AIMS Mathematics, 2025, 10(4): 9415-9434. doi: 10.3934/math.2025435
    [7] Jung Yoog Kang, Cheon Seoung Ryoo . Exploring variable-sensitive q-difference equations for q-SINE Euler polynomials and q-COSINE-Euler polynomials. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812
    [8] Anthony Overmars, Lorenzo Ntogramatzidis, Sitalakshmi Venkatraman . A new approach to generate all Pythagorean triples. AIMS Mathematics, 2019, 4(2): 242-253. doi: 10.3934/math.2019.2.242
    [9] Nan Fan, Jiagui Luo . On the conjecture of Jeˊsmanowicz. AIMS Mathematics, 2023, 8(6): 14232-14252. doi: 10.3934/math.2023728
    [10] Zhen Du, Chuanze Niu . Weight distributions of a class of skew cyclic codes over M2(F2). AIMS Mathematics, 2025, 10(5): 11435-11443. doi: 10.3934/math.2025520


  • On the primitive roots and the generalized Golomb's conjecture

    by Jiafan Zhang, Xingxing Lv. AIMS Mathematics, 2020, 5(6): 5654–5663.

    DOI: 10.3934/math.2020361

    The authors would like to make the following corrections to the published paper [1]. The corrections are as follows:

    1) On page 5663, a citation for reference [2] was added at the end of the reference;

    2) On page 5656, we added the statement "L. Carlitz [21] proved that some properties of N(c1,c2,,ck;p) depend on some results of Davenport." for the citation of the reference [2];

    3) On page 5662, we changed the language "Theorem 2 proved a more general and stronger result. That is, if p be a prime large enough, k be any fixed positive integer. Then for" in the conclusion to "Theorem 2 proves a more general and stronger result. That is, if p is a prime large enough and k is any fixed positive integer, then for".

    The changes have no material impact on the conclusion of this article. The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by this change.

    The authors declare there is no conflict of interest.



    [1] J. F. Zhang, X. X. Lv, On the primitive roots and the generalized Golomb's conjecture, AIMS Mathematics, 5 (2020), 5654–5663.
    [2] L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1956), 65–70.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1609) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog