Processing math: 100%
Research article

The primitive roots and a problem related to the Golomb conjecture

  • Received: 10 March 2020 Accepted: 20 April 2020 Published: 26 April 2020
  • MSC : 11A07, 11D85

  • In this paper, we use elementary methods, properties of Gauss sums and estimates for character sums to study a problem related to primitive roots, and prove the following result. Let p be a large enough odd prime. Then for any two distinct integers a,b{1,2,,p1}, there exist three primitive roots α, β and γ modulo p such that the congruence equations α+γamodp and β+γbmodp hold.

    Citation: Wenpeng Zhang, Tingting Wang. The primitive roots and a problem related to the Golomb conjecture[J]. AIMS Mathematics, 2020, 5(4): 3899-3905. doi: 10.3934/math.2020252

    Related Papers:

    [1] Jiafan Zhang, Xingxing Lv . On the primitive roots and the generalized Golomb's conjecture. AIMS Mathematics, 2020, 5(6): 5654-5663. doi: 10.3934/math.2020361
    [2] Jiafan Zhang, Xingxing Lv . Correction: On the primitive roots and the generalized Golomb's conjecture. AIMS Mathematics, 2022, 7(5): 8607-8608. doi: 10.3934/math.2022480
    [3] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [4] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [5] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
    [6] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [7] Jiankang Wang, Zhefeng Xu, Minmin Jia . On the generalized Cochrane sum with Dirichlet characters. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542
    [8] Xi Liu . Some identities involving Gauss sums. AIMS Mathematics, 2022, 7(2): 3250-3257. doi: 10.3934/math.2022180
    [9] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
    [10] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
  • In this paper, we use elementary methods, properties of Gauss sums and estimates for character sums to study a problem related to primitive roots, and prove the following result. Let p be a large enough odd prime. Then for any two distinct integers a,b{1,2,,p1}, there exist three primitive roots α, β and γ modulo p such that the congruence equations α+γamodp and β+γbmodp hold.


    Let p be an odd prime, A(p) denotes the set of all primitive roots g modulo p with 1gp1. The Golomb conjecture (see [1]) in a reduced residue system modulo p is whether there exist two primitive roots α and βA(p) such that the congruence

    α+β1modpholds? (1.1)

    This conjecture has been basically solved in the finite field Fq. Interested readers can refer to the references [2,3,4,5,6,7,8,9,10,11,12,13]. In fact, people have proved versions of the above result. Here, we simply describe one of them as follows: Let p be an odd prime large enough. Then for any integers a, b and c with abc coprime to p (i.e., (abc,p)=1), there are at least two primitive roots α and βmodp such that the congruence aα+bβcmodp holds. See Qi Sun [3].

    In this paper, we continue to work on this problem, because we find that the Golomb conjecture can be further strengthened. To make our problem more general, we will describe it in a finite field. Let Fq be a finite field of q elements with characteristic p. Our problem in Fq can be summarized as follows:

    For any two non-zero elements abFq, do there exist three primitive elements α, β and γFq such that the equations α+γ=a and β+γ=b hold?

    Obviously, if this problem is correct, then the Golomb conjecture must be true. The converse is not necessarily true. So, our problem can be seen as a further generalization and extension of the Golomb conjecture.

    In this paper, we use elementary methods, properties of Gauss sums and estimates for character sums to give an affirmative answer to the above problem. To better describe our results, we use the counting function N(α,β;p), which denotes the number of all primitive roots u, v and wA(p) such that the equations u+wαmodp and v+wβmodp hold. Then we have the following result:

    Theorem. Let p be an odd prime. Then for any integers 1αβp1, we have the asymptotic formula

    N(α,β;p)=ϕ3(p1)p2+O(ϕ3(p1)p2p8ω(p1)),

    where as usual, ϕ(n) denotes the Euler function, and ω(n) denotes the number of all distinct prime divisors of n.

    Obviously, our conclusion can also be generalized to the finite field Fq. From our theorem we may immediately deduce the following:

    Corollary. Let p be an odd prime large enough. Then for any integers 1abp1, there exist three primitive roots α, β and γmodp such that the congruence equations

    α+γamodp  and  β+γbmodp hold.

    Obviously one can ask: Can the Golomb conjecture be extended further? Specifically, for three pairwise distinct nonzero elements α, β and γFq, do there exist four primitive elements a, b, c and dFq such that the equations

    a+d=α,  b+d=β and  c+d=γ aresatisfied?

    We leave this as an open problem.

    To complete the proof of our main result, we need following three simple lemmas. For the sake of simplicity, we do not repeat some elementary number theory and analytic number theory results, which can be found in references [14] and [15]. First, we have the following:

    Lemma 1. Let p be an odd prime. Then for any integer a with (a,p)=1, we have the identity

    ϕ(p1)p1kp1μ(k)ϕ(k)kr=1  e(rind(a)k)={1 ifaisaprimitiverootmodp;0 ifaisnotaprimitiverootmodp,

    where e(y)=e2πiy, kr=1  denotes the summation over all integers 1rk such that r is coprime to k, μ(n) is the Möbius function, and ind(a) denotes the index of a relative to some fixed primitive root gmodp.

    Proof. See Proposition 2.2 in [16].

    Lemma 2. Let p be a prime. Then for any integer h with (h,p)=1, we have the identity

    aA(p)e(hap)=ϕ(p1)p1kp1μ(k)ϕ(k)kr=1 ¯χr,k(h)τ(χr,k),

    where χ denotes a Dirichlet character modulo p, and τ(χ)=p1a=1χ(a)e(ap) denotes the classical Gauss sums corresponding to χ.

    Proof. For integers 1rkp1 with kp1 and (r,k)=1, we write e(rind(a)k)=χr,k(a), and χr,k(a)=0, if pa. It is clear that χr,k(a) is a Dirichlet character modulo p. Note that by the properties of the classical Gauss sums we have

    p1a=1χ(a)e(hap)=¯χ(h)p1a=1χ(a)e(ap)=¯χ(h)τ(χ).

    Applying the above with χ:=χr,k and using Lemma 1, we immediately deduce the identity

    aA(p)e(hap)=ϕ(p1)p1kp1μ(k)ϕ(k)kr=1 p1a=1χr,k(a) e(hap)=ϕ(p1)p1kp1μ(k)ϕ(k)kr=1 ¯χr,k(h)τ(χr,k).

    This proves Lemma 2.

    Lemma 3. Let p be an odd prime, χ1,..., χr be Dirichlet characters modulo p, at least one of which is non-principal character. Let f(x) be an integral coefficient polynomial of degree d. Then for pairwise distinct integers a1,...,ar, we have the estimate

    p1a=1χ1(a+a1)χ2(a+a2)χr(a+ar)e(f(a)p)(r+d)p12.

    Proof. This is Lemma 17 in [17]. Some related work can also be found in [18].

    Lemma 4. Let p be a prime. Then for any integer d with (d,p)=1, we have the estimate

    p1u=1e(udp)aA(p)e(uap)cA(p)e(ucp)=O(ϕ2(p1)p4ω(p1)).

    Proof. Note that |τ(χ)|=p, if χ is any non-principal character modulo p, and |τ(χ)|=1, if χ is the principal character modulo p. From the identity

    kp1|μ(k)|=qαp1(d|qα|μ(d)|)=qαp12=2ω(p1)

    and Lemma 2, we have

    p1u=1e(udp)aA(p)e(uap)cA(p)e(ucp)=ϕ2(p1)(p1)2p1u=1e(udp)kp1hp1μ(k)μ(h)ϕ(k)ϕ(h)kr=1 ¯χr,k(u)τ(χr,k)×hs=1 ¯χs,h(u)τ(χs,h)=ϕ2(p1)(p1)2kp1hp1μ(k)μ(h)ϕ(k)ϕ(h)kr=1 hs=1 τ(χr,k)τ(χs,h)×p1u=1¯χr,k(u)¯χs,h(u)e(udp)=ϕ2(p1)(p1)2kp1hp1μ(k)μ(h)ϕ(k)ϕ(h)kr=1 hs=1 χr,k(d)χs,h(d)×τ(χr,k)τ(χs,h)τ(¯χr,k¯χs,h)=O(ϕ2(p1)(p1)2p32(kp1|μ(k)|)2)=O(ϕ2(p1)p4ω(p1)).

    This proves Lemma 4.

    Lemma 5. Let p be a prime. Then for any integers 1αβp1, we have the estimate

    p1u=1p1v=1e(uαvβp)aA(p)e(uap)bA(p)e(vbp)cA(p)e((u+v)cp)=O(ϕ3(p1)p8ω(p1)).

    Proof. Note that |τ(χ)|=1, if χ is the principal character modulo p. And if (v,p)=1, u pass through a reduced residue system modulo p, then uv also pass through a reduced residue system modulo p. So from Lemma 2, Lemma 3 and the methods of proving Lemma 4 we have

    p1u=1p1v=1e(uαvβp)aA(p)e(uap)bA(p)e(vbp)cA(p)e((u+v)cp)=ϕ3(p1)(p1)3p1u=1e(uαp)p1v=1e(vβp)×kp1μ(k)ϕ(k)kr=1 hp1μ(h)ϕ(h)hs=1 jp1μ(j)ϕ(j)jt=1 ¯χr,k(u)τ(χr,k)ׯχs,h(v)τ(χs,h)¯χt,j(u+v)τ(χt,j)=ϕ3(p1)(p1)3kp1μ(k)ϕ(k)kr=1 hp1μ(h)ϕ(h)hs=1 jp1μ(j)ϕ(j)jt=1 ×τ(χr,k)τ(χs,h)τ(χt,j)p1u=1p1v=1¯χr,k(u)¯χs,h(v)¯χt,j(u+v)e(uαvβp)=ϕ3(p1)(p1)3kp1μ(k)ϕ(k)kr=1 hp1μ(h)ϕ(h)hs=1 jp1μ(j)ϕ(j)jt=1 ×τ(χr,k)τ(χs,h)τ(χt,j)p1u=1¯χr,k(u)¯χt,j(u+1)×p1v=1¯χs,h(v)¯χr,k(v)¯χt,j(v)e(v(uα+β)p)=ϕ3(p1)(p1)3kp1μ(k)ϕ(k)kr=1 hp1μ(h)ϕ(h)hs=1 jp1μ(j)ϕ(j)jt=1 ×τ(χr,k)τ(χs,h)τ(χt,j)τ(¯χr,k¯χs,h¯χt,j)p1u=1¯χr,k(u)¯χt,j(u+1)×χs,hχr,kχt,j(uαβ)=O(ϕ3(p1)p3p52(kp1|μ(k)|)3)=O(ϕ3(p1)p8ω(p1)).

    This proves Lemma 5.

    In this section, we shall complete the proof of our main result. For any integers 1αβp1, note that the trigonometric identity

    p1r=0e(nrp)={p, ifpn;0, ifpn

    and

    aA(p)1=ϕ(p1).

    Thus, from Lemma 4 and Lemma 5 we have

    N(α,β;p)=1p2aA(p)bA(p)cA(p)p1u=0e(u(a+cα)p)p1v=0e(v(b+cβ)p)=1p2p1u=1e(uαp)p1v=1e(vβp)aA(p)e(uap)bA(p)e(vbp)×cA(p)e((u+v)cp)+1p2p1u=1e(uαp)aA(p)e(uap)cA(p)e(ucp)+1p2p1v=1e(vβp)bA(p)e(vbp)cA(p)e(vcp)+ϕ3(p1)p2=ϕ3(p1)p2+O(ϕ3(p1)p2p8ω(p1))+O(ϕ2(p1)p2p4ω(p1))=ϕ3(p1)p2+O(ϕ3(p1)p528ω(p1)).

    This completes the proof of our theorem.

    The main result of this paper is a theorem, which is closely related to the Golomb conjecture. It describes that when the prime p is large enough, for any integers 1αβp1, there exist three primitive roots u, v and wA(p) such that the congruence equations u+wαmodp and v+wβmodp hold. At the same time, we also give a sharp asymptotic formula for the counting function of all such solutions (u,v,w). Of course, our conclusion can also be generalized to the finite field Fq. In order to further study the content related to the Golomb conjecture, we also proposed an open problem.

    The authors would like to thank the referee for their very helpful and detailed comments. In particular, many English grammar and error correction, so that the text reads more smoothly.

    This work is supported by the Y. S. T. N. S. P (2019KJXX-076), the N. S. B. R. P. (2019JM-207) of Shaanxi Province and the N. S. F. (11771351) of P. R. China.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] S. W. Golomb, Algebraic constructions for costas arrays, J. Comb. Theory Ser. A, 37 (1984), 13-21. doi: 10.1016/0097-3165(84)90015-3
    [2] L. Qi, W. P. Zhang, On the generalization of Golomb's conjecture, Journal of Northwest University, Natural Science Edition, 45 (2015), 199-201.
    [3] Q. Sun, On primitive roots in a finite field, Journal of Sichuan University, Natural Science Edition, 25 (1988), 133-139.
    [4] T. Tian, W. Qi, Primitive normal element and its inverse in finite fields, Acta Math. Sin., 49 (2006), 657-668.
    [5] P. Wang, X. Cao, R. Feng, On the existence of some specific elements in finite fields of characteristic 2, Finite Fields Th. App., 18 (2012), 800-813.
    [6] J. P. Wang, On Golomb's conjecture, Sci. China Ser. A, 31 (1988), 152-161.
    [7] T. T. Wang, X. N. Wang, On the Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003-1009. doi: 10.1515/math-2017-0083
    [8] W. Q. Wang, W. P. Zhang, A mean aalue related to primitive roots and Golomb's conjectures, Abstr. Appl. Anal., 2014 (2014), 1-5.
    [9] W. P. Zhang, On a problem related to Golomb's conjectures, J. Syst. Sci. Complex., 16 (2003), 13-18.
    [10] S. D. Cohen, W. P. Zhang, Sums of two exact powers, Finite Fields Th. App., 8 (2002), 471-477. doi: 10.1016/S1071-5797(02)90354-0
    [11] S. D. Cohen, Pairs of primitive roots, Mathematica, 32 (1985), 276-285.
    [12] S. D. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68-79. doi: 10.1016/j.jnt.2019.03.004
    [13] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.
    [14] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
    [15] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [16] W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, Warszawa, 1987.
    [17] J. Bourgain, Z. M. Garaev, V. S. Konyagin, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524-1557. doi: 10.1137/110850414
    [18] K. Gong, C. H. Jia, Shifted character sums with multiplicative coefficients, J. Number Theory, 153 (2015), 364-371. doi: 10.1016/j.jnt.2015.01.015
  • This article has been cited by:

    1. Jiafan Zhang, Xingxing Lv, On the primitive roots and the generalized Golomb’s conjecture, 2020, 5, 2473-6988, 5653, 10.3934/math.2020361
    2. Wenpeng Zhang, Teerapat Srichan, Xingxing Lv, A new arithmetical function and its mean value properties, 2021, 27, 1405-213X, 10.1007/s40590-021-00390-8
    3. Yiwei Hou, Hongyan Wang, Wenpeng Zhang, A Note on the Primitive Roots and the Golomb Conjecture, 2021, 2021, 2314-4785, 1, 10.1155/2021/7639259
    4. Jiafan Zhang, On the distribution of primitive roots and Lehmer numbers, 2023, 31, 2688-1594, 6913, 10.3934/era.2023350
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4940) PDF downloads(771) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog