Research article Special Issues

The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $

  • Received: 10 April 2021 Accepted: 18 July 2021 Published: 29 July 2021
  • MSC : 11L03, 11L40

  • We consider the calculation problem of one kind hybrid power mean involving the character sums of polynomials and two-term exponential sums modulo $ p $, an odd prime, and use the analytic method and the properties of classical Gauss sums to give some identities and asymptotic formulas for them.

    Citation: Wenpeng Zhang, Jiafan Zhang. The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $[J]. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638

    Related Papers:

  • We consider the calculation problem of one kind hybrid power mean involving the character sums of polynomials and two-term exponential sums modulo $ p $, an odd prime, and use the analytic method and the properties of classical Gauss sums to give some identities and asymptotic formulas for them.



    加载中


    [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [2] C. D. Pan, C. B. Pan, Goldbach Conjecture, Science Press, Beijing, 1992.
    [3] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982.
    [4] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités math. sci., No. 1041 (Paris, 1945), deuxième partie, § IV.
    [5] W. P. Zhang, Y. Yi, On Dirichlet characters of polynomials, Bull. London Math. Soc., 34 (2002), 469–473. doi: 10.1112/S0024609302001030
    [6] W. P. Zhang, W. L. Yao, A note on the Dirichlet characters of polynomials, Acta Arith., 115 (2004), 225–229. doi: 10.4064/aa115-3-3
    [7] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc., 12 (1962), 179–192.
    [8] D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537–548.
    [9] A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the P$\mathrm{\acute{o}}$lya-Vinogradov theorem, J. Amer. Math. Soc., 20 (2007), 357–384.
    [10] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. doi: 10.1137/110850414
    [11] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. doi: 10.1016/j.jnt.2013.10.022
    [12] D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czech. Math. J., 64 (2014), 53–62. doi: 10.1007/s10587-014-0082-0
    [13] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [14] X. Y. Du, The hybrid power mean of two-term exponential sums and character sums, Acta Math. Sinica (Chinese Series), 59 (2016), 309–316.
    [15] W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 60–66.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1759) PDF downloads(171) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog