This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case p≡3mod4, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime p.
Citation: Shujie Zhou, Li Chen. On the sixth power mean values of a generalized two-term exponential sums[J]. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438
[1] | Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408 |
[2] | Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434 |
[3] | Xingxing Lv, Wenpeng Zhang . The generalized quadratic Gauss sums and its sixth power mean. AIMS Mathematics, 2021, 6(10): 11275-11285. doi: 10.3934/math.2021654 |
[4] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[5] | Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183 |
[6] | Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480 |
[7] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[8] | Yan Zhao, Wenpeng Zhang, Xingxing Lv . A certain new Gauss sum and its fourth power mean. AIMS Mathematics, 2020, 5(5): 5004-5011. doi: 10.3934/math.2020321 |
[9] | Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881 |
[10] | Xiaoge Liu, Yuanyuan Meng . On the $ k $-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093 |
This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case p≡3mod4, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime p.
Let p always denote an odd prime and let χ denote a Dirichlet character modulo p. For any integers k>h≥1, integer m and integer n, the generalized two-term exponential sums S(m,n,k,h,χ;p) are defined as follows:
S(m,n,k,h,χ;p)=∑amodpχ(a)e(mak+nahp), |
where e(y)=e2πiy, i2=−1.
In the investigation of additive and analytic number theory, these sums are crucial. In reality, it is strongly related to a number of significant number theory issues, including the prime distribution and the Waring's problems. For example, the Waring-Goldbach problems is concerned with the representation of positive integers by the kth powers of primes, i.e.,
n=pk1+pk2+⋯+pks. |
It is common to use exponential sums to study the number of solutions to the above equation. As a result, a large number of academics have researched the numerous classical results of S(m,n,k,h,χ;p), and have come to a number of insightful conclusions. For instance, Zhang and Zhang [1] shown that
∑mmodp′|∑amodpe(ma3+nap)|4={2p3−p2,if 3∤p−1;2p3−7p2,if 3∣p−1, | (1.1) |
where n represents any integer with (n,p)=1.
Duan and Zhang [2] obtained the identities for S(m,n,3,1,χ;p) with 3∤(p−1).
Recently, Zhang and Meng [3] also considered the sixth power mean of S(m,n,3,1,χ0;p), and got that
∑mmodp′|∑amodpe(ma3+nap)|6={5p3⋅(p−1),if p≡5(mod6);p2⋅(5p2−23p−d2),if p≡1(mod6), | (1.2) |
where S(n,p)=1, 4p=d2+27⋅b2, and d is solely determined by d≡1(mod3) and b>0.
On the other hand, Chen and Wang [4] studied the fourth power mean of S(m,1,4,1,χ0;p), and gave the exact calculation formulas for it.
Liu and Zhang [5] proved the following conclusion: when 3∤(p−1),
∑χmodp∑mmodp|∑amodp′χ(a)e(ma3+ap)|6=p(p−1)(6p3−28p2+39p+5). | (1.3) |
Some papers related to exponential sums can also be found in references [6,7,8,9,10,11,12].
It is clear from the formulas (1.1)–(1.3) that all of these publications have the same content: h=1 in S(m,n,k,h,χ;p). We cannot come across a study that discusses the 4th power mean of the generalized two-term exponential sums S(m,n,k,2,χ;p) in the literature. As a result, the research is challenging and rarely yields optimum results when k>h=2.
In this paper, we explore the calculation of 2k-th power mean
∑χmodp∑mmodp|∑amodpχ(a)e(ma4+a2p)|2k, | (1.4) |
and provide a precisely calculated formula for (1.4) with p≡3(mod4) and k=2 or 3 using elementary and analytical approaches as well as the number of solutions to related congruence equations. Thus, we shall demonstrate two results:
Theorem 1. Any odd prime p, the identities will be given
1p(p−1)∑χmodp∑mmodp|∑amodpχ(a)e(ma4+a2p)|4={4(p−1)(p−2),if p≡3(mod4);4(p2−4p+6+√p),if p≡5(mod8);4(p2−4p+6−3√p),if p≡1(mod8). |
Theorem 2. Let p be a prime with p≡3(mod4). Then, we have the identity
1p(p−1)∑χmodp∑mmodp|∑amodpχ(a)e(ma4+a2p)|6=23p3−126p2+179p+8. |
Some notes: In Theorem 2, we only discussed the case p≡3(mod4). If p≡1(mod4), then we could not get a satisfactory result. The reason is that we lack precise knowledge about the values or nontrivial upper bound estimation of
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′abc≡de(modp)(a2+b2+c2−d2−e2−1p), |
a4+b4+c4≡d4+e4+1(modp).
Unsolved is the questions of whether (1.4) with p≡1(mod4) and k=3 can be calculated precisely.
Another interesting issue is if there is a precise method for calculating (1.4) with p≡3(mod4) and k≥4.
To establish our results, we require six fundamental lemmas. It is worth noting that these lemmas necessitate vast stores of knowledge of elementary or analytic number theory, which will be obviously seen through [13,14,15],
Lemma 1. For an odd prime p, we have
♯{(a,b,c,d,e)∈Z∗p:a+b+c=d+e+1,abc=de}=p3−3p2+5p−5. |
Proof. Using the properties of the reduced residue system modulo p we have
♯{(a,b,c,d,e)∈Z∗p:a+b+c=d+e+1,abc=de}=♯{(a,b,c,d,e)∈Z∗p:d(a−1)+e(b−1)+c−1=0,abc=1}. | (2.1) |
To computing the values of (2.1), let us distinguish the following several cases:
If a=b=c=1, then the congruence equations da−d+eb−e+c−1≡0(modp) and a⋅b⋅c≡1(modp) have (p−1)2 solutions;
If a=1, b≠1 and c=¯b, then the congruence equations da−d+eb−e+c−1≡0(modp) and a⋅b⋅c≡1(modp) have (p−1)⋅(p−2) solutions;
Similarly, if b=1, a≠1 and c=¯a, then the congruence equations da−d+eb−e+c−1≡0(modp) and abc≡1(modp) also have (p−1)⋅(p−2) solutions;
If c=1, a≠1 and b=¯a, then the congruence equations da−d+eb−e+c−1≡0(modp) and a⋅b⋅c≡1(modp) also have (p−1)⋅(p−2) solutions;
If a≠1, b≠1, c≠1 and abc≡1(modp), then the congruence equations da−d+eb−e+c−1≡0(modp) and abc≡1(modp) are equivalent to d+e+1≡0(modp) and a⋅b⋅c≡1(modp), and they have
(p−2)[(p−1)2−3(p−2)−1]=(p−2)2(p−3) |
solutions.
Note that if a=1 and b=1, then from a⋅b⋅c≡1(modp) we can deduce c=1. Now by applying (2.1) and synthesizing these results, we can get
♯{(a,b,c,d,e)∈Z∗p:a+b+c=d+e+1,abc=de}=(p−2)2(p−3)+(p−1)2+3(p−1)(p−2)=p3−3p2+5p−5. |
This provides proof of Lemma 1.
Lemma 2. For an odd prime p, then
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ap)=p2−2p−1. |
Proof. Based on the reduced residue system, we have
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ap)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a−1+d(b−1)+e(c−1)≡0(modp)abc≡1(modp)(ap). | (2.2) |
If a=b=c=1, then the congruence equations a−1+db−d+ec−e≡0(modp) and a⋅b⋅c≡1(modp) have (p−1)2 solutions and (1p)=1;
If a=1, b≠1 and c=¯b, then the congruence equations a−1+db−d+ec−e≡0(modp) and a⋅b⋅c≡1(modp) have (p−1)⋅(p−2) solutions;
Similarly, if b=1, a≠1 and c=¯a, so we get
p−1∑a=2∑dmodp′∑emodp′a−1+e(¯a−1)≡0(modp)(ap)=(p−1)p−1∑a=2(ap)=−p+1. | (2.3) |
If c=1, a≠1 and b=¯a, then we also have
p−1∑a=2∑dmodp′∑emodp′a−1+d(¯a−1)≡0(modp)(ap)=(p−1)p−1∑a=2(ap)=−p+1. | (2.4) |
If a≠1, b≠1, c≠1 and abc≡1(modp), then we can deduce that
p−1∑a=2p−1∑b=2p−1∑c=2∑dmodp′∑emodp′a−1+d(b−1)+e(c−1)≡0(modp)abc≡1(modp)(ap)=p−1∑a=2p−1∑b=2p−1∑c=2∑dmodp′∑emodp′1+d+e≡0(modp)abc≡1(modp)(ap)=(p−2)[(p−1)∑amodp′(ap)−(p−2)−2p−1∑a=2(ap)−1]=−p2+5p−6. | (2.5) |
Combining (2.2)–(2.5), we will have the result
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ap)=p2−2p−1. |
The proof of Lemma 2 is provided.
Lemma 3. If p is an odd prime with p≡3(mod4), we will have
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dep)=−(p−1). |
Proof. Firstly, using important properties related to the reduced reside system, we have
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′d(a−1)+e(b−1)+c−1≡0(modp)abc≡1(modp)(dp). | (2.6) |
If a=b=c=1, then from (2.6) we can get
∑dmodp′∑emodp′(dp)=0. | (2.7) |
If a=1, b≠1 and c=¯b, then from (2.6),
p−1∑b=2p−1∑c=2∑dmodp′∑emodp′e(b−1)+c−1≡0(modp)bc≡1(modp)(dp)=p−1∑b=2p−1∑c=2∑emodp′e(b−1)+c−1≡0(modp)bc≡1(modp)∑dmodp′(dp)=0. | (2.8) |
Similarly, if b=1, a≠1 and c=¯a, then from (2.6) we infer that
p−1∑a=2∑dmodp′∑emodp′d(a−1)+¯a−1≡0(modp)(dp)=(p−1)p−1∑a=2(¯ap)=−p+1. | (2.9) |
If c=1, a≠1 and b=¯a, then we also can get
p−1∑a=2∑dmodp′∑emodp′d(a−1)+e(¯a−1)≡0(modp)(dp)=p−1∑a=2∑emodp′(¯ap)(ep)=0. | (2.10) |
If a≠1, b≠1, c≠1 and abc≡1(modp), then note that (ap)=(¯ap). It follows from (2.6) that
p−1∑a=2p−1∑b=2p−1∑c=2∑dmodp′∑emodp′d(a−1)+e(b−1)+(c−1)≡0(modp)abc≡1(modp)(dp)=p−1∑a=2p−1∑b=2p−1∑c=2∑dmodp′∑emodp′d+e+c−1≡0(modp)abc≡1(modp)((a−1)dp)=p−1∑a=2p−1∑b=2p−1∑c=2∑emodp′abc≡1(modp)((a−1)(1−c−e)p)=p−1∑a=1p−1∑b=2∑cmodp′abc≡1(modp)((a−1)(c−1)p)=∑amodp′∑cmodp′((a−1)(c−1)p)−∑amodp′((a−1)(¯a−1)p)=−∑cmodp′(c−1p)−p−1∑a=2(−¯ap)=0. | (2.11) |
Combining (2.6)–(2.11) we can deduce that
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dp)=−p+1. | (2.12) |
Applying the reduced residue system modulo p and (2.12),
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′ad+bd+cd≡d+ed+1(modp)abcd3≡d2e(modp)(d2ep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡1+e+¯d(modp)abc≡¯de(modp)(ep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡1+e+d(modp)abc≡de(modp)(ep)=−p+1. | (2.13) |
Now combing (2.12) and (2.13), we can easily prove Lemma 3.
Lemma 4. If p≡3(mod4), then we will get
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abp)=−p+1, |
and
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(adp)=p2−2p−1. |
Proof. Using important properties related to the reduced residue system and Lemma 3 we may immediately obtain
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′ab+b+cb≡db+eb+1(modp)ab3c≡b2de(modp)(ab2p)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+1+c≡d+e+¯b(modp)ac≡¯bde(modp)(ap)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dp)=−p+1. | (2.14) |
Similarly, applying Lemma 2 we also have
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(adp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′ad+bd+cd≡d+ed+1(modp)abcd3≡d2e(modp)(ad2p)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡1+e+¯d(modp)abc≡¯de(modp)(ap)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡1+e+d(modp)abc≡de(modp)(ap)=p2−2p−1. | (2.15) |
Now Lemma 4 is proved.
Lemma 5. If p is an odd prime, then
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)a2+b2+c2≡d2+e2+1(modp)abc≡de(modp)1=8(3p2−15p+20). |
Proof. Utilizing the properties of the congruence equation modulo p we infer that
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)a2+b2+c2≡d2+e2+1(modp)abc≡de(modp)1=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a2+b2+c2≡d2+e2+1(modp)(a2+b2+c2)2−a4−b4−c4≡(d2+e2+1)2−d4−e4−1(modp)abc≡de(modp)1=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a2+b2+c2≡d2+e2+1(modp)a2b2+a2c2+b2c2≡d2+e2+d2e2(modp)abc≡de(modp)1=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′(a2−1)(b2−1)(c2−1)≡0(modp)a2+b2+c2≡d2+e2+1(modp)abc≡de(modp)1=3∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a2≡1(modp)b2+c2≡d2+e2(modp)abc≡de(modp)1−3∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′1+c2≡d2+e2modpabc≡demodp1+∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a2≡b2≡c2≡1(modp)2≡d2+e2(modp)abc≡de(modp)1=3(p−1)∑amodp′∑bmodp′∑cmodp′∑dmodp′a2≡1(modp)b2+c2≡d2+1(modp)abc≡d(modp)1−3∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a2≡b2≡1(modp)(d2−1)(e2−1)≡0(modp)abc≡de(modp)1+16=3(p−1)∑amodp′∑bmodp′∑cmodp′∑dmodp′a2≡1(modp)(b2−1)(c2−1)≡0(modp)abc≡d(modp)1−48(p−2)+16=24(p−1)(p−2)−48(p−2)+16=8(3p2−15p+20). |
This completes the proof of Lemma 5.
Lemma 6. Assume that p≡3(mod4), the identity will be given
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)1=p3+6p2−19p−8. |
Proof. Since p≡3(mod4), then we get
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)1=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡−de(modp)1=12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)a4b4c4≡d4e4(modp)1=12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(1+(ap))(1+(bp))(1+(cp))×(1+(dp))(1+(ep))=12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)1+32∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ap) |
+∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dp)+32∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abp)+12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(edp)+3∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(adp)+12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abcp)+3∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abdp)+32∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(adep)+∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡demodp(abcdp)+32∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abdep)+12∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abcdep). | (2.16) |
Note that the identities
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abcp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(dep); | (2.17) |
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abdp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ecp); | (2.18) |
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(adep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(bcp); | (2.19) |
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abcdp)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(ep); | (2.20) |
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abdep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(cp); | (2.21) |
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)(abcdep)=∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a+b+c≡d+e+1(modp)abc≡de(modp)1. | (2.22) |
From Lemma 1 to Lemma 4, formulas (2.16)–(2.22) we have
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)1=12(p3−3p2+5p−5)+32(p2−2p−1)−(p−1)−32(p−1)−12(p−1)+3(p2−2p−1)−12(p−1)+3(p2−2p−1)−32(p−1)−(p−1)+32(p2−2p−1)+12(p3−3p2+5p−5)=p3+6p2−19p−8. |
This proves Lemma 6.
We utilize the lemmas presented in Section 2 to finalize the proof of theorems. Firstly, we prove Theorem 2. Use the identities
∑amodpe(nap)={p,if p∣n;0,if p∤n, |
for (n,p)=1, we have
∑amodpe(na2p)=1+∑amodp′(1+χ2(a))e(nap)=(np)⋅τ(χ2). |
Then we calculate the equation.
∑χmodp∑mmodp|∑amodp′χ(a)e(ma4+a2p)|6=p⋅∑χmodp∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′∑fmodp′a4+b4+c4≡d4+e4+f4(modp)χ(abc¯def)e(a2+b2+c2−d2−e2−f2p)=p(p−1)⋅∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′∑fmodp′a4+b4+c4≡d4+e4+f4(modp)abc≡def(modp)e(a2+b2+c2−d2−f2−e2p)=p(p−1)⋅∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)∑fmodp′e(f2(a2+b2+c2−d2−e2−1)p)=p2(p−1)⋅∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)a2+b2+c2≡d2+e2+1(modp)abc≡de(modp)1−p(p−1)⋅∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)1+p(p−1)⋅τ(χ2)⋅∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)(a2+b2+c2−d2−e2−1p). | (3.1) |
Note that p≡3(mod4) and the identity τ(χ2)=i⋅√p. It is clear that τ(χ2) is a purely imaginary number. But the left hand side of the formula (27) is a real number, it follows that
∑amodp′∑bmodp′∑cmodp′∑dmodp′∑emodp′a4+b4+c4≡d4+e4+1(modp)abc≡de(modp)(a2+b2+c2−d2−e2−1p)=0. | (3.2) |
From (3.1), (3.2), Lemmas 5 and 6 we have the identity
∑χmodp∑mmodp|∑amodpχ(a)e(ma4+a2p)|6=8p2(p−1)(3p2−15p+20)−p(p−1)(p3+6p2−19p−8)=p(p−1)(23p3−126p2+179p+8). |
This completes the proof of Theorem 2.
Then we give the proof of Theorem 1.To prove Theorem 1, note that
∑amodpe(na2p)=(np)⋅∑amodp(ap)e(ap)={(np)⋅i⋅√p,if p≡3(mod4);(np)⋅√p,if p≡1(mod4), |
where (n,p)=1, similar to the proof of Theorem 2, we have
1p(p−1)∑χmodp∑mmodp|∑amodp′χ(a)e(ma4+a2p)|4=∑amodp′∑bmodp′∑cmodp′ab≡c(modp)a4+b4≡c4+1(modp)∑dmodp′e(d2(a2+b2−c2−1)p)=∑amodp′∑bmodp′(a4−1)(b4−1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p). | (3.3) |
When p≡3mod4, we know that −1 is a quadratic nonresidue modulo p, so we have
∑amodp′∑bmodp′(a4−1)(b4−1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p)=∑amodp′∑bmodp′(a2−1)(b2−1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p)=4(p−1)(p−3)+4(p−1)=4(p−1)(p−2). | (3.4) |
When p≡1(mod4), we have
∑amodp′∑bmodp′(a4−1)(b4−1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p)=∑amodp′∑bmodp′(a2−1)(b2−1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p)+∑amodp′∑bmodp′(a2+1)(b2+1)≡0(modp)∑dmodp′e(−d2(a2−1)(b2−1)p)=4(p−1)(p−2)+p−2∑a=2p−2∑b=2(a2+1)(b2+1)≡0(modp)(−(a2−1)(b2−1)p)√p−p−2∑a=2p−2∑b=2(a2+1)(b2+1)≡0(modp)1=4(p−1)(p−2)+4p−2∑b=2(2(b2−1)p)√p−4(−4p)√p−4(p−4)=4(p2−4p+6)+4√p((2p)p−1∑b=1((b2−1)p)−1)=4(p2−4p+6)+4√p(−2(2p)−1)={4(p2−4p+6+√p),if p≡5(mod8);4(p2−4p+6−3√p),if p≡1(mod8), | (3.5) |
which used χ2(2)=1, if p≡1(mod8), and χ2(2)=−1, if p≡5(mod8).
Then from (3.3)–(3.5), we can get
1p(p−1)∑χmodp∑mmodp|∑amodp′χ(a)e(ma4+a2p)|4={4(p−1)(p−2),if p≡3(mod4);4(p2−4p+6+√p),if p≡5(mod8);4(p2−4p+6−3√p),if p≡1(mod8). |
This completes the proofs of our all results.
The main result of this paper is to give two exact calculating formulae for the sixth power mean values of a generalized two-term exponential sums. One of which is
1p(p−1)∑χmodp∑mmodp|∑amodp′χ(a)e(ma4+a2p)|6=23p3−126p2+179p+8, |
here, p≡3(mod4).
If p≡1(mod4), then we do not have an identity or a nontrivial asymptotic formula for this sixth power mean yet. This is an open problem.
Of course, our result also provides some effective methods for calculating the sixth power mean of the high-th two-term exponential sums. We assert that these contributions will greatly advance the investigation of irrelated issues.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to thank the editor and referees for their helpful suggestions and comments that significantly improved the presentation of this work. All authors have equally contributed to this work, and they have read and approved this final manuscript. This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-072)and the National Natural Science Foundation of China(12126357).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[2] | R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212. |
[3] |
W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
![]() |
[4] |
L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
![]() |
[5] |
X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
![]() |
[6] |
W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
![]() |
[7] | H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547. |
[8] |
Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential sums, Abstract Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726 doi: 10.1155/2014/474726
![]() |
[9] | X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96. |
[10] |
X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
![]() |
[11] | H. S. Kim, T. Kim, On certain values of p-adic q-L-functions, Rep. Fac. Sci. Engrg. Saga Univ. Math., 23 (1995), 1–7. |
[12] | T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math., 48 (1994), 73–86. |
[13] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer, 1976. |
[14] | K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer, 1982. |
[15] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |