Research article Special Issues

On the sixth power mean values of a generalized two-term exponential sums

  • This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case p3mod4, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime p.

    Citation: Shujie Zhou, Li Chen. On the sixth power mean values of a generalized two-term exponential sums[J]. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438

    Related Papers:

    [1] Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408
    [2] Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
    [3] Xingxing Lv, Wenpeng Zhang . The generalized quadratic Gauss sums and its sixth power mean. AIMS Mathematics, 2021, 6(10): 11275-11285. doi: 10.3934/math.2021654
    [4] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [5] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [6] Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
    [7] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [8] Yan Zhao, Wenpeng Zhang, Xingxing Lv . A certain new Gauss sum and its fourth power mean. AIMS Mathematics, 2020, 5(5): 5004-5011. doi: 10.3934/math.2020321
    [9] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [10] Xiaoge Liu, Yuanyuan Meng . On the $ k $-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
  • This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case p3mod4, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime p.



    Let p always denote an odd prime and let χ denote a Dirichlet character modulo p. For any integers k>h1, integer m and integer n, the generalized two-term exponential sums S(m,n,k,h,χ;p) are defined as follows:

    S(m,n,k,h,χ;p)=amodpχ(a)e(mak+nahp),

    where e(y)=e2πiy, i2=1.

    In the investigation of additive and analytic number theory, these sums are crucial. In reality, it is strongly related to a number of significant number theory issues, including the prime distribution and the Waring's problems. For example, the Waring-Goldbach problems is concerned with the representation of positive integers by the kth powers of primes, i.e.,

    n=pk1+pk2++pks.

    It is common to use exponential sums to study the number of solutions to the above equation. As a result, a large number of academics have researched the numerous classical results of S(m,n,k,h,χ;p), and have come to a number of insightful conclusions. For instance, Zhang and Zhang [1] shown that

    mmodp|amodpe(ma3+nap)|4={2p3p2,if 3p1;2p37p2,if 3p1, (1.1)

    where n represents any integer with (n,p)=1.

    Duan and Zhang [2] obtained the identities for S(m,n,3,1,χ;p) with 3(p1).

    Recently, Zhang and Meng [3] also considered the sixth power mean of S(m,n,3,1,χ0;p), and got that

    mmodp|amodpe(ma3+nap)|6={5p3(p1),if p5(mod6);p2(5p223pd2),if p1(mod6), (1.2)

    where S(n,p)=1, 4p=d2+27b2, and d is solely determined by d1(mod3) and b>0.

    On the other hand, Chen and Wang [4] studied the fourth power mean of S(m,1,4,1,χ0;p), and gave the exact calculation formulas for it.

    Liu and Zhang [5] proved the following conclusion: when 3(p1),

    χmodpmmodp|amodpχ(a)e(ma3+ap)|6=p(p1)(6p328p2+39p+5). (1.3)

    Some papers related to exponential sums can also be found in references [6,7,8,9,10,11,12].

    It is clear from the formulas (1.1)–(1.3) that all of these publications have the same content: h=1 in S(m,n,k,h,χ;p). We cannot come across a study that discusses the 4th power mean of the generalized two-term exponential sums S(m,n,k,2,χ;p) in the literature. As a result, the research is challenging and rarely yields optimum results when k>h=2.

    In this paper, we explore the calculation of 2k-th power mean

    χmodpmmodp|amodpχ(a)e(ma4+a2p)|2k, (1.4)

    and provide a precisely calculated formula for (1.4) with p3(mod4) and k=2 or 3 using elementary and analytical approaches as well as the number of solutions to related congruence equations. Thus, we shall demonstrate two results:

    Theorem 1. Any odd prime p, the identities will be given

    1p(p1)χmodpmmodp|amodpχ(a)e(ma4+a2p)|4={4(p1)(p2),if p3(mod4);4(p24p+6+p),if p5(mod8);4(p24p+63p),if p1(mod8).

    Theorem 2. Let p be a prime with p3(mod4). Then, we have the identity

    1p(p1)χmodpmmodp|amodpχ(a)e(ma4+a2p)|6=23p3126p2+179p+8.

    Some notes: In Theorem 2, we only discussed the case p3(mod4). If p1(mod4), then we could not get a satisfactory result. The reason is that we lack precise knowledge about the values or nontrivial upper bound estimation of

    amodpbmodpcmodpdmodpemodpabcde(modp)(a2+b2+c2d2e21p),

    a4+b4+c4d4+e4+1(modp).

    Unsolved is the questions of whether (1.4) with p1(mod4) and k=3 can be calculated precisely.

    Another interesting issue is if there is a precise method for calculating (1.4) with p3(mod4) and k4.

    To establish our results, we require six fundamental lemmas. It is worth noting that these lemmas necessitate vast stores of knowledge of elementary or analytic number theory, which will be obviously seen through [13,14,15],

    Lemma 1. For an odd prime p, we have

    {(a,b,c,d,e)Zp:a+b+c=d+e+1,abc=de}=p33p2+5p5.

    Proof. Using the properties of the reduced residue system modulo p we have

    {(a,b,c,d,e)Zp:a+b+c=d+e+1,abc=de}={(a,b,c,d,e)Zp:d(a1)+e(b1)+c1=0,abc=1}. (2.1)

    To computing the values of (2.1), let us distinguish the following several cases:

    If a=b=c=1, then the congruence equations dad+ebe+c10(modp) and abc1(modp) have (p1)2 solutions;

    If a=1, b1 and c=¯b, then the congruence equations dad+ebe+c10(modp) and abc1(modp) have (p1)(p2) solutions;

    Similarly, if b=1, a1 and c=¯a, then the congruence equations dad+ebe+c10(modp) and abc1(modp) also have (p1)(p2) solutions;

    If c=1, a1 and b=¯a, then the congruence equations dad+ebe+c10(modp) and abc1(modp) also have (p1)(p2) solutions;

    If a1, b1, c1 and abc1(modp), then the congruence equations dad+ebe+c10(modp) and abc1(modp) are equivalent to d+e+10(modp) and abc1(modp), and they have

    (p2)[(p1)23(p2)1]=(p2)2(p3)

    solutions.

    Note that if a=1 and b=1, then from abc1(modp) we can deduce c=1. Now by applying (2.1) and synthesizing these results, we can get

    {(a,b,c,d,e)Zp:a+b+c=d+e+1,abc=de}=(p2)2(p3)+(p1)2+3(p1)(p2)=p33p2+5p5.

    This provides proof of Lemma 1.

    Lemma 2. For an odd prime p, then

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ap)=p22p1.

    Proof. Based on the reduced residue system, we have

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ap)=amodpbmodpcmodpdmodpemodpa1+d(b1)+e(c1)0(modp)abc1(modp)(ap). (2.2)

    If a=b=c=1, then the congruence equations a1+dbd+ece0(modp) and abc1(modp) have (p1)2 solutions and (1p)=1;

    If a=1, b1 and c=¯b, then the congruence equations a1+dbd+ece0(modp) and abc1(modp) have (p1)(p2) solutions;

    Similarly, if b=1, a1 and c=¯a, so we get

    p1a=2dmodpemodpa1+e(¯a1)0(modp)(ap)=(p1)p1a=2(ap)=p+1. (2.3)

    If c=1, a1 and b=¯a, then we also have

    p1a=2dmodpemodpa1+d(¯a1)0(modp)(ap)=(p1)p1a=2(ap)=p+1. (2.4)

    If a1, b1, c1 and abc1(modp), then we can deduce that

    p1a=2p1b=2p1c=2dmodpemodpa1+d(b1)+e(c1)0(modp)abc1(modp)(ap)=p1a=2p1b=2p1c=2dmodpemodp1+d+e0(modp)abc1(modp)(ap)=(p2)[(p1)amodp(ap)(p2)2p1a=2(ap)1]=p2+5p6. (2.5)

    Combining (2.2)–(2.5), we will have the result

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ap)=p22p1.

    The proof of Lemma 2 is provided.

    Lemma 3. If p is an odd prime with p3(mod4), we will have

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dp)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dep)=(p1).

    Proof. Firstly, using important properties related to the reduced reside system, we have

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dp)=amodpbmodpcmodpdmodpemodpd(a1)+e(b1)+c10(modp)abc1(modp)(dp). (2.6)

    If a=b=c=1, then from (2.6) we can get

    dmodpemodp(dp)=0. (2.7)

    If a=1, b1 and c=¯b, then from (2.6),

    p1b=2p1c=2dmodpemodpe(b1)+c10(modp)bc1(modp)(dp)=p1b=2p1c=2emodpe(b1)+c10(modp)bc1(modp)dmodp(dp)=0. (2.8)

    Similarly, if b=1, a1 and c=¯a, then from (2.6) we infer that

    p1a=2dmodpemodpd(a1)+¯a10(modp)(dp)=(p1)p1a=2(¯ap)=p+1. (2.9)

    If c=1, a1 and b=¯a, then we also can get

    p1a=2dmodpemodpd(a1)+e(¯a1)0(modp)(dp)=p1a=2emodp(¯ap)(ep)=0. (2.10)

    If a1, b1, c1 and abc1(modp), then note that (ap)=(¯ap). It follows from (2.6) that

    p1a=2p1b=2p1c=2dmodpemodpd(a1)+e(b1)+(c1)0(modp)abc1(modp)(dp)=p1a=2p1b=2p1c=2dmodpemodpd+e+c10(modp)abc1(modp)((a1)dp)=p1a=2p1b=2p1c=2emodpabc1(modp)((a1)(1ce)p)=p1a=1p1b=2cmodpabc1(modp)((a1)(c1)p)=amodpcmodp((a1)(c1)p)amodp((a1)(¯a1)p)=cmodp(c1p)p1a=2(¯ap)=0. (2.11)

    Combining (2.6)–(2.11) we can deduce that

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dp)=p+1. (2.12)

    Applying the reduced residue system modulo p and (2.12),

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dep)=amodpbmodpcmodpdmodpemodpad+bd+cdd+ed+1(modp)abcd3d2e(modp)(d2ep)=amodpbmodpcmodpdmodpemodpa+b+c1+e+¯d(modp)abc¯de(modp)(ep)=amodpbmodpcmodpdmodpemodpa+b+c1+e+d(modp)abcde(modp)(ep)=p+1. (2.13)

    Now combing (2.12) and (2.13), we can easily prove Lemma 3.

    Lemma 4. If p3(mod4), then we will get

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abp)=p+1,

    and

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(adp)=p22p1.

    Proof. Using important properties related to the reduced residue system and Lemma 3 we may immediately obtain

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abp)=amodpbmodpcmodpdmodpemodpab+b+cbdb+eb+1(modp)ab3cb2de(modp)(ab2p)=amodpbmodpcmodpdmodpemodpa+1+cd+e+¯b(modp)ac¯bde(modp)(ap)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dp)=p+1. (2.14)

    Similarly, applying Lemma 2 we also have

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(adp)=amodpbmodpcmodpdmodpemodpad+bd+cdd+ed+1(modp)abcd3d2e(modp)(ad2p)=amodpbmodpcmodpdmodpemodpa+b+c1+e+¯d(modp)abc¯de(modp)(ap)=amodpbmodpcmodpdmodpemodpa+b+c1+e+d(modp)abcde(modp)(ap)=p22p1. (2.15)

    Now Lemma 4 is proved.

    Lemma 5. If p is an odd prime, then

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)a2+b2+c2d2+e2+1(modp)abcde(modp)1=8(3p215p+20).

    Proof. Utilizing the properties of the congruence equation modulo p we infer that

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)a2+b2+c2d2+e2+1(modp)abcde(modp)1=amodpbmodpcmodpdmodpemodpa2+b2+c2d2+e2+1(modp)(a2+b2+c2)2a4b4c4(d2+e2+1)2d4e41(modp)abcde(modp)1=amodpbmodpcmodpdmodpemodpa2+b2+c2d2+e2+1(modp)a2b2+a2c2+b2c2d2+e2+d2e2(modp)abcde(modp)1=amodpbmodpcmodpdmodpemodp(a21)(b21)(c21)0(modp)a2+b2+c2d2+e2+1(modp)abcde(modp)1=3amodpbmodpcmodpdmodpemodpa21(modp)b2+c2d2+e2(modp)abcde(modp)13amodpbmodpcmodpdmodpemodp1+c2d2+e2modpabcdemodp1+amodpbmodpcmodpdmodpemodpa2b2c21(modp)2d2+e2(modp)abcde(modp)1=3(p1)amodpbmodpcmodpdmodpa21(modp)b2+c2d2+1(modp)abcd(modp)13amodpbmodpcmodpdmodpemodpa2b21(modp)(d21)(e21)0(modp)abcde(modp)1+16=3(p1)amodpbmodpcmodpdmodpa21(modp)(b21)(c21)0(modp)abcd(modp)148(p2)+16=24(p1)(p2)48(p2)+16=8(3p215p+20).

    This completes the proof of Lemma 5.

    Lemma 6. Assume that p3(mod4), the identity will be given

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)1=p3+6p219p8.

    Proof. Since p3(mod4), then we get

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)1=amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)1=12amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)a4b4c4d4e4(modp)1=12amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(1+(ap))(1+(bp))(1+(cp))×(1+(dp))(1+(ep))=12amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)1+32amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ap)
    +amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dp)+32amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abp)+12amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(edp)+3amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(adp)+12amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abcp)+3amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abdp)+32amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(adep)+amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcdemodp(abcdp)+32amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abdep)+12amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abcdep). (2.16)

    Note that the identities

    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abcp)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(dep); (2.17)
    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abdp)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ecp); (2.18)
    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(adep)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(bcp); (2.19)
    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abcdp)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(ep); (2.20)
    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abdep)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(cp); (2.21)
    amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)(abcdep)=amodpbmodpcmodpdmodpemodpa+b+cd+e+1(modp)abcde(modp)1. (2.22)

    From Lemma 1 to Lemma 4, formulas (2.16)–(2.22) we have

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)1=12(p33p2+5p5)+32(p22p1)(p1)32(p1)12(p1)+3(p22p1)12(p1)+3(p22p1)32(p1)(p1)+32(p22p1)+12(p33p2+5p5)=p3+6p219p8.

    This proves Lemma 6.

    We utilize the lemmas presented in Section 2 to finalize the proof of theorems. Firstly, we prove Theorem 2. Use the identities

    amodpe(nap)={p,if pn;0,if pn,

    for (n,p)=1, we have

    amodpe(na2p)=1+amodp(1+χ2(a))e(nap)=(np)τ(χ2).

    Then we calculate the equation.

    χmodpmmodp|amodpχ(a)e(ma4+a2p)|6=pχmodpamodpbmodpcmodpdmodpemodpfmodpa4+b4+c4d4+e4+f4(modp)χ(abc¯def)e(a2+b2+c2d2e2f2p)=p(p1)amodpbmodpcmodpdmodpemodpfmodpa4+b4+c4d4+e4+f4(modp)abcdef(modp)e(a2+b2+c2d2f2e2p)=p(p1)amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)fmodpe(f2(a2+b2+c2d2e21)p)=p2(p1)amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)a2+b2+c2d2+e2+1(modp)abcde(modp)1p(p1)amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)1+p(p1)τ(χ2)amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)(a2+b2+c2d2e21p). (3.1)

    Note that p3(mod4) and the identity τ(χ2)=ip. It is clear that τ(χ2) is a purely imaginary number. But the left hand side of the formula (27) is a real number, it follows that

    amodpbmodpcmodpdmodpemodpa4+b4+c4d4+e4+1(modp)abcde(modp)(a2+b2+c2d2e21p)=0. (3.2)

    From (3.1), (3.2), Lemmas 5 and 6 we have the identity

    χmodpmmodp|amodpχ(a)e(ma4+a2p)|6=8p2(p1)(3p215p+20)p(p1)(p3+6p219p8)=p(p1)(23p3126p2+179p+8).

    This completes the proof of Theorem 2.

    Then we give the proof of Theorem 1.To prove Theorem 1, note that

    amodpe(na2p)=(np)amodp(ap)e(ap)={(np)ip,if p3(mod4);(np)p,if p1(mod4),

    where (n,p)=1, similar to the proof of Theorem 2, we have

    1p(p1)χmodpmmodp|amodpχ(a)e(ma4+a2p)|4=amodpbmodpcmodpabc(modp)a4+b4c4+1(modp)dmodpe(d2(a2+b2c21)p)=amodpbmodp(a41)(b41)0(modp)dmodpe(d2(a21)(b21)p). (3.3)

    When p3mod4, we know that 1 is a quadratic nonresidue modulo p, so we have

    amodpbmodp(a41)(b41)0(modp)dmodpe(d2(a21)(b21)p)=amodpbmodp(a21)(b21)0(modp)dmodpe(d2(a21)(b21)p)=4(p1)(p3)+4(p1)=4(p1)(p2). (3.4)

    When p1(mod4), we have

    amodpbmodp(a41)(b41)0(modp)dmodpe(d2(a21)(b21)p)=amodpbmodp(a21)(b21)0(modp)dmodpe(d2(a21)(b21)p)+amodpbmodp(a2+1)(b2+1)0(modp)dmodpe(d2(a21)(b21)p)=4(p1)(p2)+p2a=2p2b=2(a2+1)(b2+1)0(modp)((a21)(b21)p)pp2a=2p2b=2(a2+1)(b2+1)0(modp)1=4(p1)(p2)+4p2b=2(2(b21)p)p4(4p)p4(p4)=4(p24p+6)+4p((2p)p1b=1((b21)p)1)=4(p24p+6)+4p(2(2p)1)={4(p24p+6+p),if p5(mod8);4(p24p+63p),if p1(mod8), (3.5)

    which used χ2(2)=1, if p1(mod8), and χ2(2)=1, if p5(mod8).

    Then from (3.3)–(3.5), we can get

    1p(p1)χmodpmmodp|amodpχ(a)e(ma4+a2p)|4={4(p1)(p2),if p3(mod4);4(p24p+6+p),if p5(mod8);4(p24p+63p),if p1(mod8).

    This completes the proofs of our all results.

    The main result of this paper is to give two exact calculating formulae for the sixth power mean values of a generalized two-term exponential sums. One of which is

    1p(p1)χmodpmmodp|amodpχ(a)e(ma4+a2p)|6=23p3126p2+179p+8,

    here, p3(mod4).

    If p1(mod4), then we do not have an identity or a nontrivial asymptotic formula for this sixth power mean yet. This is an open problem.

    Of course, our result also provides some effective methods for calculating the sixth power mean of the high-th two-term exponential sums. We assert that these contributions will greatly advance the investigation of irrelated issues.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to thank the editor and referees for their helpful suggestions and comments that significantly improved the presentation of this work. All authors have equally contributed to this work, and they have read and approved this final manuscript. This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-072)and the National Natural Science Foundation of China(12126357).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [2] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212.
    [3] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [4] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [5] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
    [6] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [7] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [8] Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential sums, Abstract Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726 doi: 10.1155/2014/474726
    [9] X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96.
    [10] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [11] H. S. Kim, T. Kim, On certain values of p-adic q-L-functions, Rep. Fac. Sci. Engrg. Saga Univ. Math., 23 (1995), 1–7.
    [12] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math., 48 (1994), 73–86.
    [13] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer, 1976.
    [14] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer, 1982.
    [15] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1274) PDF downloads(56) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog