
Let G(V,E) be a graph, where V(G) is the vertex set and E(G) is the edge set. Let k be a natural number, a total k-labeling φ:V(G)⋃E(G)→{0,1,2,3,...,k} is called an edge irregular reflexive k-labeling if the vertices of G are labeled with the set of even numbers from {0,1,2,3,...,k} and the edges of G are labeled with numbers from {1,2,3,...,k} in such a way for every two different edges xy and x′y′ their weights φ(x)+φ(xy)+φ(y) and φ(x′)+φ(x′y′)+φ(y′) are distinct. The reflexive edge strength of G, res(G), is defined as the minimum k for which G has an edge irregular reflexive k-labeling. In this paper, we determine the exact value of the reflexive edge strength for the r-th power of the path Pn, where r≥2, n≥r+4.
Citation: Mohamed Basher. Edge irregular reflexive labeling for the r-th power of the path[J]. AIMS Mathematics, 2021, 6(10): 10405-10430. doi: 10.3934/math.2021604
[1] | Muhammad Amir Asif, Rashad Ismail, Ayesha Razaq, Esmail Hassan Abdullatif Al-Sabri, Muhammad Haris Mateen, Shahbaz Ali . An application on edge irregular reflexive labeling for $ m^t $-graph of cycle graph. AIMS Mathematics, 2025, 10(1): 1300-1321. doi: 10.3934/math.2025060 |
[2] | Mohamed Basher . On the reflexive edge strength of the circulant graphs. AIMS Mathematics, 2021, 6(9): 9342-9365. doi: 10.3934/math.2021543 |
[3] | Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad . Reflexive edge strength of convex polytopes and corona product of cycle with path. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657 |
[4] | Martin Bača, Muhammad Imran, Zuzana Kimáková, Andrea Semaničová-Feňovčíková . A new generalization of edge-irregular evaluations. AIMS Mathematics, 2023, 8(10): 25249-25261. doi: 10.3934/math.20231287 |
[5] | Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková . Modular edge irregularity strength of graphs. AIMS Mathematics, 2023, 8(1): 1475-1487. doi: 10.3934/math.2023074 |
[6] | Ibrahim Tarawneh, Roslan Hasni, Ali Ahmad, Muhammad Ahsan Asim . On the edge irregularity strength for some classes of plane graphs. AIMS Mathematics, 2021, 6(3): 2724-2731. doi: 10.3934/math.2021166 |
[7] | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384 |
[8] | Fatma Salama, Randa M. Abo Elanin . On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Mathematics, 2021, 6(8): 8127-8148. doi: 10.3934/math.2021471 |
[9] | Mohamed R. Zeen El Deen, Ghada Elmahdy . New classes of graphs with edge $ \; \delta- $ graceful labeling. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197 |
[10] | Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055 |
Let G(V,E) be a graph, where V(G) is the vertex set and E(G) is the edge set. Let k be a natural number, a total k-labeling φ:V(G)⋃E(G)→{0,1,2,3,...,k} is called an edge irregular reflexive k-labeling if the vertices of G are labeled with the set of even numbers from {0,1,2,3,...,k} and the edges of G are labeled with numbers from {1,2,3,...,k} in such a way for every two different edges xy and x′y′ their weights φ(x)+φ(xy)+φ(y) and φ(x′)+φ(x′y′)+φ(y′) are distinct. The reflexive edge strength of G, res(G), is defined as the minimum k for which G has an edge irregular reflexive k-labeling. In this paper, we determine the exact value of the reflexive edge strength for the r-th power of the path Pn, where r≥2, n≥r+4.
Throughout this paper we consider G a connected, simple, and undirected graph, where V and E are denote to sets of vertices and edges of G with cardinalities |V| and |E|, respectively. Chartrand et al. presented in [12] the edge k-labeling of graph G, φ:E(G)→{1,2,3,...,k} such that the aggregate of the labels of edges incident with a vertex is different for all the vertices of G. Such labelings were referred to as irregular assignments and irregular strength, s(G), of a graph G is known as the smallest k for which G has an irregular assignment using labels at most k. In [16] Lahel gives a comprehensive over view of the strength of irregularity. For some studies on irregularity strength see papers by Amar and Tongi [5], Dimitiz et al. [13], Gyárfás [14], and Nierhoff [17]. In [7] Bača et al. motivated the concept of irregular strength and started to investigate the total edge irregularity strength of a graph. An edge irregular total k-labeling of the graph G is a labeling φ:V(G)⋃E(G)→{1,2,3,...,k} such that for every two distinct edges xy, x′y′ of G the edge weights wtφ(xy)=φ(x)+φ(xy)+φ(y)≠wtφ(x′y′)=φ(x′)+φ(x′y′)+φ(y′). The total edge irregularity strength, tes(G) is defined as the smallest k for which G has an edge irregular total k-labeling. Some interesting studies on the total edge irregularity strength can be seen in [1,2,3,4,8,9]. Further, Ryan, Munasinghe, and Tanna in [18] introduced the concept of the edge irregular reflexive. For a graph G(V,E) they define an edge labeling φe:E(G)→{1,2,3,...,ke} and a vertex labeling φv:V(G)→{0,2,4,...,2kv}, then defined the labeling φ by:
φ(x)={φv(x), ifx∈V(G)φe(x), ifx∈E(G) |
is a total k-labeling, where k=max{ke,2kv}. Moreover, if for every two different edges xy and x′y′ of G one has wtφ(xy)≠wtφ(x′y′), where wtφ(xy)=φe(xy)+φv(x)+φv(y), then the total k-labeling φ is called an edge irregular reflexive labeling of graph G. The reflexive edge strength, res(G), is defined as the smallest k for which G has an edge irregular reflexive k-labeling. For more research on reflexive edge strength see [6,10,11,15,20,21,22]. In this paper, we estimate the exact value of the reflexive edge strength for the r-th power of the path Pn, where r≥2, n≥r+4.
Definition 1.1. ([19]) The r-th power of a graph G, denoted by Gr, is a graph with the same vertex set of G such that adding edges between the vertices which are at distance at most r, see Figure 1.
When we prove the result, we will often use the following lemma, which has been proved in [18].
Lemma 1.1. ([18]). For every graph G,
res(G)≥{⌈|E(G)|3⌉, if|E(G)|≢2,3(mod6),⌈|E(G)|3⌉+1, if|E(G)|≡2,3(mod6). |
Furthermore, Bača et al. [10] proposed the following conjecture:
Conjecture 1.1. ([10]) Consider the graph G, which has a maximum degree △=△(G). Hence:
res(G)=max{⌊△+22⌋,⌈|E(G)|3⌉+r} |
where r=1 for |E(G)|≡2,3 (mod 6), and zero otherwise.
The r-th power of a path Pn denoted by Prn, n≥3,r≥2. Let us denote to the vertex set and edge set of Prn by V(Prn)={xi,1≤i≤n} and E(Prn)=⋃j=1r{xixi+j,1≤i≤n−j}. In the next theorem, we determine the reflexive edge strength of various powers of a path Pn.
Theorem 1. For the r-th power of a path Pn, r≥2, n≥r+4.
res(Prn)={⌈r(2n−r−1)6⌉, ifr(2n−r−1)2≢2,3(mod6),⌈r(2n−r−1)6⌉+1, ifr(2n−r−1)2≡2,3(mod6). |
Proof. Note that the r-th power of Pn has r(2n−r−1)2 edges. The lower bound for res of the r-th power of Pn is as follow from the Lemma 1. res(Prn)≥k=⌈r(2n−r−1)6⌉+1 if r(2n−r−1)2≡2,3 (mod 6) and res(Prn)≥k=⌈r(2n−r−1)6⌉ if r(2n−r−1)2≢2,3 (mod 6). Moreover, we prove that:
res(Prn)≤{⌈r(2n−r−1)6⌉, ifr(2n−r−1)2≢2,3(mod6),⌈r(2n−r−1)6⌉+1, ifr(2n−r−1)2≡2,3(mod6). |
Let k∗=max{⌊2k+r(r+1)−42r⌋,3} and for n≥r+4, we recognise two cases.
Case 1. When ⌈n−k∗2⌉≥r.
Construct the total k-labeling φ of Prn in the following way:
The corresponding labeling for P38 is illustrated in Figure 2. Otherwise we have the following labeling:
φ(xi)={0, 1≤i≤k∗2⌊rk∗4⌋, k∗+1≤i≤k∗+⌈n−k∗2⌉k, k∗+⌈n−k∗2⌉+1≤i≤n |
Furthermore, the labels of edges are defined as the following :
φ(xixi+1)={i, 1≤i≤k∗−1r(2k∗−r−1)2−2⌊rk∗4⌋+1, i=k∗(r−1)k∗−4⌊rk∗4⌋+i, k∗+1≤i≤k∗+⌈n−k∗2⌉−1r(2k∗−r−1)2+r⌈n−k∗2⌉−−k−2⌊rk∗4⌋+1, i=k∗+⌈n−k∗2⌉r(2n−r−1)2−⌊n−k∗2⌋(⌊n−k∗2⌋−3)2−−n−2k+i, k∗+⌈n−k∗2⌉+1≤i≤n−1 |
φ(xixi+2)={k∗+i−1, 1≤i≤k∗−2(r−1)k∗−r(r+1)2−−2⌊rk∗4⌋+i+3, k∗−1≤i≤k∗(r−1)k∗−4⌊rk∗4⌋++⌈n−k∗2⌉+i−1, k∗+1≤i≤k∗+⌈n−k∗2⌉−2(r−1)(k∗+⌈n−k∗2⌉)−r(r+1)2−−2⌊rk∗4⌋−k+i+3, k∗+⌈n−k∗2⌉−1≤i≤k∗+⌈n−k∗2⌉r(2n−r−1)2−⌊n−k∗2⌋(⌊n−k∗2⌋−5)2−−n−2k+i−1, k∗+⌈n−k∗2⌉+1≤i≤n−2 |
For 3≤j≤r, there exist three subcases:
Subcase 1.1. If ⌊n−k∗2⌋>r, hence the edges label as following:
φ(xixi+j)={φ(xk∗−j+1xk∗)+i, 1≤i≤k∗−jφ(xk∗xk∗+j−1)−k∗+j+i, k∗−j+1≤i≤k∗φ(xk∗+⌈n−k∗2⌉−j+1xk∗+⌈n−k∗2⌉)−−k∗+i, k∗+1≤i≤k∗+⌈n−k∗2⌉−jφ(xk∗+⌈n−k∗2⌉xk∗+⌈n−k∗2⌉+j−1)−−⌈n−k∗2⌉−k∗+j+i, k∗+⌈n−k∗2⌉−j+1≤i≤k∗+⌈n−k∗2⌉φ(xn−j+1xn)−⌈n−k∗2⌉−k∗+i, k∗+⌈n−k∗2⌉+1≤i≤n−j |
Subcase 1.2. If ⌊n−k∗2⌋=r, here for 3≤j≤r−1 the edge labels are common the pervious subcase, and for j=r we define edge labels as follows:
φ(xixi+r)={φ(xk∗−r+1xk∗)+i, 1≤i≤k∗−rφ(xk∗xk∗+r−1)−k∗+r+i, k∗−r+1≤i≤k∗φ(xk∗+⌈n−k∗2⌉xk∗+⌈n−k∗2⌉+r−1)−k∗+i, k∗+1≤i≤k∗+⌈n−k∗2⌉. |
Subcase 1.3. If ⌊n−k∗2⌋=r−1, for 3≤j≤r−2 the edge labels are common the Subcase 1.1 now, we construct edge labels only for j=r−1 and j=r as follows:
φ(xixi+r−1)={φ(xk∗−r+2xk∗)+i, 1≤i≤k∗−r+1φ(xk∗xk∗+r−2)−k∗+r+i−1, k∗−r+2≤i≤k∗φ(xk∗+⌈n−k∗2⌉−r+2xk∗+⌈n−k∗2⌉)−−k∗+i, k∗+1≤i≤k∗+⌈n−k∗2⌉−r+1φ(xk∗+⌈n−k∗2⌉xk∗+⌈n−k∗2⌉+r−2)−−k∗−⌈n−k∗2⌉+r+i−1, k∗+⌈n−k∗2⌉−r+2≤i≤k∗+⌈n−k∗2⌉−1. |
φ(xixi+r)={φ(xk∗−r+1xk∗)+i, 1≤i≤k∗−rφ(xk∗xk∗+r−1)−k∗+r+i, k∗−r+1≤i≤k∗φ(xk∗+⌈n−k∗2⌉xk∗+⌈n−k∗2⌉+r−1)−k∗+i, k∗+1≤i≤k∗+⌈n−k∗2⌉−1. |
An explanation of above labeling is depicted in Figure 3. Evidently the vertices of Prn labeled with even numbers. Hence we will compute the weights of edges under the labeling φ:
The edge set of Prn can be divided into five mutually separated subsets, As,1≤s≤5 as follows:
For 1≤j≤r,
● A1={xixi+j:1≤i≤k∗−j} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:k∗−j≤i≤k∗}: The set of all edges which have endpoints tagged with 0 and 2⌊rk∗4⌋,
● A3={xixi+j:k∗≤i≤k∗+⌈n−k∗2⌉−j}: The set of all edges which have endpoints tagged with 2⌊rk∗4⌋,
● A4={xixi+j:k∗+⌈n−k∗2⌉−r≤i≤k∗+⌈n−k∗2⌉}: The set of all edges which have endpoints tagged with 2⌊rk∗4⌋ and k,
● A5={xixi+j:k∗+⌈n−k∗2⌉+1≤i≤n−j}: The set of all edges which have endpoints tagged with k.
Therefore, the edge weights of Prn under the labeling φ are the following:
1. The edge weights of the set A1, get the consecutive numbers from the set {1,2,...,r(2k∗−r−1)2},
2. The edge weights of the set A2, receive the consecutive numbers from the set {r(2k∗−r−1)2+1,...,rk∗},
3. The edge weights of the set A3, get the consecutive numbers from the set {rk∗+1,...,r(2k∗−r−1)2+r⌈n−k∗2⌉},
4. The edge weights of the set A4, get the consecutive numbers from the set {r(2k∗−r−1)2+r⌈n−k∗2⌉+1,...,r(2n−r−1)2−⌊n−k∗2⌋(⌊n−k∗2⌋−1)2},
5. Finally, the edge weights of the set A5, receive the consecutive numbers from the set {r(2n−r−1)2−⌊n−k∗2⌋(⌊n−k∗2⌋−1)2+1,...,r(2n−r−1)2}.
An explanation of above corresponding weights is depicted in Figure 4. It is easy to check that the weights of the edges are different numbers from the set {1,2,3,...,r(2n−r−1)2}.
Case 2. When ⌈n−k∗2⌉<r.
In this case we have three subcases.
Subcase 2.1. If k∗<n2. We can define the total k-labeling φ of Prn as follows:
The corresponding labelings for P37, P59 and P410 are illustrated in Figure 7, 8 and 9 respectively. Otherwise we have following labeling:
φ(xi)={0, 1≤i≤k∗2⌈k4⌉, k∗+1≤i≤n−k∗+1k, n−k∗+2≤i≤n |
Moreover, to define edge labels for Prn we have two subcases:
Subcase 2.1.1 If k∗≥r, then we construct the edge labels as follows:
φ(xixi+1)={i, 1≤i≤k∗−1r(2k∗−r−1)2−2⌈k4⌉+1, i=k∗(r−1)k∗−4⌈k4⌉+i, k∗+1≤i≤n−k∗rk∗+(n−2k∗+1)(n−2k∗)2−−2⌈k4⌉−k+1, i=n−k∗+1r(2n−r−1)2−(k∗−1)(k∗−4)2−−n−2k+i, n−k∗+2≤i≤n−1 |
For 1<j<n−2k∗+1,
φ(xixi+j)={φ(xk∗−j+1xk∗)+i, 1≤i≤k∗−jφ(xk∗xk∗+j−1)−k∗+i+j, k∗−j+1≤i≤k∗φ(xn−k∗−j+1xn−k∗)−k∗+i, k∗+1≤i≤n−k∗−jφ(xn−k∗xn−k∗+j−1+k∗−n−k∗+i, n−k∗−j+1≤i≤n−k∗φ(xn−j+1xn)−k∗−n+i, n−k∗+1≤i≤n−j. |
φ(xixi+n−2k∗+1)={φ(x3k∗−nxk∗)+i, 1≤i≤3k∗−n−1φ(xk∗xn−k∗)+n−3k∗+i+1, 3k∗−n≤i≤k∗φ(xn−k∗x2n−3k∗)−k∗+i, k∗+1≤i≤n−k∗+1φ(x2k∗xn)−n+k∗+i−1, n−k∗+2≤i≤2k∗−1. | (2.1) |
φ(xixi+n−2k∗+2)={φ(x3k∗−n−1xk∗)+i, 1≤i≤3k∗−n−2φ(xk∗xn−k∗−1)+n−3k∗+i+2, 3k∗−n−1≤i≤k∗−1r(2k∗−r−1)2+(n−2k∗+1)(2r−n+2k∗)2−−k+1, i=k∗φ(xn−k∗x2n+3k∗)−k∗+i, k∗+1≤i≤n−k∗+1φ(x2k∗−1xn)−n+k∗+i, n−k∗+2≤i≤2k∗−2 |
Now, for n−2k∗+3≤i≤r we have three subcases:
Subcase 2.1.1.1 If k∗≥r+2, hence the labels of edges are defined as follows:
φ(xixi+j)={φ(xk∗−j+1xk∗)+i, 1≤i≤k∗−jφ(xn−k∗−j+2xn−k∗+1)−k∗+j+i, k∗−j+1≤i≤n−k∗−j+1φ(xk∗xk∗+j−1)−n+k∗+j+i−1, n−k∗−j+2≤i≤k∗φ(xn−k∗+1xn−k∗+j)−k∗+i, k∗+1≤i≤n−k∗+1φ(xn−j+1xn)−n+k∗+i−1, n−k∗+2≤i≤n−j. | (2.2) |
Subcase 2.1.1.2 If k∗=r+1, thus the edges n−2k∗+3≤j≤r−1, xixi+j, 1≤i≤n−j are labeled by Eq (2.2) and for j=r the edges are labeled as follows:
φ(xixi+r)={φ(xk∗−r+1xk∗)+i, 1≤i≤k∗−rφ(xn−k∗−r+2xn−k∗+1)−k∗+r+i, k∗−r+1≤i≤n−k∗−r+1φ(xk∗xk∗+r−1)−n+k∗+r+i−1, n−k∗−r+2≤i≤k∗φ(xn−k∗+1xn−k∗+r)−k∗+i, k∗+1≤i≤n−k∗+1. |
Subcase 2.1.1.3 If k∗=r, then the edges xixi+j, n−2k∗+3≤j≤r−2, 1≤i≤n−j are labeled by Eq (2.2) and for j=r−1 and j=r the edges are labeled as follows:
φ(xixi+r−1)={φ(x2xk∗)+1, i=1φ(xn−2k∗+3xn−k∗+1)+i−1, 2≤i≤n−2k∗+2φ(xk∗x2k∗−2)−n+2k∗+i−2, n−2k∗+3≤i≤k∗φ(xn−k∗+1xn−1)−k∗+i, k∗+1≤i≤n−k∗+1. |
φ(xixi+r)={φ(xn−2k∗+2xn−k∗+1)+i, 1≤i≤n−2k∗+1φ(xk∗x2k∗−1)−n+2k∗+i−1, n−2k∗+2≤i≤k∗φ(xn−k∗+1xn)−k∗+i, k∗+1≤i≤n−k∗. |
Subcase 2.1.2 If k∗=r−1, hence we can defined the edge labels as follows:
φ(xixi+1)={i, 1≤i≤k∗−1k∗(k∗−1)2−2⌈k4⌉+1, i=k∗k∗2−4⌈k4⌉+i, k∗+1≤i≤n−k∗n(n+1)+2k∗(3k∗−2n)+22−2⌈k4⌉−k, i=n−k∗+1k∗(n−k∗+1)−2k+i−3, n−k∗+2≤i≤n−1. |
For j=n−2k∗+1, we used the Eq (2.1) to label the edges and for j=n−2k∗+2 the edge labels given by:
φ(xixi+n−2k∗+2)={φ(x3k∗−n−1xk∗)+i, 1≤i≤3k∗−n−2φ(xk∗xn−k∗−1)+n−3k∗+i+2, 3k∗−n−1≤i≤k∗−1k∗(6n−7k∗−1)−n(n−1)+22−k, i=k∗φ(xn−k∗x2n+3k∗)−k∗+i, k∗+1≤i≤n−k∗+1φ(x2k∗−1xn)−n+k∗+i−1, n−k∗+2≤i≤2k∗−2. |
Further, the edges for n−2k∗+3≤j≤r−3 are labeled by Eq (2.2) and for j=r−2, j=r−1, and j=r the edges are labeled as follows:
φ(xixi+r−2)={φ(x2xk∗)+1, i=1φ(xn−2k∗+3xn−k∗+1)+i−1, 2≤i≤n−2k∗+2φ(xk∗x2k∗−2)−n+2k∗+i−2, n−2k∗+3≤i≤k∗φ(xn−k∗+1xn−1)−k∗+i, k∗+1≤i≤n−k∗+1. |
φ(xixi+r−1)={φ(xn−k∗−r+3xn−k∗+1)+i, 1≤i≤n−2k∗+1φ(xk∗x2k∗−1)−n+2k∗+i−1, n−2k∗+2≤i≤k∗φ(xn−k∗+1xn)−k∗+i, k∗+1≤i≤n−k∗. |
φ(xixi+r)={φ(xn−2k∗+1xn−k∗+1)+i, 1≤i≤n−2k∗φ(xk∗x2k∗)+i, n−2k∗+1≤i≤k∗. |
An explanation of above labeling is depicted in Figure 5.
Also in this case the vertices are labeled with even number. Now we will estimate the weights of edges under the labeling φ:
We split the edge set of Prn into six mutually separated subsets, As, 1≤s≤6 as follows: In Subcase 2.1.1.1, and Subcase 2.1.1.2 we have:
● A1={xixi+j:1≤j≤r,1≤i≤k∗−j} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:1≤j≤n−2k∗+1,k∗−j+1≤i≤k∗}⋃{xixi+j:n−2k∗+2≤j≤r,k∗−j+1≤i≤n−k∗−j+1}: The set of all edges which have endpoints tagged with 0 and 2⌈k4⌉,
● A3={xixi+j:1≤j≤n−2k∗,k∗+1≤i≤n−2k∗−j+1}: The set of all edges which have endpoints tagged with 2⌈k4⌉,
● A4={xixi+j:1≤j≤n−2k∗+1,n−k∗−j+2≤i≤n−k∗+1}⋃{xixi+j:n−2k∗+2≤j≤r,k∗+1≤i≤n−k∗+1}: The set of all edges which have endpoints tagged with 2⌈k4⌉ and k,
● A5={xixi+j:1≤j≤k∗−2,n−k∗+2≤i≤n−j}: The set of all edges which have endpoints tagged with k,
● A6={xi,xi+j,n−2k∗+2≤j≤r,n−k∗−j+2≤i≤k∗}: The set of all edges which have endpoints tagged with 0 and k.
In Subcase 2.1.1.3, A1={xixi+j:1≤j≤r−1,1≤i≤k∗−j} and other subsets As, 2≤s≤6 as in the Subcase 2.1.1.1, and in Subcase 2.1.1.2, A1={xixi+j:1≤j≤k∗−1,1≤i≤k∗−j}, A2={xixi+j:1≤j≤n−2k∗+1,k∗−j+1≤i≤k∗}⋃{xixi+j:n−2k∗+2≤j≤k∗,k∗−j+1≤i≤n−k∗−j+1}⋃{x1xn−k∗+1} and other subsets As, 3≤s≤6 as in the Subcase 2.1.1.1. Therefore, we obtain the edge weights for the Subcases 2.1.1.1, 2.1.1.2, and 2.1.1.3 as follows:
1. The edges of the set A1, obtain weights from the set of sequential integers {1,2,...,r(2k∗−r−1)2},
2. The edges of the set A2, obtain weights from the set of sequential integers {r(2k∗−r−1)2+1,...,r(2k∗−r−1)2+(n−2k∗+1)(2r−n+2k∗)2},
3. The edges of the set A3, obtain weights from the set of sequential integers {rk∗+1,...,rk∗+(n−2k∗+1)(n−2k∗)2},
4. The edges of the set A4, obtain weights from the set of sequential integers {rk∗+(n−2k∗+1)(n−2k∗)2+1,...,r(2n−r−1)2−(k∗−1)(k∗−4)2+k∗+1)},
5. The edges of the set A5, get weights from the set of sequential integers {r(2n−r−1)2−(k∗−1)(k∗−4)2+k∗+2,...,r(2n−r−1)2},
6. Finally, the edges of the set A6, get weights from the set of sequential integers {r(2k∗−r−1)2+(n−2k∗+1)(2r−n+2k∗)2+1,...,rk∗}.
An explanation of above corresponding weights is depicted in Figure 6.
In the Subcase 2.1.2, the edge weights are obtained as follows :
1. The edges of the set A1, get weights from the set of sequential integers {1,2,...,k∗(k∗−1)2},
2. The edges of the set A2, get weights from the set of sequential integers {k∗(k∗−1)2+1,...,k∗(6n−7k∗−1)−n(n−1)+22−1)},
3. The edges of the set A3, admit weights from the set of sequential integers {k∗2+k∗+1,...,n(n+1)+2k∗(3k∗−2n)+22−1},
4. The edges of the set A4, admit weights from the set of sequential integers {n(n+1)+2k∗(3k∗−2n)+22,...,k∗(n−k∗)+n−2},
5. The edges of the set A5, receive weights from the set of sequential integers {k∗(n−k∗)+n−1,...,r(2n−r−1)2},
6. Finally, The edges of the set A6, receive weights from the set of sequential integers {k∗(6n−7k∗−1)−n(n−1)+22,...,k∗2+k∗}.
It is not hard to see that the weights of edges are distinct numbers from the set {1,2,3,...,(r(2n−r−1)2}.
Subcase 2.2. If k∗=n2. Define the total k-labeling φ of Prn as follows:
The corresponding labeling for P48 is illustrated in Figure 10. Otherwise we have following labeling:
φ(xi)={0, 1≤i≤k∗−12⌊(k∗−1)(k∗−2)4⌋, k∗≤i≤k∗+1k, k∗+2≤i≤n |
Now we define the edge labels as follows:
For 1≤j≤3 we have two subcases.
Subcase 2.2.1 If (k∗−1)(k∗+2)2≥k,
φ(xixi+1)={i, 1≤i≤k∗−2(k∗−1)(k∗−2)2−2⌊(k∗−1)(k∗−2)4⌋+1, i=k∗−1k∗(4r−k∗−1)−r(r+1)2−4⌊(k∗−1)(k∗−2)4⌋+1, i=k∗k∗(4r−k∗−1)−r(r+1)2−2⌊(k∗−1)(k∗−2)4⌋−k+2, i=k∗+1r(2n−r−1)2−k∗2−k∗+42−2k+i, k∗+2≤i≤n−1 |
φ(xixi+2)={k∗+i−2, 1≤i≤k∗−3k∗2−5k∗+22−2⌊(k∗−1)(k∗−2)4⌋+4+i, k∗−2≤i≤k∗−1k∗(4r−k∗−3)−r(r+1)2−2⌊(k∗−1)(k∗−2)4⌋+i+3, k∗≤i≤k∗+1(1+r)n−r(r+1)2−k∗2+k∗+82−2k+i, k∗+2≤i≤n−2 |
φ(xixi+3)={2k∗+i−5, 1≤i≤k∗−4k∗2−5k∗+22−2⌊(k∗−1)(k∗−2)4⌋+7+i, k∗−3≤i≤k∗−2k∗2+k∗−22−k+1, i=k∗−1k∗(4r−k∗−3)−r(r+1)2−2⌊(k∗−1)(k∗−2)4⌋−−k+i+5, k∗≤i≤k∗+1(2+r)n−r(r+1)2−k∗2+3k∗+142−2k+i, k∗+2≤i≤n−3 |
Subcase 2.2.2 If (k∗−1)(k∗+2)2<k,
φ(xixi+1)={i, 1≤i≤k∗−2(k∗−1)(k∗−2)2−2⌊(k∗−1)(k∗−2)4⌋+1, i=k∗−1(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2−−4⌊(k∗−1)(k∗−2)4⌋+k+1, i=k∗(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2−−2⌊(k∗−1)(k∗−2)4⌋+2, i=k∗+1(r−k∗+2)(k∗−1)+(2k∗−r−1)(r−2)2−−k∗−k+i, k∗+2≤i≤n−1 |
φ(xixi+2)={k∗+i−2, 1≤i≤k∗−3(k∗−1)(k∗−2)2−2⌊(k∗−1)(k∗−2)4⌋−−k∗+i+4, k∗−2≤i≤k∗−1(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2−−4⌊(k∗−1)(k∗−2)4⌋+k−k∗+i+3, k∗≤i≤k∗+1(r−k∗+2)(k∗−1)+(2k∗−r−1)(r−2)2++n−2k∗−k+i−2, k∗+2≤i≤n−2 |
φ(xixi+3)={2k∗+i−5, 1≤i≤k∗−4(k∗−1)(k∗−2)2−2⌊(k∗−1)(k∗−2)4⌋−−k∗+i+7, k∗−3≤i≤k∗−21, i=k∗−1(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2−−2⌊(k∗−1)(k∗−2)4⌋−k∗+i+5, k∗≤i≤k∗+1(r−k∗+2)(k∗−1)+(2k∗−r−1)(r−2)2++2n−3k∗−k+i−5, k∗+2≤i≤n−3 |
For 4≤j≤k∗−2 (if k∗≥6),
φ(xixi+j)={φ(xk∗−jxk∗−1)+i, 1≤i≤k∗−j−1φ(xk∗−j−2xk∗+1)−k∗+j+i+1, k∗−j≤i≤k∗−j+1φ(xk∗−1xk∗+j−2)−k∗+j+i, k∗−j+1≤i≤k∗−1φ(xk∗+1xk∗+j)−k∗+i+1, k∗≤i≤k∗+1φ(xn−j−1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+k∗−1)={φ(x3xk∗+1)+i, 1≤i≤2φ(xk∗−1x2k∗−3)+i−1, 3≤i≤k∗−1φ(xk∗+1x2k∗−1)−k∗+i+1, k∗≤i≤k∗+1. |
φ(xixi+k∗)={φ(x2xk∗+1)+1, i=1φ(xk∗−1x2k∗−2)+i−1, 2≤i≤k∗−1φ(xk∗+1x2k∗)−k∗+i+1, k∗≤i≤k∗+1. |
φ(xixi+k∗+1)=φ(xk∗−1x2k∗−1)+i, k∗≤i≤n−k∗−1. |
For k∗+2≤j≤2r−k∗+1,
φ(xixi+j)=φ(xn−j+1xn)+i, 1≤i≤n−j. |
Thus the vertices are labeled with even numbers. Now we will calculate the weights of edges under the labeling φ:
Like in the previous case the edge set of Prn can be partied into six mutually separated subsets As,1≤i≤6 as follows:
● A1={xixi+j:1≤j≤k∗−2,1≤i≤k∗−j−1} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:1≤j≤2,k∗−j≤i≤k∗−1}⋃{xixi+j:3≤j≤k∗−1,k∗−j≤i≤k∗−j+1}⋃{x1xk∗+1}: The set of all edges which have endpoints tagged with 0 and 2⌊(k∗−1)(k∗−2)4⌋,
● A3={xk∗xk∗+1}: The set of only one edge which has endpoints 2⌊(k∗−1)(k∗−2)4⌋,
● A4={xk∗xk∗+j,xk∗+1xk∗+j+1:3≤j≤n−1,}⋃{xk∗+1xk∗+2,xk∗xn}: The set of all edges which have endpoints tagged with 2⌈k4⌉ and k,
● A5={xixi+j:1≤j≤k∗−2,k∗+2≤i≤n−j}: The set of all edges which have endpoints tagged with k,
● A6={xixi+j,3≤j≤r,k∗−j+2≤i≤k∗−1}: The set of all edges which have endpoints tagged with 0 and k.
Accordingly we obtain the edge weights as follows:
In the Subcase 2.2.1,
1. The edge weights of the set A1, admit the successive numbers from the set {1,2,...,(k∗−1)(k∗−2)2},
2. The edge weights of the set A2, receive the successive numbers from the set {(k∗−1)(k∗−2)2+1,...,k∗(k∗+1)−22},
3. The edge weight of the set A3, admits the number {k∗(4r−k∗−1)−r(r+1)2+1};
4. The edge weights of the set A4, admit the successive numbers from the set {k∗(4r−k∗−1)−r(r+1)2+2,...,r(2n−r−1)2−k∗2−3k∗2},
5. The edge weights of the set A5, receive the successive numbers from the set r(2n−r−1)2−k∗2−3k∗2+1,...,r(2n−r−1)2},
6. Finally, the edge weights of the set A6, receive the successive numbers from the set {k∗2+k∗−22+1,...,k∗(4r−k∗−1)−r(r+1)2}.
In the Subcase 2.2.2,
1. The edge weights of the set A1, admit the successive numbers from the set {1,2,...,(k∗−1)(k∗−2)2},
2. The edge weights of the set A2, receive the successive numbers from the set {(k∗−1)(k∗−2)2+1,...,(k∗−1)(k∗+2)2},
3. The edge weight of the set A3, admits the number {(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2+k+1},
4. The edge weights of the set A4, admit the successive numbers from the set {(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2+k,...,(r−k∗+2)(k∗−1)+(2k∗−r−1)(r−2)2+k+1},
5. The edge weights of the set A5, receive the successive numbers from the set {(r−k∗+2)(k∗−1)+(2k∗−r−1)(r−2)2+k+2,...,(2r−k∗+2)(k∗−1)2+(2k∗−r−1)(r−2)2+k+1},
6. The edge weights of the set A6, receive the successive numbers from the set {k+1,...,(r−k∗)(k∗−1)+(2k∗−r−1)(r−2)2+k}.
Hence the edge weights in the Subcases 2.2.1 and 2.2.2 are distinct numbers from the sets {1,2,3,...,r(2n−r−1)2} and {1,2,3,...,(2r−k∗+2)(k∗−1)2+(2k∗−r−1)(r−2)2+k+1} respectively.
Subcase 2.3 If k∗>n2, then we have the following subcases:
Subcase 2.3.1 If n is odd, we construct the total k-labeling φ of Prn as follows:
φ(xi)={0, 1≤i≤n−k∗−12⌊(n−k∗−1)(n−k∗−2)4⌋, n−k∗≤i≤n+122⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+3)4⌋, n+32≤i≤k∗+1k, k∗+2≤i≤n. |
Now, to define the edge labeling we have to consider the following two subcases:
Subcase 2.3.1.1 If 2k∗−n=1,
φ(xixi+1)={i, 1≤i≤k∗−3(k∗−2)(k∗−3)2−2⌊(k∗−2)(k∗−3)4⌋+1, i=k∗−2 |
φ(xk∗−1xk∗)={r(2n−r−1)2−(k∗−2)(k∗+3)2−−4⌊(k∗−2)(k∗−3)4⌋−2, if4⌊(k∗−2)(k∗−3)4⌋≥k(k∗−2)(k∗+3)2−4⌊(k∗−2)(k∗−3)4⌋+1, if4⌊(k∗−2)(k∗−3)4⌋<k. |
φ(xixi+1)={r(2n−r−1)2−(k∗−2)(k∗+7)2−−4⌊(k∗−2)(k∗−3)4⌋−1, i=k∗r(2n−r−1)2−(k∗−2)(k∗+3)2−−2⌊(k∗−2)(k∗−3)4⌋−k+1, i=k∗+1r(2n−r−1)2−k∗2−3k∗+82−2k+i, k∗+2≤i≤n−1. |
φ(xixi+2)={k∗−3+i, 1≤i≤k∗−4k∗2−7k∗+162−2⌊(k∗−2)(k∗−3)4⌋+i, k∗−3≤i≤k∗−2r(2n−r−1)2−(k∗−2)(k∗+7)2−−4⌊(k∗−2)(k∗−3)4⌋, i=k∗−1r(2n−r−1)2−(k∗−2)(k∗+3)2−−2⌊(k∗−2)(k∗−3)4⌋−k+1, i=k∗r(2n−r−1)2−(k∗−2)(k∗+3)2−−2⌊(k∗−2)(k∗−3)4⌋−k+2, i=k∗+1(2n−r)(r+1)2−k∗2−k∗−62−2k+i, k∗+2≤i≤n−2. |
φ(xixi+3)={k∗+i−7, 1≤i≤k∗−5k∗2−7k∗+222−2⌊(k∗−2)(k∗−3)4⌋+i, k∗−4≤i≤k∗−3(k∗−2)(k∗−3)2−2⌊(k∗−2)(k∗−3)4⌋+1, i=k∗−2r(2n−r−1)2−(k∗−2)(k∗+5)2−−2⌊(k∗−2)(k∗−3)4⌋−k+i+3, k∗−1≤i≤k∗r(2n−r−1)2−(k∗−2)(k∗+3)2−−2⌊(k∗−2)(k∗−3)4⌋−k+3, i=k∗+1(2n−r)(r+1)2−k∗2+k∗+182+n−2k+i, k∗+2≤i≤n−3. |
φ(xixi+4)={k∗+i−12, 1≤i≤k∗−6k∗2−7k∗+282−2⌊(k∗−2)(k∗−3)4⌋+i, k∗−5≤i≤k∗−4(k∗−2)(k∗−3)2−2⌊(k∗−2)(k∗−3)4⌋+2, i=k∗−3. |
φ(xk∗−2xk∗+2)={(k∗−2)(k∗+3)2−k+1, if4⌊(k∗−2)(k∗−3)4⌋≥k(k∗−2)(k∗+3)2−k+2, if4⌊(k∗−2)(k∗−3)4⌋ <k. |
φ(xixi+4)={r(2n−r−1)2−(k∗−2)(k∗+5)2−2⌊(k∗−2)(k∗−3)4⌋−−k+i+5, k∗−1≤i≤k∗r(2n−r−1)2−(k∗−2)(k∗+3)2−2⌊(k∗−2)(k∗−3)4⌋−−k+4, i=k∗+1(2n−r)(r+1)2−k∗2+3k∗+262+2n−2k+i, k∗+2≤i≤n−4. |
For 5≤j≤k∗−3 (if k∗≥8),
φ(xixi+j)={φ(xk∗−j−1xk∗−2)+i, 1≤i≤k∗−j−2φ(xk∗−j+1xk∗)−k∗+j+i+2, k∗−j−1≤i≤k∗−jφ(xk∗−j+2xk∗+1)+1, i=k∗−j+1φ(xk∗−2xk∗+j−3)−k∗+j+i−1, k∗−j+2≤i≤k∗−2φ(xk∗xk∗+j−1)−k∗+i+2, k∗−1≤i≤k∗φ(xk∗+1xk∗+j)+1, i=k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+k∗−2)={φ(x3xk∗)+i, 1≤i≤2φ(x4xk∗+1)+1, i=3φ(xk∗−2x2k∗−5)−3, 4≤i≤k∗−2φ(xk∗x2k∗−3)−k∗+i+2, k∗−1≤i≤k∗φ(xk∗+1x2k∗−2)+1, i=k∗+1. |
φ(xixi+k∗−1)={φ(x2xk∗)+1, i=1φ(x3xk∗+1)+1, i=2φ(xk∗−2x2k∗−4)+i−2, 3≤i≤k∗−2φ(xk∗x2k∗−2)−k∗+i+2, k∗−1≤i≤k∗. |
φ(xixi+k∗)={φ(x2xk∗+1)+1, i=1φ(xk∗−2x2k∗−3)+1, 2≤i≤k∗−2φ(xk∗x2k∗−1)+1, i=k∗−1. |
φ(xixi+k∗+1)=φ(xk∗−2x2k∗−2)+i, 1≤i≤n−k∗−1. |
For k∗+2≤j≤r,
φ(xixi+j)=φ(xn−j+1xn)+i, 1≤i≤n−j. |
An explanation of above labeling is depicted in Figure 11. In this case, we split edge set of the Prn into nine mutually separated subsets as follows:
● A1={xixi+j:1≤j≤k∗−3,1≤i≤k∗−j−2} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:2≤j≤k∗−2,k∗−j≤i≤k∗−j+1}⋃{xk∗−2xk∗−1,x1xk∗}: The set of all edges which have endpoints tagged with 0 and 2⌊(k∗−2)(k∗−3)4⌋,
● A3={xk∗−1xk∗}: The set of only one edge which has endpoints labeled with 2⌊(k∗−2)(k∗−3)4⌋,
● A4={xk∗−1xk∗+1,xk∗−1xk∗+1}: The set of two edges which has endpoints labeled with 2⌊(k∗−2)(k∗−3)4⌋ and 2k∗+2⌊(k∗−2)(k∗−3)4⌋−4,
● A5={xixi+j:4≤j≤k∗+1,k∗−j+2≤i≤k∗−2}⋃{xixi+j:k∗+1≤j≤r,1≤i≤n−j}: The set of all edges which have endpoints tagged with 0 and k,
● A6={xk∗−1xk∗+j−1,xk∗xk∗+j:3≤j≤k∗−1}⋃{x2xk∗+2,xk∗−1xn}: The set of all edges which have endpoints tagged with 2⌊(k∗−2)(k∗−3)4⌋ and k,
● A7={xk∗+1xk∗+j:1≤j≤k∗−1}: The set of all edges which have endpoints tagged with 2k∗+2⌊(k∗−2)(k∗−3)4⌋−4 and k,
● A8={xk∗−j+1xk∗+1:3≤j≤k∗}: The set of all edges which have endpoints tagged with 0 and 2k∗+2⌊(k∗−2)(k∗−3)4⌋−4,
● A9={xixi+j:1≤j≤k∗−3,k∗+2≤i≤n−j}: The set of all edges which have endpoints tagged with k.
Observe that under the total k-labeling φ the edge (edges):
1. from the set A1, receive the weights from the successive numbers {1,2,...,(k∗−2)(k∗−3)2},
2. from the set A2, receive the weights from the successive numbers {(k∗−2)(k∗−3)2+1,...,(k∗−1)(k∗+2)2},
3. from the set A3, receives the weight {r(2n−r−1)2−(k∗−2)(k∗+3)2−2} if 4⌊(k∗−2)(k∗−3)4⌋≥k or receives the weight {(k∗−2)(k∗+3)2+1} if 4⌊(k∗−2)(k∗−3)4⌋<k,
4. from the set A4, admit the two weights {r(2n−r−1)2−(k∗−2)(k∗+3)2−1,r(2n−r−1)2−(k∗−2)(k∗+3)2},
5. from the set A5, receive the weights from the successive numbers {(k∗−1)(k∗+2)2+1,...,r(2n−r−1)2−(k∗−2)(k∗+3)2−3}, if 4⌊(k∗−2)(k∗−3)4⌋≥k or receive the weights from the set {(k∗−2)(k∗+3)2+2,...,r(2n−r−1)2−(k∗−2)(k∗+3)2}, if 4⌊(k∗−2)(k∗−3)4⌋<k,
6. from the set A6, admit the weights from the successive numbers {r(2n−r−1)2−(k∗−2)(k∗+3)2+1,...,r(2n−r−1)2−(k∗−2)(k∗+1)2},
7. from the set A7, receive the weights from the successive numbers {r(2n−r−1)2−(k∗−2)(k∗−1)2+1,...,r(2n−r−1)2−(k∗−2)(k∗−3)2},
8. from the set A8, admit the weights from the successive numbers {(k∗−2)(k∗+1)2+1,...,(k∗−2)(k∗+3)2},
9. from the set A9, admit the weights from the successive numbers {r(2n−r−1)2−(k∗−2)(k∗−3)2,...,r(2n−r−1)2}.
An explanation of above corresponding weights is depicted in Figure 12.
Subcase 2.3.1.2 If 2k∗−n≠1, hence we define the edge labeling as follows:
φ(xixi+1)={i, 1≤i≤n−k∗−2(n−k∗−1)(n−k∗−2)2−2⌊(n−k∗−1)(n−k∗−2)4⌋+1, i=n−k∗−1. |
For n−k∗≤i≤n−12,
φ(xixi+1)={r(2n−r−1)2−(k∗−2)(k∗+1)2−−4⌊(n−k∗−1)(n−k∗−2)4⌋−n+i, if4⌊(n−k∗−1)(n−k∗−2)4⌋≥k(n−k∗−1)(3k∗−n)2−−4⌊(n−k∗−1)(n−k∗−2)4⌋+i, if4⌊(n−k∗−1)(n−k∗−2)4⌋<k |
φ(xixi+1)={r(2n−r−1)2−(4k∗(n−1)−n(n−4)−3)8−−4⌊(n−k∗−1)(n−k∗−2)4⌋−2⌊(n−k∗−1)(2k∗−n+3)4⌋+1, i=n+12r(2n−r−1)2−(n2−4n+3)8−4⌊(n−k∗−1)(n−k∗−2)4⌋−−4⌊(n−k∗−1)(2k∗−n+3)4⌋−n+32+i+1, n+32≤i≤k∗r(2n−r−1)2−(n−k∗−1)(k∗−1)2−2⌊(n−k∗−1)(n−k∗−2)4⌋−−2⌊(n−k∗−1)(2k∗−n+3)4⌋−k+1, i=k∗+1r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2−2k−k∗+i−1, k∗+2≤i≤n−1. |
For 1<j≤2k∗−n−12,
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn−k∗−1xn−k∗+j−2)−n+k∗++j+i+1, n−k∗−j≤i≤n−k∗−1φ(xn+12−j+1xn+12)−n+k∗+i+1, n−k∗≤i≤n+12−jφ(xn+12−j+1xn+12)−n+12+j+i, n+12−j+1≤i≤n+12φ(xk∗−j+2xk∗+1)−n+32+i+1, n+32≤i≤k∗−j+1φ(xk∗+1xk∗+j)−k∗+j+i−1, k∗−j+2≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+2k∗−n+12)={φ(xn−32xn−k∗−1)+i, 1≤i≤3n−4k∗−32φ(xn−k∗−1xn+12)−3n−4k∗−32+i, 3n−4k∗−12≤i≤n−k∗−1φ(x2n−2k∗+22xn+12)+1, i=n−k∗φ(xn−k∗+1)−n+k∗+i, n−k∗+1≤i≤n+12φ(xk∗+1x4k∗−n+12)−n+12+i, n+32≤i≤k∗+1φ(x3n−2k∗+12xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+2k∗−n+32)={φ(x3n−4k∗−32xn−k∗−1)+i, 1≤i≤3n−4k∗−52φ(xn−k∗−1xn−12)−3n−4k∗−52+i, 3n−4k∗−32≤i≤n−k∗−1φ(xn+12xk∗+1)−n+k∗+i+1, n−k∗≤i≤n−124k∗(2k∗+5)−12k∗n+3n(n−4)+178++r(2n−r−1)2−2⌊(n−k∗−1)(n−k∗−2)4⌋−k, i=n+12φ(xk∗+1x4k∗−n+32)−n+12+i, n+32≤i≤k∗+1φ(x3n−2k∗−12xn)−k∗+i−1, k∗+2≤i≤3n−2k∗−32. |
φ(xixi+2k∗−n+52)={φ(x3n−4k∗−52xn−k∗−1)+i, 1≤i≤3n−4k∗−72φ(xn−k∗−1xn+12)−3n−4k∗−52+i+1, 3n−4k∗−52≤i≤n−k∗−2(n−k∗−1)(k∗+1)2−2⌊(n−k∗−1)(n−k∗−2)4⌋−−2⌊(n−k∗−1)(2k∗−n+3)4⌋+1 i=n−k∗−1φ(xn−12xk∗+1)−n+k∗+i+1, n−k∗≤i≤n−32φ(xn+12xk∗+2)−n−32+i, n−12≤i≤n+12φ(xk∗+1x4k∗−n+52)−n+12+i, n+32≤i≤k∗+1φ(x3n−2k∗−32xn)−k∗+i−1, k∗+2≤i≤3n−2k∗−52. |
For 2k∗−n+72≤j≤2k∗−n+2,
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn+12−j+1xn+12)−n+k∗+j+i+1, n−k∗−j≤i≤n+12−jφ(xn−k∗−1xn−k∗+j−2)−n+12+j+i, n+32−j≤i≤n−k∗−1φ(xk∗−j+2xk∗+1)−n+k∗+i+1, n−k∗≤i≤k∗−j+1φ(xn+12xn+12+j−1)−k∗+j+i−1, k∗−j+2≤i≤n+12φ(xk∗+1xk∗+j)−n+12+i, n+32≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+2k∗−n+3)={φ(x2n−3k∗−3xn−k∗−1)+i, 1≤i≤2n−3k∗−4φ(x3n−4k∗−32−j+1xn+12)++3k∗−2n+i+4, 2n−3k∗−3≤i≤3n−4k∗−52φ(xn−k∗−1xk∗+1)++i−3n−4k∗−52, 3n−4k∗−32≤i≤n−k∗−2 |
φ(xn−k∗−1xk∗+2)={(n−k∗−1)(3k∗−n+2)2−k+1, if 4⌊(n−k∗−1)(n−k∗−2)4⌋≥k(12nk∗−8k∗2−12k∗+8n−3n2−5)8−−k+1, if 4⌊(n−k∗−1)(n−k∗−2)4⌋<k |
φ(xixi+2k∗−n+3)={φ(xn+12x4k∗−n+52)−−n+k∗+i+1, n−k∗≤i≤n+12φ(xk∗+1x3k∗−n+3)−−n+12+i, n+32≤i≤k∗+1φ(x2n−2k∗−2xn)−−k∗+i−1, k∗+2≤i≤2n−2k∗−3. |
For 2k∗−n+4≤j≤n−k∗−2 (if 2n−3k∗−5>0),
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn+12−j+1xn+12)−n++k∗+j+i+1, 1≤i≤n+12−jφ(xk∗−j+2xk∗+1)−n+12++j+i, n+32−j≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−−k∗+j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn+12xn+12+j−1)+k∗−−n+i+1, n−k∗≤i≤n+12φ(xk∗+12xk∗+j)−n+12+i, n+32≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+n−k∗−1)={φ(x2k∗−n+52xn+12)+i, 1≤i≤3k∗−n+32φ(x2k∗−n+3xk∗+1)−−2k∗−n+52+i+1, 2k∗−n+52≤i≤4k∗−2n+42φ(xn−k∗−1x2n−2k∗−3)−−2k∗+n+i−2, 2k∗−n+3≤i≤n−k∗−1φ(xn+12x3n−2k∗−32)−n++k∗+i+1, n−k∗≤i≤n+12φ(xk∗+1xn−1)−n+12++k∗+i, n+32≤i≤n−j. |
For n−k∗≤j≤n−32,
φ(xixi+j)={φ(xn+32−jxn+12)+i, 1≤i≤n+12−jφ(xk∗−j+2xk∗+1)−n+12+j+i, n+32−j≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−k∗+j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn+12xn−12+j)−n+k∗+i+1, n−k∗≤i≤n+12φ(xk∗+1xk∗−j)−n−12+i, n+32≤i≤n−j. |
φ(xixi+n−12)={φ(x2xn+12)+i, i=1φ(x2k∗−n+52xk∗+1)+i−1, 2≤i≤2k∗−n+32φ(xn−k∗−1x3n−2k∗−52)−2k∗−n+32+i, 2k∗−n+52≤i≤n−k∗−1φ(xn+12xn−1)−n+k∗+i+1, n−k∗≤i≤n+12. |
For n+12≤j≤k∗,
φ(xixi+j)={φ(xk∗−j+2xk∗+1)+i, 1≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−k∗+j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn−j+1xn)−n+k∗+i, n−k∗≤i≤n−j. |
For k∗+1≤j≤r,
φ(xixi+j)=φ(xn−k∗−1xn−k∗+j−2)+i, 1≤i≤n−j. |
Note that in this subcase the edge set of Prn can be partied into ten mutually separated subsets as follows:
● A1={xixi+j:1≤j≤n−k∗−2,1≤i≤n−k∗−j−1} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:1≤j≤2k∗−n+32,n−k∗−j≤i≤n−k∗−1}⋃{xixi+j:2k∗−n+52≤j≤n−k∗−2,n−k∗−j≤i≤n+12−j}⋃{xixi+j:n−k∗−1≤j≤n−12,1≤i≤n+12−j}: The set of all edges which have endpoints tagged with 0 and 2⌊(n−k∗−1)(n−k∗−2)4⌋,
● A3={xixi+j:1≤j≤2k∗−n+12,n−k∗≤i≤n+12−j}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(k∗−2)4⌋,
● A4={xixi+j:1≤j≤2k∗−n+12,n+32−j≤i≤n+12}⋃{xixi+2k∗−n+32:n−k∗≤i≤n−12}⋃{xixi+j:2k∗−n+52≤j≤2k∗−n+1,n−k≤i≤k∗−j+1}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋ and 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+3)4⌋,
● A5={xixi+j:2k∗−n+3≤j≤k∗+1,k∗−j+2≤i≤n−k∗−1}⋃{xixi+j:k∗+2≤j≤r,1≤i≤n−j}: The set of all edges which have endpoints tagged with 0 and k,
● A6={xixi+j:2k∗−n+32≤j≤2k∗−n+2,k∗−j+2≤i≤n+12}⋃{xixi+j:2k∗−n+3≤j≤n−12,n−k∗≤i≤n+12}⋃{xixi+j:n+12≤j≤k∗,n−k∗≤i≤n−j}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋ and k,
● A7={xixi+j:1≤j≤2k∗−n+12,k∗+2≤i≤k∗+j+1}⋃{xixi+j:2k∗−n+32≤j≤n−k∗−1,n+32≤i≤k∗+1}⋃{xixi+j:n−k∗≤j≤n−32,n+32≤i≤n−j}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+3)4⌋ and k,
● A8={xixi+j:2k∗−n+52≤j≤2k∗−n+2,n+32−j≤i≤n−k∗−1}⋃{xixi+j:2k∗−n+3≤j≤n+12,n+32−j≤i≤k∗−j+1}⋃{xixi+j:n+32≤j≤k∗,1≤i≤k∗−j+1}: The set of all edges which have endpoints tagged with 0 and 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+3)4⌋,
● A9={xixi+j:1≤j≤(2k∗−n−1)2,n+32≤i≤k∗+j−1}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+3)4⌋,
● A10={xixi+j:1≤j≤n−k∗−2,k∗+2≤i≤n−j}: The set of all edges which have endpoints tagged with k.
It is obvious that under the total k-labeling φ the edge (edges):
1. from the set A1, receive the weights from the successive numbers {1,2,...,(n−k∗−1)(n−k∗−2)2},
2. from the set A2, receive the weights from the successive numbers {(n−k∗−1)(n−k∗−2)2+1,...,(n−k∗−1)(k∗+1)2},
3. from the set A3, obtain the weights from the successive numbers {r(2n−r−1)2−k∗(k∗+1)2+1,...,r(2n−r−1)2−(4k∗(n−1)−n(n−4)−3)8} if 4⌊(n−k∗−1)(n−k∗−2)4⌋≥k or obtain the weights from the set {(n−k∗−1)(3k∗−n+2)2+1,...,(12nk∗−8k∗2−12k∗+8n−3n2−5)8} if 4⌊(n−k∗−1)(n−k∗−2)4⌋<k,
4. from the set A4, admit the weights from the successive numbers {r(2n−r−1)2−(4k∗(n−1)−n(n−4)−3)8+1,...,r(2n−r−1)2−12k∗n−4k∗(2k∗+5)−3n(n−4)−98},
5. from the set A5, admit the weights from the successive numbers {(n−k∗−1)(3k∗−n+2)2+1,...,r(2n−r−1)2−(4k∗(n−1)−n(n−4)−3)8}, if 4⌊(n−k∗−1)(n−k∗−2)4⌋≥k or admit the weights from the set {(12nk∗−8k∗2−12k∗+8n−3n2−5)8+1,...,r(2n−r−1)2−(4k∗(n−1)−n(n−4)−3)8}, if 4⌊(n−k∗−1)(n−k∗−2)4⌋<k,
6. from the set A6, admit the weights from the successive numbers {r(2n−r−1)2−12k∗n−4k∗(2k∗+5)−3n(n−4)−98+1,...,r(2n−r−1)2−(n2+4n+3)8},
7. from the set A7, obtain the weights from the successive numbers {r(2n−r−1)2−(n−k∗−1)(k∗−1)2+1,...,r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2},
8. from the set A8, obtain the weights from the successive numbers {(n−k∗−1)(k∗+1)2+1,...,(n−k∗−1)(3k∗−n+2)2},
9. from the set A9, admit the weights from the successive numbers {r(2n−r−1)2−(n2+4n+3)8+1,...,r(2n−r−1)2−(n−k∗−1)(k∗−1)2},
10. from the set A10, admit the weights from the successive numbers {r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2+1,...,r(2n−r−1)2}.
Subcase 2.3.2 If n is even, therefore we construct the total k-labeling φ of Prn as follows:
φ(xi)={0, 1≤i≤n−k∗−12⌊(n−k∗−1)(n−k∗−2)4⌋, n−k∗≤i≤n22⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+2)4⌋, n+22≤i≤k∗+1k, k∗+2≤i≤n. |
φ(xixi+1)={i, 1≤i≤n−k∗−2(n−k∗−1)(n−k∗−2)2−2⌊(n−k∗−1)(n−k∗−2)4⌋+1, i=n−k∗−1(n−k∗−1)(3k∗−n)2−4⌊(n−k∗−1)(n−k∗−2)4⌋+i, n−k∗≤i≤n2−1r(2n−r−1)2−n(4k∗−n+2)8−4⌊(n−k∗−1)(n−k∗−2)4⌋−−2⌊(n−k∗−1)(2k∗−n+2)4⌋+1, i=n2r(2n−r−1)2−(2k∗−n+2)(3n−2k∗−4)8−k∗(n−k∗−1)2−−4⌊(n−k∗−1)(n−k∗−2)4⌋−4⌊(n−k∗−1)(2k∗−n+3)4⌋−−n2+i, n2+1≤i≤k∗r(2n−r−1)2−k∗(n−k∗−1)2−2⌊(n−k∗−1)(n−k∗−2)4⌋−−2⌊(n−k∗−1)(2k∗−n+2)4⌋−k+1, i=k∗+1r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2−2k−k∗+i−1, k∗+2≤i≤n−1. |
For 2≤j≤k∗−n2 (if k∗−n2≠1),
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn−k∗−1xn−k∗+j−2)−n+k∗++j+i+1, n−k∗−j≤i≤n−k∗−1φ(xn2−j+1xn2)−n+k∗+i+1, n−k∗≤i≤n2−jφ(xn2xn2+j−1)−n2+j+i, n2−j+1≤i≤n2φ(xk∗−j+2xk∗+1)−n2+i, n2+1≤i≤k∗−j+1φ(xk∗+1xk∗+j)−k∗+j+i−1, k∗−j+2≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+k∗−n2+1)={φ(x3n2−2k∗−1xn−k∗−1)+i, 1≤i≤3n2−2k∗−2φ(xn−k∗−1xn−k∗)−−3n2+2k∗+i+2, 3n2−2k∗−1≤i≤n−k∗−1φ(xn2xk∗)−n+k∗+i+1, n−k∗≤i≤n2φ(xk∗+1x2k∗−n2+1)−n2+i, n2+1≤i≤k∗+1φ(x3n2−k∗xn)−k∗+i−1, k∗+2≤i≤3n2−k∗−1. |
φ(xixi+k∗−n2+2)={φ(x3n2−2k∗−2xn−k∗−1)+i, 1≤i≤3n2−2k∗−3φ(xn2−n−k∗−2xn2)−3n2++2k∗+i+3, 3n2−2k∗−2≤i≤n−k∗−2k∗(n−k∗−1)2−2⌊(n−k∗−1)(n−k∗−2)4⌋−−2⌊(n−k∗−1)(2k∗−n+2)4⌋+1, i=n−k∗−1φ(xn2xk∗+1)−n+k∗+i+1, n−k∗≤i≤n2−1r(2n−r−1)2−(n−k∗−1)(3k∗−n+2)2−−2⌊(n−k∗−1)(n−k∗−2)4⌋−k+1, i=n2φ(xk∗+1x2k∗−n2+2)−n2+i, n2+1≤i≤k∗+1φ(x3n2−k∗−1xn)−k∗+i−1, k∗+2≤i≤3n2−k∗−2. |
For k∗−n2+3≤j≤2k∗−n+2,
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn2−j+1xn2)−n+k∗+j+i+1, n−k∗−j≤i≤n2−jφ(xn−k∗−1xn−k∗+j−2)−n2+j+i, n2−j+1≤i≤n−k∗−1φ(xn2xn2+j−1)−n+k∗+i+1, n−k∗≤i≤n2φ(xk∗+1xk∗+j)−n2+i, n2+1≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+2k∗−n+3)={φ(x2n−3k∗−3xn−k∗−1)+i, 1≤i≤2n−3k∗−4φ(x3n2−2k∗−2xn2)−2n+3k∗++i+4, 2n−3k∗−3≤i≤3n2−2k∗−3φ(xn−k∗−1xk∗+1)−3n2+2k∗++i+3, 3n2−2k∗−2≤i≤n−k∗−24k∗(n−k∗−1)+(2k∗−n+2)(3n−2k∗−4)8+−k+1, i=n−k∗−1φ(xn2x2k∗−n2+2)−n+k∗+i+1, n−k∗≤i≤n2φ(xk∗+1x3k∗−n+3)−n2+i, n2+1≤i≤k∗+1φ(x2n−2k∗−2xn)−k∗+i−1, k∗+2≤i≤2n−2k∗−3. |
For 2k∗−n+4≤j≤n−k∗−2 (if 2n−3k∗−5>0),
φ(xixi+j)={φ(xn−k∗−jxn−k∗−1)+i, 1≤i≤n−k∗−j−1φ(xn2−j+1xn2)−n+k∗+j++i+1, n−k∗−j≤i≤n2−jφ(xk∗−j+2xk∗+1)−n2+j+i, n2−j+1≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−k∗++j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn2xn2+j−1)−n+k∗+i+1, n−k∗≤i≤n2φ(xk∗+1xk∗+j)−n2+i, n2+1≤i≤k∗+1φ(xn−j+1xn)−k∗+i−1, k∗+2≤i≤n−j. |
φ(xixi+n−k∗−1)={φ(xk∗−n2+2xn2)−n+k∗++i+1, 1≤i≤k∗−n2+1φ(x2k∗−n+3xk∗+1)−n2+i, k∗−n2+2≤i≤2k∗−n+2φ(xn−k∗−1xn−k∗−3)−2k∗++n+i−2, 2k∗−n+3≤i≤n−k∗−1φ(xn2x3n2−k∗−2)−n+k∗++i+1, n−k∗≤i≤n2φ(xk∗+1xn−1)−n2+i, n2+1≤i≤k∗+1. |
For n−k∗≤j≤n2−1,
φ(xixi+j)={φ(xn2−j+1xn2)+i, 1≤i≤n2−jφ(xk∗−j+2xk∗+1)−n2+j+i, n2−j+1≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−k∗++j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn2xn2+j−1)−n+k∗+i+1, n−k∗≤i≤n2φ(xk∗+1xk∗+j)−n2+i, n2+1≤i≤n−j. |
For n2≤j≤k∗,
φ(xixi+j)={φ(xk∗−j+2xk∗+1)+i, 1≤i≤k∗−j+1φ(xn−k∗−1xn−k∗+j−2)−k∗+j+i−1, k∗−j+2≤i≤n−k∗−1φ(xn2xn2+j−1)−n+k∗+i+1, n−k∗≤i≤ n−j. |
For k∗+1≤j≤r,
φ(xixi+j)=φ(xn−j+1xn)+i, 1≤i≤n−j. |
As the pervious Subcase 2.3.1.2, the edge set can be divided into ten mutually separated subsets as follows:
● A1={xixi+j:1≤j≤n−k∗−2,1≤j≤n−k∗−j−1} : The set of all edges which have endpoints tagged with 0,
● A2={xixi+j:1≤j≤2k∗−n+22,n−k∗−j≤i≤n−k∗−1}⋃{xixi+j:2k∗−n+42≤j≤n−k∗−1,n−k∗−j≤i≤n2−j}⋃{xixi+j:n−k∗≤j≤n2−1,1≤i≤n2−j}: The set of all edges which have endpoints tagged with 0 and 2⌊(n−k∗−1)(n−k∗−2)4⌋,
● A3={xixi+j:1≤j≤2k∗−n2,n−k∗≤i≤n2−j}: The set of all edges which have endpoints tagged with 2⌊(k∗−2)(k∗−3)4⌋,
● A4={xixi+j:1≤j≤2k∗−n+22,n+22−j≤i≤n2}⋃{xixi+j:2k∗−n+42≤j≤2k∗−n+1,n−k∗≤i≤k∗−j+1}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋ and 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+2)4⌋,
● A5={xixi+j:2k∗−n+3≤j≤k∗+1,k∗−j+2≤i≤n−k∗−1}⋃{xixi+j:k∗+2≤j≤r,1≤i≤n−j}: The set of all edges which have endpoints tagged with 0 and k,
● A6={xixi+j:2k∗−n+42≤j≤2k∗−n+2,k∗−j+2≤i≤n2}⋃{xixi+j:2k∗−n+3≤j≤k∗,n−k∗≤i≤n−j}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋ and k,
● A7={xixi+j:1≤j≤2k∗−n+22,k∗−j+2≤i≤k∗+1}⋃{xixi+j:2k∗−n+42≤j≤n−k∗−1,n2+1≤i≤k∗+1}⋃{n−k∗≤j≤n2−1,n2+1≤i≤n−j}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+2)4⌋ and k,
● A8={xixi+j:2k∗−n+42≤j≤2k∗−n+2,n2−j+1≤i≤n−k∗−1}⋃{xixi+j:2k∗−n+3≤j≤n2,n2+1−j≤i≤k∗−j+1}⋃{xixi+j:n2+1≤j≤k∗,1≤i≤k∗−j+1}: The set of all edges which have endpoints tagged with 0 and 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+2)4⌋,
● A9={xixi+j:1≤j≤(2k∗−n)2,n+32≤i≤k∗+j−1}: The set of all edges which have endpoints tagged with 2⌊(n−k∗−1)(n−k∗−2)4⌋+2⌊(n−k∗−1)(2k∗−n+2)4⌋,
● A10={xixi+j:1≤j≤n−k∗−2,k∗+2≤i≤n−j}: The set of all edges which have endpoints tagged with k.
One can easily check that under the total k-labeling φ the edge (edges):
1. from the set A1, get the weights from the successive numbers {1,2,...,(n−k∗−1)(n−k∗−2)2},
2. from the set A2, get the weights from the successive numbers {(n−k∗−1)(n−k∗−2)2+1,...,k∗(n−k∗−1)2},
3. from the set A3, get the weights from the successive numbers {(n−k∗−1)(3k∗−n+2)2+1,...,4k∗(n−k∗−1)+(2k∗−n+2)(3n−2k∗−4)8},
4. from the set A4, get the weights from the successive numbers {r(2n−r−1)2−n(4k∗−n+2)8+1,...,r(2n−r−1)2−(2k∗−n+2)(3n−2k∗−4)8},
5. from the set A5, admit the weights from the successive numbers\\ {4k∗(n−k∗−1)+(2k∗−n+2)(3n−2k∗−4)8+1,...,r(2n−r−1)2−n(4k∗−n+2)8},
6. from the set A6, admit the weights from the successive numbers {r(2n−r−1)2−(n−k∗−1)(3k∗−n+2)2+1,...,r(2n−r−1)2−n(4k∗−n+2)8},
7. from the set A7, obtain the weights from the successive numbers {r(2n−r−1)2−k∗(n−k∗−1)2+1,...,r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2},
8. from the set A8, obtain the weights from the successive numbers {k∗(n−k∗−1)2+1,...,(n−k∗−1)(3k∗−n+2)2},
9. from the set A9, admit the weights from the successive numbers {r(2n−r−1)2−(2k∗−n+2)(3n−2k∗−4)8+1,...,r(2n−r−1)2−(n−k∗−1)(3k∗−n+2)2},
10. from the set A10, admit the weights from the successive numbers {r(2n−r−1)2−(n−k∗−1)(n−k∗−2)2+1,...,r(2n−r−1)2}.
By direct computation we can verify that in the both subcases all vertices are labeled by even numbers and the edge weights of the edges are different numbers from the set {1,2,3,...,r(2n−r−1)2}. Hence we prove that in all cases vertices are even numbers and the labels of edges are less than or equal to k=⌈r(2n−r−1)6⌉+1 where r(2n−r−1)2≡2,3 (mod 6) and less than or equal to k=⌈r(2n−r−1)6⌉ where r(2n−r−1)2≢2,3 (mod 6). Thus the edge irregular reflexive strength of the r-th power of the path Prn:
res(Prn)={⌈r(2n−r−1)6⌉, if r(2n−r−1)2≢2,3(mod |
In this paper we discussed the edge irregular reflexive k-labeling of the r -th power of the path P_{n} , where r\geq2 , n\geq r+4 . Also, we computed the precise value of the reflexive edge strength of P^{r}_{n} , r\geq2 , n\geq r+4 . In the future, we would like to calculate the reflexive edge strength, res, for r-th power of other graphs.
The authors declare that they have no competing interest.
[1] | A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Comb., 106 (2012), 449–459. |
[2] |
A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. doi: 10.1007/s00224-013-9470-3
![]() |
[3] | A. Ahmad, M. K. Siddiqui, D. Afzal, On the total edge irregularity strength of zigzag graphs, Australas. J. Comb., 54 (2012), 141–150. |
[4] | A. Ahmad, M. Bača, On Vertex Irregular Total Labelings, Ars Comb., 112 (2013), 129–139. |
[5] |
D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15–38. doi: 10.1016/S0012-365X(98)00112-5
![]() |
[6] |
I. H. Agustin, I. Utoyo, M. Venkatachalam, Edge irregular reflexive labeling of some tree graphs, J. Phys.: Conf. Ser., 1543 (2020), 012008. doi: 10.1088/1742-6596/1543/1/012008
![]() |
[7] |
M. Bača, S. Jendrol, M. Miller, J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378–1388. doi: 10.1016/j.disc.2005.11.075
![]() |
[8] | M. Bača, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168–173. |
[9] | M. Bača, M. K. Siddiqui, On total edge irregularity strength of strong product of two cycles, Util. Math., 104 (2017), 255–275. |
[10] | M. Bača, M. Irfan, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 67 (2017), 2–11. |
[11] |
M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. doi: 10.3934/math.2021543
![]() |
[12] | G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210. |
[13] |
J. H. Dimitz, D. T. Garnick, A. Gyárfás, On the irregularity of m\times n grid, J. Graph Theory, 16 (1992), 355–374. doi: 10.1002/jgt.3190160409
![]() |
[14] |
A. Gyárfás, The irregularity strength of K_{m, m} is 4 for odd m, Discrete Math., 71 (1988), 273–274. doi: 10.1016/0012-365X(88)90106-9
![]() |
[15] |
Y. Ke, M. J. A. Khan, M. Ibrahim, M. K. Siddiqui, On edge irregular reflexive labeling for Cartesian product of two graphs, Eur. Phys. J. Plus, 136 (2021), 1–13. doi: 10.1140/epjp/s13360-020-01001-7
![]() |
[16] | J. Lahel, Facts and quests on degree irregular assignment, In: Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, New York, NY, USA, 1991,765–782. |
[17] |
T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM. J. Discret. Math., 13 (2000), 313–323. doi: 10.1137/S0895480196314291
![]() |
[18] | J. Ryan, B. Munasinghe, D. Tanna, Reflexive irregular labelings, (2017), preprint. |
[19] | N. K. Sudev, Some new results on equitable coloring parameters of graphs, Acta Math. Univ. Comenianae, 89 (2020), 109–122. |
[20] | D. Tanna, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, A reflexive edge irregular labelings of prisms and wheels, Australas. J. Combin., 69 (2017), 394–401. |
[21] | K. K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, S. M. Lee, On the edge irregular reflexive labeling of corona product of graphs with path, AKCE Int. J. Graphs Combinatorics, (2021), 1–7. |
[22] |
X. Zhang, M. Ibrahim, S. A. Bokhary, M. K. Siddiqui, Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs, Mathematics, 6 (2018), 142. doi: 10.3390/math6090142
![]() |
1. | M. Basher, The reflexive edge strength of toroidal fullerene, 2022, 0972-8600, 1, 10.1080/09728600.2022.2150587 | |
2. | Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková, Modular edge irregularity strength of graphs, 2023, 8, 2473-6988, 1475, 10.3934/math.2023074 | |
3. | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki, Modular total vertex irregularity strength of graphs, 2023, 8, 2473-6988, 7662, 10.3934/math.2023384 | |
4. | M. Basher, On the edge irregular reflexive labeling for some classes of plane graphs, 2023, 1432-7643, 10.1007/s00500-023-07973-9 |