Let G(V,E) be a graph, where V(G) is the vertex set and E(G) is the edge set. Let k be a natural number, a total k-labeling φ:V(G)⋃E(G)→{0,1,2,3,...,k} is called an edge irregular reflexive k-labeling if the vertices of G are labeled with the set of even numbers from {0,1,2,3,...,k} and the edges of G are labeled with numbers from {1,2,3,...,k} in such a way for every two different edges xy and x′y′ their weights φ(x)+φ(xy)+φ(y) and φ(x′)+φ(x′y′)+φ(y′) are distinct. The reflexive edge strength of G, res(G), is defined as the minimum k for which G has an edge irregular reflexive k-labeling. In this paper, we determine the exact value of the reflexive edge strength for the r-th power of the path Pn, where r≥2, n≥r+4.
Citation: Mohamed Basher. Edge irregular reflexive labeling for the r-th power of the path[J]. AIMS Mathematics, 2021, 6(10): 10405-10430. doi: 10.3934/math.2021604
[1] | Wen Huang, Leiye Xu, Shengnan Xu . Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015 |
[2] | Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077 |
[3] | Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang . The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. Electronic Research Archive, 2023, 31(7): 3848-3878. doi: 10.3934/era.2023196 |
[4] | Julian Gerstenberg, Ralph Neininger, Denis Spiegel . On solutions of the distributional Bellman equation. Electronic Research Archive, 2023, 31(8): 4459-4483. doi: 10.3934/era.2023228 |
[5] | Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094 |
[6] | Xiang Xu . Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113 |
[7] | Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas . Extended Brauer analysis of some Dynkin and Euclidean diagrams. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266 |
[8] | Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012 |
[9] | Zhenhua Wang, Jinlong Yang, Chuansheng Dong, Xi Zhang, Congqin Yi, Jiuhu Sun . SSMM-DS: A semantic segmentation model for mangroves based on Deeplabv3+ with swin transformer. Electronic Research Archive, 2024, 32(10): 5615-5632. doi: 10.3934/era.2024260 |
[10] | Suhua Wang, Zhen Huang, Bingjie Zhang, Xiantao Heng, Yeyi Jiang, Xiaoxin Sun . Plot-aware transformer for recommender systems. Electronic Research Archive, 2023, 31(6): 3169-3186. doi: 10.3934/era.2023160 |
Let G(V,E) be a graph, where V(G) is the vertex set and E(G) is the edge set. Let k be a natural number, a total k-labeling φ:V(G)⋃E(G)→{0,1,2,3,...,k} is called an edge irregular reflexive k-labeling if the vertices of G are labeled with the set of even numbers from {0,1,2,3,...,k} and the edges of G are labeled with numbers from {1,2,3,...,k} in such a way for every two different edges xy and x′y′ their weights φ(x)+φ(xy)+φ(y) and φ(x′)+φ(x′y′)+φ(y′) are distinct. The reflexive edge strength of G, res(G), is defined as the minimum k for which G has an edge irregular reflexive k-labeling. In this paper, we determine the exact value of the reflexive edge strength for the r-th power of the path Pn, where r≥2, n≥r+4.
Throughout this paper, by a topological dynamical system
Given a TDS
Define
E(T)={hμ(T):μ∈Me(X,T)} |
where
It is interesting to consider the case when
[0,htop(f))⊂E(f) | (1.1) |
for any
Conjecture 1.1 (Katok). Let
We need to point out that Katok's conjecture implies that any positive entropy smooth system is not uniquely ergodic, though whether or not a smooth diffeomorphism of positive topological entropy can be uniquely ergodic is still in question (see [5] for Herman's example: positive entropy minimal
In this paper, we study intermediate entropy for affine transformations of nilmanifolds. Throughout this paper, by a nilmanifold
Theorem 1.2. Let
Following Lind [11], we say that an affine transformation of a nilmanifold is quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of Theorem 1.2, one has the following.
Theorem 1.3. Let
The paper is organized as follows. In Section 2, we introduce some notions. In Section 3, we prove Theorem 1.2 and Theorem 1.3.
In this section, we recall some notions of entropy, nilmanifold and upper semicontinuity of entropy map.
We summarize some basic concepts and useful properties related to topological entropy and measure-theoretic entropy here.
Let
Definition 2.1. Let
htop(T,U)=limn→+∞1nlogN(⋁n−1i=0T−iU), |
where
htop(T)=supUhtop(T,U), |
where supremum is taken over all finite open covers of
A subset
hd(T,K)=limϵ→0lim supn→∞logs(T)n(ϵ,K)n. |
Let
hd(T,Z)=supK⊂ZK is compacthd(T,K). |
And the Bowen's topological entropy of a TDS
Next we define measure-theoretic entropy. Let
hμ(T,ξ)=limn→+∞1nHμ(⋁n−1i=0T−iξ), |
where
hμ(T)=supξ∈PXhμ(T,ξ). |
The basic relationship between topological entropy and measure-theoretic entropy is given by the variational principle [12].
Theorem 2.2 (The variational principle). Let
htop(T)=sup{hμ(T):μ∈M(X,T)}=sup{hμ(T):μ∈Me(X,T)}. |
A factor map
supμ∈M(X,T)π(μ)=νhμ(T)=hν(S)+∫Yhd(T,π−1(y))dν(y) | (2.1) |
where
Let
The following is from [1,Theorem 19].
Theorem 2.3. Let
Remark 2.4. (1) In the above situation, Bowen shows that
hd(T,π−1(y))=htop(τ) for any y∈Y, | (2.2) |
where
(2) If
hd(T,π−1(y))=htop(τ) for any y∈G/H, | (2.3) |
where
Given a TDS
∫Me(X,T)∫Xf(x)dm(x)dρ(m)=∫Xf(x)dμ(x) for all f∈C(X). |
We write
Theorem 2.5. Let
hμ(T)=∫Me(X,T)hm(T)dρ(m). |
We say that the entropy map of
limn→∞μn=μ implies lim supn→∞hμn(T)≤hμ(T). |
We say that a TDS
limδ→0supx∈Xhd(T,Γδ(x))=0. |
Here for each
Γδ(x):={y∈X:d(Tjx,Tjy)<δ for all j≥0}. |
The result of Misiurewicz [12,Corollary 4.1] gives a sufficient condition for upper semicontinuity of the entropy map.
Theorem 2.6. Let
The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expansiveness.
Theorem 2.7. Let
In this section, we prove our main results. In the first subsection, we prove that Katok's conjecture holds for affine transformations of torus. In the second subsection, we show some properties of metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem 1.3.
We say that a topological dynamical system
Theorem 3.1. Let
Proof. We think of
τ(x)=A(x)+b for each x∈Tm. |
Let
htop(τ)=∫Me(Tm,τ)hν(τ)dρ(ν). |
By variational principle, there exists
Case 1.
π(x)=x−q for each x∈Tm. |
Then
Case 2.
H={x∈Tm:(A−id)mx=0}. |
Then
This ends the proof of Theorem 3.1.
Let
If
We fix an
τ(gΓ)=g0A(g)Γ for each g∈G |
where
Aj:Gj−1Γ/GjΓ→Gj−1Γ/GjΓ:Aj(hGjΓ)=A(h)GjΓ for each h∈Gj−1 |
and
τj:G/GjΓ→G/GjΓ:τj(hGjΓ)=g0A(h)GjΓ for each h∈G. |
It is easy to see that
For each
πj+1(gGj+1Γ)=gGjΓ for each g∈G. | (3.1) |
It is easy to see that
Lemma 3.2. For each
Proof. In Remark 2.4 (2), we let
hdj+1(τj+1,π−1j+1(y))=htop(Aj+1)=bj+1 for every y∈G/GjΓ. |
This ends the proof of Lemma 3.2.
The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.
Lemma 3.3. For
We have the following.
Corollary 3.4.
Proof. We prove the corollary by induction on
htop(τj+1)=supμ∈M(G/Gj+1Γ,τj+1)hμ(τj+1)≤supμ∈M(G/GjΓ,τj)(hμ(τj)+∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y))≤htop(τj)+supμ∈M(G/GjΓ,τj)∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y)=j∑i=1bi+bj+1=j+1∑i=1bi, |
where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists
Remark 3.5. We remark that the topological entropy of
htop(τ)=hd(τ)=∑|λi|>1log|λi| |
where
Lemma 3.6. For
Proof. We fix
hν(τj+1)=supμ∈M(G/Gj+1Γ,τj+1)πj+1(μ)=νjhμ(τj+1)=hνj(τj)+bj+1. |
We fix such
ν=∫Me(G/Gj+1Γ,τj+1)mdρ(m). |
Then by property of ergodic decomposition, one has
ρ({m∈Me(G/Gj+1Γ,τj+1):πj+1(m)=νj})=1. |
Therefore, for
hm(τj+1)≤hν(τj+1)=hνj(τj)+bj+1. |
Hence by Theorem 2.5, one has
hνj(τj)+bj+1=hν(τj+1)=∫Me(G/Gj+1Γ,τj+1)hm(τj+1)dρ(m)≤hνj(τj)+bj+1. |
We notice that the equality holds only in the case
hνj+1(τj+1)=hνj(τj)+bj+1 and πj+1(νj+1)=νj. |
This ends the proof of Lemma 3.6.
Now we are ready to prove our main results.
Proof of Theorem 1.2. Firstly we assume that
s+1∑j=i+1bj≤a≤s+1∑j=ibj. |
Since
τi(pGi−1Γ/GiΓ)=pγGi−1Γ/GiΓ⊂p[γ,Gi−1]Gi−1γΓ/GiΓ⊂pGi−1Γ/GiΓ, |
where we used the fact
π(phGiΓ)=hGiΓ for each h∈Gi−1. |
Then for each
π∘τi(phGiΓ)=p−1g0A(p)A(h)GiΓ=γA(h)GiΓ=A(h)γ[γ,A(h)]GiΓ=A(h)GiΓ |
where we used the fact
(pGi−1Γ/GiΓ,τi) topologically conjugates to (Gi−1Γ/GiΓ,Ai). |
Notice that
hμa(τ)=hνs+1(τs+1)=hνi(τi)+s+1∑j=i+1bj=a. |
Thus
Now we assume that
This ends the proof of Theorem 1.2.
Proposition 3.7. Let
Proof. We prove the proposition by induction on
gA(p)=gA(˜p)A(p′)=˜pˉg−1ˉgp′=˜pp′=p. |
By induction, we end the proof of Proposition 3.7.
Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem 1.2.
W. Huang was partially supported by NNSF of China (11731003, 12031019, 12090012). L. Xu was partially supported by NNSF of China (11801538, 11871188, 12031019) and the USTC Research Funds of the Double First-Class Initiative.
[1] | A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Comb., 106 (2012), 449–459. |
[2] |
A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. doi: 10.1007/s00224-013-9470-3
![]() |
[3] | A. Ahmad, M. K. Siddiqui, D. Afzal, On the total edge irregularity strength of zigzag graphs, Australas. J. Comb., 54 (2012), 141–150. |
[4] | A. Ahmad, M. Bača, On Vertex Irregular Total Labelings, Ars Comb., 112 (2013), 129–139. |
[5] |
D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15–38. doi: 10.1016/S0012-365X(98)00112-5
![]() |
[6] |
I. H. Agustin, I. Utoyo, M. Venkatachalam, Edge irregular reflexive labeling of some tree graphs, J. Phys.: Conf. Ser., 1543 (2020), 012008. doi: 10.1088/1742-6596/1543/1/012008
![]() |
[7] |
M. Bača, S. Jendrol, M. Miller, J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378–1388. doi: 10.1016/j.disc.2005.11.075
![]() |
[8] | M. Bača, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168–173. |
[9] | M. Bača, M. K. Siddiqui, On total edge irregularity strength of strong product of two cycles, Util. Math., 104 (2017), 255–275. |
[10] | M. Bača, M. Irfan, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 67 (2017), 2–11. |
[11] |
M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. doi: 10.3934/math.2021543
![]() |
[12] | G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210. |
[13] |
J. H. Dimitz, D. T. Garnick, A. Gyárfás, On the irregularity of m×n grid, J. Graph Theory, 16 (1992), 355–374. doi: 10.1002/jgt.3190160409
![]() |
[14] |
A. Gyárfás, The irregularity strength of Km,m is 4 for odd m, Discrete Math., 71 (1988), 273–274. doi: 10.1016/0012-365X(88)90106-9
![]() |
[15] |
Y. Ke, M. J. A. Khan, M. Ibrahim, M. K. Siddiqui, On edge irregular reflexive labeling for Cartesian product of two graphs, Eur. Phys. J. Plus, 136 (2021), 1–13. doi: 10.1140/epjp/s13360-020-01001-7
![]() |
[16] | J. Lahel, Facts and quests on degree irregular assignment, In: Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, New York, NY, USA, 1991,765–782. |
[17] |
T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM. J. Discret. Math., 13 (2000), 313–323. doi: 10.1137/S0895480196314291
![]() |
[18] | J. Ryan, B. Munasinghe, D. Tanna, Reflexive irregular labelings, (2017), preprint. |
[19] | N. K. Sudev, Some new results on equitable coloring parameters of graphs, Acta Math. Univ. Comenianae, 89 (2020), 109–122. |
[20] | D. Tanna, J. Ryan, A. Semaničovǎ-Feňovčkovǎ, A reflexive edge irregular labelings of prisms and wheels, Australas. J. Combin., 69 (2017), 394–401. |
[21] | K. K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, S. M. Lee, On the edge irregular reflexive labeling of corona product of graphs with path, AKCE Int. J. Graphs Combinatorics, (2021), 1–7. |
[22] |
X. Zhang, M. Ibrahim, S. A. Bokhary, M. K. Siddiqui, Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs, Mathematics, 6 (2018), 142. doi: 10.3390/math6090142
![]() |
1. | XIAOBO HOU, XUETING TIAN, Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows, 2024, 44, 0143-3857, 2257, 10.1017/etds.2023.110 | |
2. | Peng Sun, Ergodic measures of intermediate entropies for dynamical systems with the approximate product property, 2025, 465, 00018708, 110159, 10.1016/j.aim.2025.110159 | |
3. | Yi Shi, Xiaodong Wang, Measures of intermediate pressures for geometric Lorenz attractors, 2025, 436, 00220396, 113280, 10.1016/j.jde.2025.113280 |