Processing math: 71%
Research article

The Górnicki -Proinov type contraction on quasi-metric spaces

  • In this manuscript, we look for the answer of the question: Under which conditions the Górnicki-Proinov type contractions possesses a fixed point in the framework of quasi-metric spaces. The observed results are not only generalize but also uniform several existing fixed point theorem in this direction. We also present an example to demonstrate the validity of the obtained main result.

    Citation: A. El-Sayed Ahmed, Andreea Fulga. The Górnicki -Proinov type contraction on quasi-metric spaces[J]. AIMS Mathematics, 2021, 6(8): 8815-8834. doi: 10.3934/math.2021511

    Related Papers:

    [1] Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057
    [2] Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103
    [3] Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794
    [4] Nadiyah Hussain Alharthi, Abdon Atangana, Badr S. Alkahtani . Numerical analysis of some partial differential equations with fractal-fractional derivative. AIMS Mathematics, 2023, 8(1): 2240-2256. doi: 10.3934/math.2023116
    [5] Yong Xian Ng, Chang Phang, Jian Rong Loh, Abdulnasir Isah . Analytical solutions of incommensurate fractional differential equation systems with fractional order 1<α,β<2 via bivariate Mittag-Leffler functions. AIMS Mathematics, 2022, 7(2): 2281-2317. doi: 10.3934/math.2022130
    [6] Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212
    [7] Wei Fan, Kangqun Zhang . Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245
    [8] Abdulkafi M. Saeed, Mohammed A. Almalahi, Mohammed S. Abdo . Explicit iteration and unique solution for ϕ-Hilfer type fractional Langevin equations. AIMS Mathematics, 2022, 7(3): 3456-3476. doi: 10.3934/math.2022192
    [9] Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736
    [10] Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
  • In this manuscript, we look for the answer of the question: Under which conditions the Górnicki-Proinov type contractions possesses a fixed point in the framework of quasi-metric spaces. The observed results are not only generalize but also uniform several existing fixed point theorem in this direction. We also present an example to demonstrate the validity of the obtained main result.



    Hermite [1] and Hadamard [2] derived the familiar inequality is known as Hermite-Hadamard inequality (HH-inequality) and this inequality states that

    Q(u+ν2)1νuνuQ(z)dzQ(u)+Q(ν)2 (1)

    where Q:IR is a convex function defined on a closed bounded interval IR and u,νI with ν>u. If Q is a concave function, then both inequality symbols in (1) are reversed. Sine 𝐻𝐻-inequalities are a useful technique for developing the qualitative and quantitative properties of convexity and nonconvexity. Because of diverse applications of these inequalities in different fields, there has been continuous growth of interest in such an area of research. Therefore many inequalities have been introduced as applications of convex functions and generalized convex function, see [3,4,5,6]. It is very important to mention that, Fejér [7] considered the major generalization of HH-inequality which is known as 𝐻𝐻-Fejér inequality. It can be expressed as follows:

    Let Q:TR be a convex function on an interval T=[u,ν] and u,νT with uν. and let Ω:T=[u,ν]R,Ω(z)0, be a integrable and symmetric with respect to u+ν2, and νuΩ(z)dz>0. Then, we have the following inequality.

    Q(u+ν2).νuΩ(z)dzνuQ(z)Ω(z)dzQ(u)+Q(ν)2.νuΩ(z)dz. (2)

    If Q is a concave function, then inequality (2) is reversed. If Ω(z)=1, then we obtain (1) from (2).

    It is also worthy to mention that Sarikaya et al. [8] provided the fractional version of inequality (1) and for convex function Q:T=[u,ν]R, this inequality states that:

    Q(u+ν2)Γ(α+1)2(νu)α[Iαu+Q(ν)˜+IανQ(u)]Q(u)+Q(ν)2 (3)

    where Qassumed to be a positive function on [u,ν], QL1([u,ν]) with uν, and Iαu+ and Iαν are the left sided and right sided Riemann-Liouville fractional of order 0α, and respectively are defined as follows:

    Iαu+Q(z)=1Γ(α)zu(zτ)α1Q(τ)d(τ)(z>u), (4)
    IανQ(z)=1Γ(α)νz(τz)α1Q(τ)d(τ)(z<ν). (5)

    If α=1, then from (3), we obtain (2). We can easily say that inequality (3) is generalization of inequality (2). Thereafter, many authors in the mathematical community have paid close attention in the view of inequality (3) and obtained several inequalities for different classes of convex and non-convex functions through various fractional integral; see [9,10,11,12,13,14,15].

    On the other hand, it is well-known fact that interval-valued analysis was introduced as an attempt to overcome interval uncertainty that occurs in the computer or mathematical models of some deterministic real-word phenomena. A classic example of an interval closure is Archimedes' technique which is associated with the computation of the circumference of a circle. In 1966, Moore [16] given the concept of interval analysis in his book and discussed its applications in computational Mathematics. After that several authors have developed a strong relationship between inequalities and IVFs by means of inclusion relation via different integral operators, as one can see Costa [17], Costa and Roman-Flores [18], Roman-Flores et al. [19,20], and Chalco-Cano et al. [21,22], but also to more general set-valued maps by Nikodem et al. [23], and Matkowski and Nikodem [24]. In particular, Zhang et al. [25] derived the new version of Jensen's inequalities for set-valued and fuzzy set-valued functions by means of a pseudo order relation and proved that these Jensen's inequalities generalized form of Costa Jensen's inequalities [17]. After that, Budek [26] established fractional HH-inequality for convex-IVF through interval-valued fractional Riemann-Liouville fractional.

    Our goal is to use the generalization of classical Riemann integral operator which is known as fuzzy Riemann-Liouville fractional integral operator. Recently, Allahviranloo et al. [27] introduced the following fuzzy-interval Riemann-Liouville fractional integral operator:

    Let α>0 and L([u,ν],F0) be the collection of all Lebesgue measurable fuzzy-IVFs on[u,ν]. Then, the fuzzy-interval left and right Riemann-Liouville fractional integral of ˜Q L([u,ν],F0) with order α>0 are defined by

    Iαu+˜Q(z)=1Γ(α)zu(zτ)α1˜Q(τ)d(τ),(z>u), (6)

    and

    Iαν˜Q(z)=1Γ(α)νz(τz)α1˜Q(τ)d(τ),(z<ν) (7)

    respectively, where Γ(z)=0τz1uτd(τ) is the Euler gamma function. The fuzzy-interval left and right Riemann-Liouville fractional integral z based on left and right endpoint functions can be defined, that is

    [Iαu+˜Q(z)]γ=1Γ(α)zu(zτ)α1Qγ(τ)d(τ)=1Γ(α)zu(zτ)α1[Q(τ,γ),Q(τ,γ)]d(τ),(z>u) (8)

    where

    Iαu+Q(z,γ)=1Γ(α)zu(zτ)α1Q(τ,γ)d(τ),(z>u), (9)

    and

    Iαu+Q(z,γ)=1Γ(α)zu(zτ)α1Q(τ,γ)d(τ),(z>u). (10)

    Similarly, we can define the right Riemann-Liouville fractional integral ˜Q of z based on left and right endpoint functions.

    Moreover, recently, Khan et al. [28] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex fuzzy-IVFs by means fuzzy order relation and presented the following new version of 𝐻𝐻-type inequality for (h1,h2)-convex fuzzy-IVF involving fuzzy-interval Riemann integrals:

    Theorem 1.1. Let ˜Q:[u,ν]F0 be a (h1,h2)-convex fuzzy-IVF with h1,h2:[0,1]R+ and h1(12)h2(12)0, whose γ-levels define the family of IVFs Qγ:[u,ν]RK+C are given by Qγ(z)=[Q(z,γ),Q(z,γ)] for all z[u,ν] and for all γ[0,1]. If ˜Q is fuzzy-interval Riemann integrable (in sort, FR-integrable), then

    12h1(12)h2(12)˜Q(u+ν2)1νu(FR)νu˜Q(z)dz[˜Q(u)˜+˜Q(ν)]10h1(τ)h2(1τ)dτ. (11)

    If h1(τ)=τ and h2(τ)1, then from inequality (11), we obtain the following inequality:

    ˜Q(u+ν2)1νu(FR)νu˜Q(z)dz˜Q(u)˜+˜Q(ν)2. (12)

    This inequality (12) is known as HH-inequality for convex fuzzy-IVF. We refer readers to [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] and the references therein for further review of literature on the applications and properties of fuzzy-interval, inequalities, and generalized convex fuzzy mappings.

    Inspired by the ongoing research work, the new class of generalized convex fuzzy-IVFs is introduced which is known as h-convex fuzzy-IVF. With the help of h-convex fuzzy-IVF and fuzzy-interval Riemann fractional integral operator, we have introduced fuzzy fractional Hermite-Hadamard type inequalities by means of fuzzy order relation. Moreover, we have shown that our results include a wide class of new and known inequalities for h-convex fuzzy-IVFs and their variant forms as special cases. Some useful examples are also presented to verify the validity of our main results.

    Let R be the set of real numbers and KC be the space of all closed and bounded intervals of R and ηKC be defined by

    η=[η,η]={zR|ηzη},  (η,ηR). (13)

    If η=η, then η is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If η0, then [η,η] is called positive interval. The set of all positive interval is denoted by K+C and defined as K+C={[η,η]:[η,η]KCandη0}.

    Let τR and τη be defined by

    τη={[τη,τη]ifτ>0,{0}ifτ=0[τη,τη]ifτ<0. (14)

    Then the Minkowski difference η, addition η+ζ and η×ζ for η,ζKC are defined by

    [ζ,ζ][η,η]=[ζη,ζη],[ζ,ζ]+[η,η]=[ζ+η,ζ+η], (15)

    and

    [ζ,ζ]×[η,η]=[min{ζη,ζη,ζη,ζη},max{ζη,ζη,ζη,ζη}].

    The inclusion "⊆" means that

    ζη if and only if, [ζ,ζ][η,η],if and only if ηζ,ζη. (16)

    Remark 2.1. [29] The relation "≤I" defined on KC by

    [ζ,ζ]I[η,η] if and only if ζη,ζη,(17)

    for all [ζ,ζ],[η,η]KC, it is an order relation. For given [ζ,ζ],[η,η]KC, we say that [ζ,ζ]I[η,η] if and only if ζη,ζη.

    For [ζ,ζ],[η,η]KC, the Hausdorff-Pompeiu distance between intervals [ζ,ζ] and [η,η] is defined by

    d([ζ,ζ],[η,η])=max{|ζη|,|ζη|}.

    It is familiar fact that (KC,d) is a complete metric space.

    A fuzzy subset A of R is characterize by a mapping ˜ζ:R[0,1] called the membership function, for each fuzzy set and if γ(0,1], then γ-level sets of ˜ζ is denoted and defined as follows ζγ={uR|˜ζ(u)γ}. If γ=0, then supp(˜ζ)={zR|˜ζ(z)>0} is called support of ˜ζ. By [˜ζ]0 we define the closure of supp(˜ζ).

    Let F(R) be the family of all fuzzy sets and ˜ζF(R) be a fuzzy set. Then, we define the following:

    (1)˜ζ is said to be normal if there exists zR and ˜ζ(z)=1;

    (2)˜ζ is said to be upper semi continuous on R if for given zR, there exist ϵ>0 there exist δ>0 such that ˜ζ(z)˜ζ(x)<ϵ for all xR with |zx|<δ;

    (3)˜ζ is said to be fuzzy convex if ζγ is convex for every γ[0,1];

    (4)˜ζ is compactly supported if supp(˜ζ) is compact.

    A fuzzy set is called a fuzzy number or fuzzy-interval if it has properties (1)–(4). We denote by F0 the family of all interval.

    From these definitions, we have

    [˜ζ]γ=[ζ(γ),ζ(γ)],

    where

    ζ(γ)=inf{zR|˜ζ(z)γ},ζ(γ)=sup{zR|˜ζ(z)γ}.

    Proposition 2.2. [18] If ˜ζ,˜ηF0, then relation "≼" defined on F0 by

     ˜ζ ˜η if and only if, [  ˜ζ]γI[  ˜η ]γ,for all γ[0, 1], (18)

    this relation is known as partial order relation.

    For ˜ζ,˜ηF0 and τR, the sum ˜ζ˜+˜η, product ˜ζ˜×˜η, scalar product τ.˜ζ and sum with scalar are defined by:

    [˜ζ˜+˜η]γ=[˜ζ]γ+[˜η]γ, (19)
    [˜ζ˜×˜η]γ=[˜ζ]γ×[˜η]γ, (20)
    [τ.˜ζ]γ=τ.[˜ζ]γ (21)
    [τ˜+˜ζ]γ=τ+[˜ζ]γ. (22)

    for all γ[0,1]. For ˜ψF0 such that ˜ζ=˜η˜+˜ψ, then by this result we have existence of Hukuhara difference of ˜ζ and ˜η, and we say that ˜ψ is the H-difference of ˜ζ and ˜η, and denoted by ˜ζ˜˜η. If H-difference exists, then

    (ψ)(γ)=(ζη)(γ)=ζ(γ)η(γ),(ψ)(γ)=(ζη)(γ)=ζ(γ)η(γ). (23)

    A partition of [u,ν] is any finite ordered subset P having the form

    P={u=z1<z2<z3<z4<z5<zk=ν}.

    The mesh of a partition P is the maximum length of the subintervals containing P that is,

    mesh(P)=max{zjzj1:j=1,2,3,k}.

    Let P(δ,[u,ν]) be the set of all partitions P of [u,ν] such that mesh(P)<δ. For each interval [zj1,zj], where 1jk, choose an arbitrary point ξj and taking the sum

    S(Q,P,δ)=kj=1Q(ξj)(zjzj1),

    where Q:[u,ν]KC. We call S(Q,P,δ) a Riemann sum of Q corresponding to PP(δ,[u,ν]).

    Definition 2.3. [30] A function Q:[u,ν]KC is called interval Riemann integrable (IR-integrable) on [u,ν] if there exists BKC such that, for each ϵ>0, there exists δ>0 such that

    d(S(Q,P,δ),B)<ϵ

    for every Riemann sum of Q corresponding to PP(δ,[u,ν]) and for arbitrary choice of ξj[zj1,zj] for 1jk. Then, we say that B is the IR-integral of Q on [u,ν] and is denote by B=(IR)νuQ(z)dz.

    Moore [9] firstly proposed the concept of Riemann integral for IVF and it is defined as follow:

    Theorem 2.4. [16] If Q:[u,ν]RKC is an IVF on such that Q(z)=[Q,Q], then Q is Riemann integrable over [u,ν] if and only if, Q and Q both are Riemann integrable over [u,ν] such that

    (IR)νuQ(z)dz=[(R)νuQ(z)dz,(R)νuQ(z)dz]. (24)

    Definition 2.5. [31] A fuzzy map˜Q:[u,ν]F0 is called fuzzy-IVF. For each γ[0,1], whose γ-levels define the family of IVFs Qγ:[u,ν]KC are given by Qγ(z)=[Q(z,γ),Q(z,γ)] for all z[u,ν]. Here, for each γ[0,1], the left and right real valued functions Q(z,γ),Q(z,γ):[u,ν]R are also called lower and upper functions of ˜Q.

    Remark 2.6. If ˜Q:[u,ν]RF0 is a fuzzy-IVF, then ˜Q(z) is called continuous function at z[u,ν], if for each γ[0,1], both left and right real valued functions Q(z,γ) and Q(z,γ) are continuous at zK.

    The following conclusion can be drawn from the above literature review, see [17,31].

    Definition 2.7. Let ˜Q:[u,ν]RF0 is called fuzzy-IVF. The fuzzy Riemann integral of ˜Q over [u,ν], denoted by (FR)νu˜Q(z)dz, it is defined level by level

    [(FR)νu˜Q(z)dz]γ=(IR)νuQγ(z)dz={νuQ(z,γ)dz:Q(z,γ)R[u,ν]}, (25)

    for all γ[0,1], where R[u,ν] contains the family of left and right functions of IVFs. ˜Q is (FR)-integrable over [u,ν] if (FR)νu˜Q(z)dzF0. Note that, if left and right real valued functions are Lebesgue-integrable, then ˜Q is fuzzy Aumann-integrable over [u,ν], denoted by (FA)νu˜Q(z)dz, see [31].

    Theorem 2.8. Let ˜Q:[u,ν]RF0 be a fuzzy-IVF, whose γ-levels obtain the collection of IVFs Qγ:[u,ν]RKC are defined by Qγ(z)=[Q(z,γ),Q(z,γ)] for all z[u,ν] and for all γ[0,1]. Then, ˜Q is (FR)-integrable over [u,ν] if and only if, Q(z,γ) and Q(z,γ) both are R-integrable over [u,ν]. Moreover, if ˜Q is (FR)-integrable over [u,ν], then

    [(FR)νu˜Q(z)dz]γ=[(R)νuQ(z,γ)dz,(R)νuQ(z,γ)dz]=(IR)νuQγ(z)dz (26)

    for all γ[0,1].

    Definition 2.9. A real valued function Q:[u,ν]R+ is called convex function if

    Q(τx+(1τ)z)τQ(x)+(1τ)Q(z), (27)

    for all x,z[u,ν],τ[0,1]. If (27) is reversed, then Q is called concave.

    Definition 2.10. [32] The fuzzy-IVF ˜Q:[u,ν]F0 is called convex fuzzy-IVF on[u,ν] if

    ˜Q(τx+(1τ)z)τ˜Q(x)˜+(1τ)˜Q(z), (28)

    for allx,z[u,ν],τ[0,1], where ˜Q(z)˜0 for all z[u,ν]. If (28) is reversed, then ˜Q is called concave fuzzy-IVF on [u,ν]. ˜Q is affine if and only if it is both convex and concave fuzzy-IVF.

    Remark 2.11. If Q(z,γ)=Q(z,γ) and γ=1, then we obtain the inequality (1).

    Definition 2.12. [28] Let h1,h2:[0,1][u,ν]R+ such that h1,h20. Then, fuzzy-IVF ˜Q:[u,ν]F0 is said to be (h1,h2)-convex fuzzy-IVF on [u,ν] if

    ˜Q(τx+(1τ)z)h1(τ)h2(1τ)˜Q(x)˜+h1(1τ)h2(τ)˜Q(z), (29)

    for allx,z[u,ν],τ[0,1], where ˜Q(x)˜0. If ˜Q is (h1,h2)-concave on [u,ν], then inequality (29) is reversed.

    Remark 2.13. [28] If h2(τ)1, then (h1,h2)-convex fuzzy-IVF becomes h-convex fuzzy-IVF, that is

    ˜Q(τx+(1τ)z)h1(τ)˜Q(x)˜+h1(1τ)˜Q(z),x,z[u,ν],τ[0,1]. (30)

    If h1(τ)=τ,h2(τ)1, then (h1,h2)-convex fuzzy-IVF becomes convex fuzzy-IVF, that is

    ˜Q(τx+(1τ)z)τ˜Q(x)˜+(1τ)˜Q(z),x,z[u,ν],τ[0,1]. (31)

    If h1(τ)=h2(τ)1, then (h1,h2)-convex fuzzy-IVF becomes P-convex fuzzy-IVF, that is

    ˜Q(τx+(1τ)z)˜Q(x)˜+˜Q(z),x,z[u,ν],τ[0,1]. (32)

    Theorem 2.14. Let h:[0,1][u,ν]R be anon-negative real valued function such that h0 and let ˜Q:[u,ν]F0 be a fuzzy-IVF, whose γ-levels define the family of IVFs Qγ:[u,ν]KC+KC are given by

    Qγ(z)=[Q(z,γ),Q(z,γ)], (33)

    for all z[u,ν] and for all γ[0,1]. Then, ˜Q is h-convex fuzzy-IVF on [u,ν], if and only if, for all γ[0,1], Q(z,γ) and Q(z,γ) are h-convex function.

    Proof. The demonstration of proof of Theorem 2.14 is similar to the demonstration proof of Theorem 6 in [28].

    Example 2.15. We consider h(τ)=τ, for τ[0,1] and the fuzzy-IVF ˜Q:[0,4]F0 defined by

    ˜Q(z)(σ)={σ2ez2σ[0,2ez2]4ez2σ2ez2σ(2ez2,4ez2]0otherwise,

    then, for each γ[0,1], we have Qγ(z)=[2γez2,2(2γ)ez2]. Since end point functions Q(z,γ), Q(z,γ) are h-convex functions for each γ[0,1]. Hence ˜Q(z) is h-convex fuzzy-IVF.

    In this section, we will prove some new Hermite-Hadamard type inequalities for h-convex fuzzy-IVFs by means of fuzzy order relation via Riemann Liouville fractional integral operator. In what follows, we denote by L([u,ν],F0) the family of Lebesgue measureable fuzzy-IVFs.

    Theorem 3.1. Let ˜Q:[u,ν]F0 be a h-convex fuzzy-IVF on [u,ν], whose γ-levels define the family of IVFs Qγ:[u,ν]RK+C are given by Qγ(z)=[Q(z,γ),Q(z,γ)] for all z[u,ν] and for all γ[0,1]. If ˜QL([u,ν],F0), then

    1αh(12)˜Q(u+ν2)Γ(α)(νu)α[Iαu+˜Q(ν)˜+Iαν˜Q(u)]˜Q(u)˜+˜Q(ν)210τα1[h(τ)h(1τ)]dτ. (34)

    If ˜Q(z) is concave fuzzy-IVF, then

    1αh(12)˜Q(u+ν2)Γ(α)(νu)α[Iαu+˜Q(ν)˜+Iαν˜Q(u)]˜Q(u)˜+˜Q(ν)210τα1[h(τ)h(1τ)]dτ. (35)

    Proof. Let ˜Q:[u,ν]F0 be a h-convex fuzzy-IVF. Then, by hypothesis, we have

    1h(12)˜Q(u+ν2)˜Q(τu+(1τ)ν)˜+˜Q((1τ)u+τν).

    Therefore, for every γ[0,1], we have

    1h(12)Q(u+ν2,γ)Q(τu+(1τ)ν,γ)+Q((1τ)u+τν,γ),1h(12)Q(u+ν2,γ)Q(τu+(1τ)ν,γ)+Q((1τ)u+τν,γ).

    Multiplying both sides by τα1 and integrating the obtained result with respect to τ over (0,1), we have

    1h(12)10τα1Q(u+ν2,γ)dτ
    10τα1Q(τu+(1τ)ν,γ)dτ+10τα1Q((1τ)u+τν,γ)dτ
    1h(12)10τα1Q(u+ν2,γ)dτ
    10τα1Q(τu+(1τ)ν,γ)dτ+10τα1Q((1τ)u+τν,γ)dτ.

    Let x=τu+(1τ)ν and z=(1τ)u+τν. Then, we have

    1αh(12)Q(u+ν2,γ)1(νu)ανu(νx)α1Q(x,γ)dx+1(νu)ανu(zu)α1Q(z,γ)dz1αh(12)Q(u+ν2,γ)1(νu)ανu(νx)α1Q(x,γ)dx+1(νu)ανu(zu)α1Q(z,γ)dz,
    Γ(α)(νu)α[Iαu+Q(ν,γ)+IανQ(u,γ)]Γ(α)(νu)α[Iαu+Q(ν,γ)+IανQ(u,γ)].

    That is

    1αh(12)[Q(u+ν2,γ),Q(u+ν2,γ)]
    IΓ(α)(νu)α[[Iαu+Q(ν,γ)+IανQ(u,γ)],[Iαu+Q(ν,γ)+IανQ(u,γ)]]

    thus,

    1αh(12)Qγ(u+ν2)IΓ(α)(νu)α[Iαu+Qγ(ν)+IανQγ(u)]. (36)

    In a similar way as above, we have

    Γ(α)(νu)α[Iαu+Qγ(ν)+IανQγ(u)]I[Qγ(u)+Qγ(ν)]10τα1[h(τ)h(1τ)]dτ. (37)

    Combining (36) and (37), we have

    1αh(12)Qγ(u+ν2)IΓ(α)(νu)α[Iαu+Qγ(ν)+IανQγ(u)]
    I[Qγ(u)+Qγ(ν)]10τα1[h(τ)h(1τ)]dτ

    that is

    1αh(12)˜Q(u+ν2)Γ(α)(νu)α[Iαu+˜Q(ν)˜+Iαν˜Q(u)][˜Q(u)˜+˜Q(ν)]10τα1[h(τ)h(1τ)]dτ.

    Hence, the required result.

    Remark 3.2 From Theorem 3.1 we clearly see that:

    If α=1, then Theorem 3.1 reduces to the result for h-convex fuzzy-IVF:

    12h(12)˜Q(u+ν2)1νu(FR)νu˜Q(z)dz[˜Q(u)˜+˜Q(ν)]10h(τ)dτ. (38)

    If h(τ)=τ, then Theorem 3.1 reduces to the result for convex fuzzy-IVF:

    ˜Q(u+ν2)Γ(α+1)2(νu)α[Iαu+˜Q(ν)˜+Iαν˜Q(u)]˜Q(u)˜+˜Q(ν)2. (39)

    Let α=1 and h(τ)=τ. Then, Theorem 3.1 reduces to the result for convex-IVF given in [28]:

    ˜Q(u+ν2)1νu(FR)νu˜Q(z)dz˜Q(u)˜+˜Q(ν)2. (40)

    If Q(z,γ)=Q(z,γ) and γ=1, then, from Theorem 3.1 we get following inequality given in [12]:

    1αh(12)Q(u+ν2)Γ(α)(νu)α[Iαu+Q(ν)+IανQ(u)][Q(u)+Q(ν)]10τα1[h(τ)h(1τ)]dτ. (41)

    Let α=1=γ and Q(z,γ)=Q(z,γ). Then, from Theorem 3.1 we obtain following inequality given in [2]:

    12h(12)Q(u+ν2)1νu(R)νuQ(z)dz[Q(u)+Q(ν)]10h(τ)dτ. (42)

    Example 3.3. Let =12, h(τ)=τ, for all τ[0,1]and the fuzzy-IVF ˜Q:[u,ν]=[2,3]F0, defined by

    ˜Q(z)(θ)={θ2z12,θ[0,2z12]2(2z12)θ2z12,θ(2z12,2(2z12)]0,otherwise.

    Then, for each γ[0,1], we have Qγ(z)=[γ(2z12),(2γ)(2z12)]. Since left and right end point functions Q(z,γ)=γ(2z12), Q(z,γ)=(2γ)(2z12), are h-convex functions for each γ[0,1], then ˜Q(z) is h-convex fuzzy-IVF. We clearly see that ˜QL([u,ν],F0) and

    1αh(12)Q(u+ν2,γ)=Q(52,γ)=γ4108
    1αh(12)Q(u+ν2,γ)=Q(52,γ)=(2γ)4108,
    Q(u,γ)+Q(ν,γ)210τα1[h(τ)h(1τ)]dτ=γ(423)
    Q(u,γ)+Q(ν,γ)210τα1[h(τ)h(1τ)]dτ=(2γ)(423).

    Note that

    Γ(α)(νu)α[Iαu+Q(ν,γ)+IανQ(u,γ)]
    =Γ(12)21π32(3z)12.γ(2z12)dz
    +Γ(12)21π32(z2)12.γ(2z12)dz
    =12γ[739310,000+950110,000]
    =γ844720,000.
    Γ(α)(νu)α[Iαu+Q(ν,γ)+IανQ(u,γ)]
    =Γ(12)21π32(3z)12.(2γ)(2z12)dz
    +Γ(12)21π32(z2)12.(2γ)(2z12)dz
    =12(2γ)[739310,000+950110,000]
    =(2γ)844720,000.

    Therefore

    [γ4108,(2γ)4108]I[γ844720,000,(2γ)844720,000]
    I[γ(423),(2γ)(423)]

    and Theorem 3.1 is verified.

    From Theorem 3.4 and Theorem 3.5, we obtain some fuzzy-interval fractional integral inequalities related to fuzzy-interval fractionalHH-inequalities

    Theorem 3.4. Let ˜Q,˜P:[u,ν]F0 be h1-convex and h2-convex fuzzy-IVFs on [u,ν], respectively, whose γ-levels Qγ,Pγ:[u,ν]RK+C are defined by Qγ(z)=[Q(z,γ),Q(z,γ)] and Pγ(z)=[P(z,γ),P(z,γ)] for all z[u,ν] and for all γ[0,1]. If ˜Q˜×˜PL([u,ν],F0), then

    Γ(α)(νu)α[Iαu+˜Q(ν)˜×˜P(ν)+Iαν˜Q(u)˜×˜P(u)]˜Δ(u,ν)10τα1[h1(τ)h2(τ)+h1(1τ)h2(1τ)]dτ+˜(u,ν)10τα1[h1(τ)h2(1τ)+h1(1τ)h2(τ)]dτ.

    Where ˜Δ(u,ν)=˜Q(u)˜×˜P(u)˜+˜Q(ν)˜×˜P(ν), ˜(u,ν)=˜Q(u)˜×˜P(ν)˜+˜Q(ν)˜×˜P(u), and Δγ(u,ν)=[Δ((u,ν),γ),Δ((u,ν),γ)] and γ(u,ν)=[((u,ν),γ),((u,ν),γ)].

    Proof. Since ˜Q,˜P both are h1-convex and h2-convex fuzzy-IVFs then, for each γ[0,1] we have

    Q(τu+(1τ)ν,γ)h1(τ)Q(u,γ)+h1(1τ)Q(ν,γ)Q(τu+(1τ)ν,γ)h1(τ)Q(u,γ)+h1(1τ)Q(ν,γ).

    and

    P(τu+(1τ)ν,γ)h2(τ)P(u,γ)+h2(1τ)P(ν,γ)P(τu+(1τ)ν,γ)h2(τ)P(u,γ)+h2(1τ)P(ν,γ).

    From the definition of h-convex fuzzy-IVFs it follows that ˜0˜Q(z) and ˜0˜P(z), so

    Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)h1(τ)h2(τ)Q(u,γ)×P(u,γ)+h1(1τ)h2(1τ)Q(ν,γ)×P(ν,γ)+h1(τ)h2(1τ)Q(u,γ)×P(ν,γ)+h1(1τ)h2(τ)Q(ν,γ)×P(u,γ)Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)h1(τ)h2(τ)Q(u,γ)×P(u,γ)+h1(1τ)h2(1τ)Q(ν,γ)×P(ν,γ)+h1(τ)h2(1τ)Q(u,γ)×P(ν,γ)+h1(1τ)h2(τ)Q(ν,γ)×P(u,γ). (43)

    Analogously, we have

    Q((1τ)u+τν,γ)P((1τ)u+τν,γ)h1(1τ)h2(1τ)Q(u,γ)×P(u,γ)+h1(τ)h2(τ)Q(ν,γ)×P(ν,γ)+h1(1τ)h2(τ)Q(u,γ)×P(ν,γ)+h1(τ)h2(1τ)Q(ν,γ)×P(u,γ)Q((1τ)u+τν,γ)×P((1τ)u+τν,γ)h1(1τ)h2(1τ)Q(u,γ)×P(u,γ)+h1(τ)h2(τ)Q(ν,γ)×P(ν,γ)+h1(1τ)h2(τ)Q(u,γ)×P(ν,γ)+h1(τ)h2(1τ)Q(ν,γ)×P(u,γ). (44)

    Adding (43) and (44), we have

    Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)+Q((1τ)u+τν,γ)×P((1τ)u+τν,γ)[h1(τ)h2(τ)+h1(1τ)h2(1τ)][Q(u,γ)×P(u,γ)+Q(ν,γ)×P(ν,γ)]+[h1(τ)h2(1τ)+h1(1τ)h2(τ)][Q(ν,γ)×P(u,γ)+Q(u,γ)×P(ν,γ)]Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)+Q((1τ)u+τν,γ)×P((1τ)u+τν,γ)[h1(τ)h2(τ)+h1(1τ)h2(1τ)][Q(u,γ)×P(u,γ)+Q(ν,γ)×P(ν,γ)]+[h1(τ)h2(1τ)+h1(1τ)h2(τ)][Q(ν,γ)×P(u,γ)+Q(u,γ)×P(ν,γ)]. (45)

    Taking multiplication of (45) with τα1 and integrating the obtained result with respect to τ over (0, 1), we have

    10τα1Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)+τα1Q((1τ)u+τν,γ)×P((1τ)u+τν,γ)dτΔ((u,ν),γ)10τα1[h1(τ)h2(τ)+h1(1τ)h2(1τ)]dτ+((u,ν),γ)10τα1[h1(τ)h2(1τ)+h1(1τ)h2(τ)]dτ10τα1Q(τu+(1τ)ν,γ)×P(τu+(1τ)ν,γ)+τα1Q((1τ)u+τν,γ)×P((1τ)u+τν,γ)dτΔ((u,ν),γ)10τα1[h1(τ)h2(τ)+h1(1τ)h2(1τ)]dτ+((u,ν),γ)10τα1[h1(τ)h2(1τ)+h1(1τ)h2(τ)]dτ.

    It follows that,

    \begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right)\right]\\ \le {\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .\\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right]\\ \le {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau . \\ \end{array}

    It follows that

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u, \gamma \right)\times {\mathcal{P}}_{*}\left(u, \gamma \right), \\{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\times {\mathcal{P}}^{*}\left(\nu , \gamma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u, \gamma \right)\times {\mathcal{P}}^{*}\left(u, \gamma \right)\right]
    {\le }_{I}\left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau
    +\left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right]{\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau \text{, }

    that is

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right]
    {\le }_{I}{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau
    +{\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .

    Thus,

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right] \\ \;\;\;\;\;\;\;\;\;\preccurlyeq \widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right]d\tau \\ \;\;\;\;\;\;\;\;\;+\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}{\tau }^{\alpha -1}\left[{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right]d\tau .

    and the theorem has been established.

    Theorem 3.5. Let \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be two {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs, respectively, whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }, {\mathcal{P}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] and {\mathcal{P}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{P}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{P}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\widetilde{\times }\widetilde{\mathcal{P}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) , then

    \frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right)
    \preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau .

    Where \widetilde{\Delta }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right), \widetilde{\nabla }\left(u, \nu \right) = \widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right), and {\Delta }_{\gamma }\left(u, \nu \right) = \left[{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right), {\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\right] and {\nabla }_{\gamma }\left(u, \nu \right) = \left[{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right), {\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\right].

    Proof. Consider \widetilde{\mathcal{Q}}, \widetilde{\mathcal{P}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} are {h}_{1} -convex and {h}_{2} -convex fuzzy-IVFs. Then, by hypothesis, for each \gamma \in \left[0, 1\right], we have

    \begin{array}{c}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\end{array}
    \begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\times {\mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right], \end{array}
    \begin{array}{c}\le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}_{*}\left(u, \gamma \right)+\tau {\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\\ +\left({\left(1-\tau \right)\mathcal{Q}}_{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}_{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}_{*}\left(\nu , \gamma \right)\right)\end{array}\right] \\ \le {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right]\\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left(\tau {\mathcal{Q}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\left(1-\tau \right){\mathcal{P}}^{*}\left(u, \gamma \right)+\tau {\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\\ +\left(\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+\tau {\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right)\\ \times \left(\tau {\mathcal{P}}^{*}\left(u, \gamma \right)+\left(1-\tau \right){\mathcal{P}}^{*}\left(\nu , \gamma \right)\right)\end{array}\right], \end{array}
    \begin{array}{c} = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right] \\ = {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\times \mathcal{P}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)\\ +{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\times \mathcal{P}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\end{array}\right] \\ +{h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(\tau \right)\right\}{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right)\\ +\left\{{h}_{1}\left(\tau \right){h}_{2}\left(\tau \right)+{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)\right\}{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right)\end{array}\right].\end{array} (46)

    Taking multiplication of (46) with {\tau }^{\alpha -1} and integrating over (0, 1), we get

    \begin{array}{c}\frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\times \mathcal{P}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}\left(\nu \right){\times \mathcal{P}}_{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}\left(u\right){\times \mathcal{P}}_{*}\left(u\right)\right] \\ +{\nabla }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }_{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ \frac{1}{{\alpha h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\times {\mathcal{P}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\\ \le \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}\left(\nu \right)\times {\mathcal{P}}^{*}\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}\left(u\right)\times {\mathcal{P}}^{*}\left(u\right)\right] \\ +{\nabla }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(\tau \right){h}_{2}\left(1-\tau \right)d\tau \\ +{\Delta }^{*}\left(\left(u, \nu \right), \gamma \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau , \end{array}

    It follows that

    \frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\times {\mathcal{P}}_{\gamma }\left(\frac{u+\nu }{2}\right)
    {\le }_{I}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(\nu \right)\times {\mathcal{P}}_{\gamma }\left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }\left(u\right)\times {\mathcal{P}}_{\gamma }\left(u\right)\right]
    {+\nabla }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau
    +{\Delta }_{\gamma }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \text{, }

    that is

    \frac{1}{\alpha {h}_{1}\left(\frac{1}{2}\right){h}_{2}\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\left(\nu -u\right)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}\left(\nu \right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}\left(u\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(u\right)\right]\widetilde{+}\widetilde{\nabla }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau \widetilde{+}\widetilde{\Delta }\left(u, \nu \right){\int }_{0}^{1}\left[{\tau }^{\alpha -1}+{\left(1-\tau \right)}^{\alpha -1}\right]{h}_{1}\left(1-\tau \right){h}_{2}\left(1-\tau \right)d\tau .

    Hence, the required result.

    The Theorem 3.6 and Theorem 3.7 are directly connected with right and left part of classical HH -Fejér inequality, respectively. Now firstly, we obtain the right part of classical HH -Fejér inequality through fuzzy Riemann Liouville fractional integral is known as second fuzzy fractional HH -Fejér inequality.

    Theorem 3.6. (Second fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h -convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}. (47)

    If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (47) is reversed.

    Proof. Let \widetilde{\mathcal{Q}} be a h-convex fuzzy-IVF and {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\ge 0 . Then, for each \gamma \in \left[0, 1\right], we have

    {\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)
    \le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)
    {\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)
    \le {\tau }^{\alpha -1}\left(h\left(\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(1-\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right), (48)

    And

    {\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)
    \le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}_{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}_{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)
    {\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)
    \le {\tau }^{\alpha -1}\left(h\left(1-\tau \right){\mathcal{Q}}^{*}\left(u, \gamma \right)+h\left(\tau \right){\mathcal{Q}}^{*}\left(\nu , \gamma \right)\right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right). (49)

    After adding (48) and (49), and integrating over \left[0, 1\right], we get

    \begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}_{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}_{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau , \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)d\tau \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(u, \gamma \right)\left\{h\left(\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(1-\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\\ +{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\nu , \gamma \right)\left\{h\left(1-\tau \right){\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)+h\left(\tau \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\right\}\end{array}\right]d\tau , \\ = {\mathcal{Q}}^{*}\left(u, \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right)\end{array}d\tau \\ +{\mathcal{Q}}^{*}\left(\nu , \gamma \right){\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}d\tau . \end{array} (50)

    Taking right hand side of inequality (50), we have

    \begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \\ \end{array} (51)

    From (51), we have

    \begin{array}{c} \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\le \frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}\\ \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] \le \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array}, \end{array}

    that is

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]
    {\le }_{I}\left[\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}, \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}\right]{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\text{, }

    hence

    \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}.

    Now, we obtain the following result connected with left part of classical HH -Fejér inequality for h-convex fuzzy-IVF through fuzzy order relation which is known as first fuzzy fractional HH -Fejér inequality.

    Theorem 3.7. (First fuzzy fractional HH -Fejér inequality) Let \widetilde{\mathcal{Q}}:\left[u, \nu \right]\to {\mathbb{F}}_{0} be a h-convex fuzzy-IVF with u < \nu , whose \gamma -levels define the family of IVFs {\mathcal{Q}}_{\gamma }:\left[u, \nu \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right)\right] for all \mathcal{z}\in \left[u, \nu \right] and for all \gamma \in \left[0, 1\right] . If \widetilde{\mathcal{Q}}\in L\left(\left[u, \nu \right], {\mathbb{F}}_{0}\right) and {\mathit{\Omega}} :\left[u, \nu \right]\to \mathbb{R}, {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0, symmetric with respect to \frac{u+\nu }{2}, then

    \frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\text{.} (52)

    If \widetilde{\mathcal{Q}} is concave fuzzy-IVF, then inequality (52) is reversed.

    Proof. Since \widetilde{\mathcal{Q}} is a h-convex fuzzy-IVF, then for \gamma \in \left[0, 1\right], we have

    \begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right)\\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\le h\left(\frac{1}{2}\right)\left({\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right)+{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right)\right).\end{array} (53)

    Since {\mathit{\Omega}} \left(\tau u+\left(1-\tau \right)\nu \right) = {\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) , then by multiplying (53) by {\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right) and integrate it with respect to \tau over \left[0, 1\right], we obtain

    \begin{array}{c} {\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right), \\ {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right){\int }_{0}^{1}{\tau }^{\alpha -1}{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ \le h\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \end{array}\right).\end{array} (54)

    Let \mathcal{z} = \left(1-\tau \right)u+\tau \nu . Then, right hand side of inequality (54), we have

    \begin{array}{c} {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}_{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(u-\nu -\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\nu -u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(u-\nu -\mathcal{z}\right)d\mathcal{z} \\ +\frac{1}{{(\nu -u)}^{\alpha }}{\int }_{u}^{\nu }{\left(\mathcal{z}-u\right)}^{\alpha -1}{\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z} \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right], \\ {\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\tau u+\left(1-\tau \right)\nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ +{\int }_{0}^{1}{\tau }^{\alpha -1}{\mathcal{Q}}^{*}\left(\left(1-\tau \right)u+\tau \nu , \gamma \right){\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)d\tau \\ = \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha } {\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right]. \end{array} (55)

    Then from (55), we have

    \begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right]\\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \end{array}

    from which, we have

    \begin{array}{c} \frac{1}{2h\left(\frac{1}{2}\right)}\left[{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right), {\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\right]\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\\ {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right), {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right], \\ \end{array}

    it follows that

    \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{\gamma }\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{\gamma }{\mathit{\Omega}} \left(u\right)\right]\text{, }

    that is

    \frac{1}{2h\left(\frac{1}{2}\right)}\widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right].

    This completes the proof.

    Remark 3.8. If {\mathit{\Omega}} \left(\mathcal{z}\right) = 1 , then from Theorem 3.6 and Theorem 3.7, we get Theorem 3.1.

    If h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get following factional HH -Fejér inequality:

    \widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\widetilde{\mathcal{Q}}{\mathit{\Omega}} \left(u\right)\right]\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.}

    Let h\left(\tau \right) = \tau and \alpha = 1 . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -Fejér inequality for convex fuzzy-IVF which is also new one.

    \widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \frac{1}{{\int }_{u}^{\nu }{\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}}\left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right){\mathit{\Omega}} \left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} (57)

    Let h\left(\tau \right) = \tau and \alpha = 1 = {\mathit{\Omega}} \left(\mathcal{z}\right) . Then, from Theorem 3.6 and Theorem 3.7, we obtain following HH -inequality for convex fuzzy-IVF given in [28]:

    \widetilde{\mathcal{Q}}\left(\frac{u+\nu }{2}\right)\preccurlyeq \left(FR\right){\int }_{u}^{\nu }\widetilde{\mathcal{Q}}\left(\mathcal{z}\right)d\mathcal{z}\preccurlyeq \frac{\widetilde{\mathcal{Q}}\left(u\right)\widetilde{+}\widetilde{\mathcal{Q}}\left(\nu \right)}{2}\text{.} (58)

    If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, following HH -Fejér inequality for classical function following inequality given in [9]:

    \mathcal{Q}\left(\frac{u+\nu }{2}\right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\le \left[{\mathcal{I}}_{{u}^{+}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathcal{Q}{\mathit{\Omega}} \left(u\right)\right]\le \frac{\mathcal{Q}\left(u\right)+\mathcal{Q}\left(\nu \right)}{2}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right]\text{.} (59)

    If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we obtain the classical HH -Fejér inequality (2).

    If {\mathcal{Q}}_{*}(\mathcal{z}, \gamma) = {\mathcal{Q}}^{*}(\mathcal{z}, \gamma) and {\mathit{\Omega}} \left(\mathcal{z}\right) = \alpha = 1 = \gamma and h\left(\tau \right) = \tau , then from Theorem 3.6 and Theorem 3.7, we get the classical HH -inequality (1).

    Example 3.9. We consider the fuzzy-IVF \widetilde{\mathcal{Q}}:\left[0, 2\right]\to {\mathbb{F}}_{0} defined by,

    \widetilde{\mathcal{Q}}\left(\mathcal{z}\right)\left(\sigma \right) = \left\{\begin{array}{c}\frac{\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left[0, 2-\sqrt{\mathcal{z}}\right], \\ \frac{2\left(2-\sqrt{\mathcal{z}}\right)-\sigma }{2-\sqrt{\mathcal{z}}}, \;\;\;\; \sigma \in \left(2-\sqrt{\mathcal{z}}, 2\left(2-\sqrt{\mathcal{z}}\right)\right], \\ 0, \;\;\;\;\;\;\;\;\;\;\; {\rm{otherwise}}.\end{array}\right.

    Then, for each \gamma \in \left[0, 1\right], we have {\mathcal{Q}}_{\gamma }\left(\mathcal{z}\right) = \left[\gamma \left(2-\sqrt{\mathcal{z}}\right), (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right)\right] . Since end point functions {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right), {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) are h -convex functions for each \gamma \in [0, 1] , then \widetilde{\mathcal{Q}}\left(\mathcal{z}\right) is h -convex fuzzy-IVF. If

    {\mathit{\Omega}} \left(\mathcal{z}\right) = \left\{\begin{array}{c}\sqrt{\mathcal{z}}, \;\;\;\; \sigma \in \left[0, 1\right], \\ \sqrt{2-\mathcal{z}}, \;\;\;\; \sigma \in \left(1, 2\right], \end{array}\right.

    then {\mathit{\Omega}} \left(2-\mathcal{z}\right) = {\mathit{\Omega}} \left(\mathcal{z}\right)\ge 0 , for all \mathcal{z}\in \left[0, 2\right] . Since {\mathcal{Q}}_{*}\left(\mathcal{z}, \gamma \right) = \gamma \left(2-\sqrt{\mathcal{z}}\right) and {\mathcal{Q}}^{*}\left(\mathcal{z}, \gamma \right) = (2-\gamma)\left(2-\sqrt{\mathcal{z}}\right) . If h\left(\tau \right) = \tau and \alpha = \frac{1}{2} , then we compute the following:

    \begin{array}{c}\frac{{\mathcal{Q}}_{*}\left(u, \gamma \right)+{\mathcal{Q}}_{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}\gamma \left(\frac{4-\sqrt{2}}{2}\right), \\ \frac{{\mathcal{Q}}^{*}\left(u, \gamma \right)+{\mathcal{Q}}^{*}\left(\nu , \gamma \right)}{2}{\int }_{0}^{1}\begin{array}{c}{\tau }^{\alpha -1}\left[h\left(\tau \right)+h\left(1-\tau \right)\right]{\mathit{\Omega}} \left(\left(1-\tau \right)u+\tau \nu \right)\end{array} = \frac{\pi }{\sqrt{2}}(2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right), \end{array} (60)
    \begin{array}{c}\frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), \\ \frac{{\mathit{\Gamma}} \left(\alpha \right)}{{(\nu -u)}^{\alpha }}\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)\widetilde{+}{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\right] = \frac{1}{\sqrt{\pi }}(2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} (61)

    From (61) and (62), we have

    \frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{\pi }{\sqrt{2}}\left[\gamma \left(\frac{4-\sqrt{2}}{2}\right), (2-\gamma )\left(\frac{4-\sqrt{2}}{2}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right].

    Hence, Theorem 10 is verified.

    For Theorem 11, we have

    \begin{array}{c}{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}_{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left(\gamma \left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\gamma \left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\gamma \left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right) \\ {\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathcal{Q}}^{*}{\mathit{\Omega}} \left(u\right)\\ = \frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(2-\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}+\frac{1}{\sqrt{\pi }}\underset{0}{\overset{2}{\int }}{\left(\mathcal{z}\right)}^{\frac{-1}{2}}{\mathit{\Omega}} \left(\mathcal{z}\right)\left((2-\gamma )\left(2-\sqrt{\mathcal{z}}\right)\right)d\mathcal{z}\\ = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi +\frac{8-8\sqrt{2}}{3}\right)+\frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(\pi -\frac{4}{3}\right) = \frac{1}{\sqrt{\pi }}\left(2-\gamma \right)\left(2\pi +\frac{4-8\sqrt{2}}{3}\right). \end{array} (62)
    \begin{array}{c}\frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}_{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \gamma \sqrt{\pi }, \\ \frac{1}{2h\left(\frac{1}{2}\right)}{\mathcal{Q}}^{*}\left(\frac{u+\nu }{2}, \gamma \right)\left[{\mathcal{I}}_{{u}^{+}}^{\alpha }{\mathit{\Omega}} \left(\nu \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }{\mathit{\Omega}} \left(u\right)\right] = \left(2-\gamma \right)\sqrt{\pi }. \end{array} (63)

    From (63) and (63), we have

    \sqrt{\pi }\left[\gamma , \left(2-\gamma \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{\sqrt{\pi }}\left[\gamma \left(2\pi +\frac{4-8\sqrt{2}}{3}\right), (2-\gamma )\left(2\pi +\frac{4-8\sqrt{2}}{3}\right)\right], \; {\rm{for \;each}} \; \gamma \in \left[0, 1\right].

    In this study, we used fuzzy-interval Riemann-Liouville fractional integrals to prove some new Hermite-Hadamard inequalities for h-convex fuzzy IVFs. The results are consistent with those found in [1,2,7,16,26,28]. Furthermore, these results could be expanded in the future for different types of convexities and fractional integrals.

    This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/96), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] R. P. Agarwal, E. Karapınar, A. Roldan, Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on G-metric spaces, J. Nonlinear Convex Anal., 2014, 36.
    [2] C. Alegre, A. Fulga, E. Karapınar, P. Tirado, A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces, Mathematics, 8 (2020), 1437. doi: 10.3390/math8091437
    [3] H. H. Al-Sulami, E. Karapınar, F. Khojasteh, A.Roldán, A proposal to the study of contractions in quasi metric spaces, Discrete Dyn. Nat. Soc., 2014, Article ID: 269286.
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181
    [5] N. Bilgili, E. Karapınar, B. Samet, Generalized \alpha-\psi Contractive Mappings in Quasi-Metric Spaces and Related Fixed Point Theorems, J. Inequal. Appl., 2014.
    [6] R. K. Bisht, A note on the fixed point theorem of Górnicki, J. Fixed Point Theory Appl., 21 (2019), 54. doi: 10.1007/s11784-019-0695-x
    [7] Lj. B. Ciric, On contraction type mappings, Math. Balkanica, 1 (1971), 52–57.
    [8] C. M. Chen, E. Karapınar, I. J. Lin, Periodic points of weaker Meir-Keeler contractive mappings on generalized quasi-metric spaces, Abstract Appl. Anal., 2014, Article No: 490450.
    [9] R. Caccioppoli, Una teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Ren. Accad. Naz Lincei, 11 (1930), 794–799.
    [10] C. M. Chen, E. Karapınar, V. Rakocevic, Existence of periodic fixed point theorems in the setting of generalized quasi-metric spaces, J. Appl. Math., 2014 (2014), Article ID: 353765.
    [11] E. Karapınar and W.-S. Du, A note on b-cone metric and its related results: Generalizations or equivalence?, Fixed Point Theory Appl., 2013 (2013), 210. doi: 10.1186/1687-1812-2013-210
    [12] J. Górnicki, Remarks on asymptotic regularity and fixed points, J. Fixed Point Theory Appl., 21 (2019), 29. doi: 10.1007/s11784-019-0668-0
    [13] J. Górnicki, On some mappings with a unique fixed point, J. Fixed Point Theory Appl., 22 (2020), 8. doi: 10.1007/s11784-019-0741-8
    [14] V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and convex non-expansive mapping, Libertas Math., 1 (1981), 151–163.
    [15] M. Noorwali, E. Karapınar, H. H. Alsulami, Some extensions of fixed point results over QUASI-JS-SPACES, J. Funct. Space., 2016, Article ID: 865798.
    [16] E. Karapınar, P. Kumam, P. Salimi, On \alpha-\psi-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. doi: 10.1186/1687-1812-2013-94
    [17] E. Karapınar, B. Samet, Generalized \alpha-\psi-Contractive Type Mappings and Related Fixed Point Theorems with Applications, Abstract Appl. Anal., 2012, Article ID: 793486.
    [18] E. Karapınar, A. F. Roldan-Lopez-de-Hierro, B. Samet, Matkowski theorems in the context of quasi-metric spaces and consequences on G-metric spaces, An. Sti. U. Ovid. Co-Mat., 24 (2016), 309–333.
    [19] E. Karapınar, A. Fulga, On hybrid contractions via simulation function in the context of quasi-metric spaces, J. Nonlinear Covnex Anal., 21 (2020), 2115–2124.
    [20] E. Karapınar, S. Romaguera, On the weak form of Ekeland's Variational Principle in quasi-metric spaces, Topol. Appl., 184 (2015), 54–60. doi: 10.1016/j.topol.2015.01.011
    [21] E. Karapınar, A. Pitea, On alpha-psi-Geraghty contraction type mappings on quasi-Branciari metric spaces, J. Nonlinear Convex Anal., 17 (2016), 1291–1301.
    [22] E. Karapınar, L. Gholizadeh, H. H. Alsulami, M. Noorwali, alpha-(psi, phi)-Contractive mappings on quasi-partial metric spaces, Fixed Point Theory Appl., 2015 (2015), 105. doi: 10.1186/s13663-015-0352-z
    [23] E. Karapınar, H. Lakzian, (\alpha, \psi)-contractive mappings on generalized quasi-metric spaces, J. Function Space., 2014 (2014), Article ID: 914398.
    [24] E. Karapınar, S.Romaguera, P. Tirado, Contractive multivalued maps in terms of Q-functions on complete quasimetric spaces, Fixed Point Theory Appl., 2014 (2014), 53. doi: 10.1186/1687-1812-2014-53
    [25] E. Karapınar, M. De la Sen, A. Fulga, A Note on the Górnicki-Proinov Type Contraction, J. Function Space., 2021, Article ID: 6686644.
    [26] A. Pant, R. P. Pant, Fixed Points and Continuity of Contractive Maps, Filomat, 31 (2017), 3501–3506.
    [27] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
    [28] O. Popescu, Some new fixed point theorems for \alpha-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014, Article ID: 190.
    [29] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21.
    [30] A. Roldan, E. Karapınar, M. De La Sen, Coincidence point theorems in quasi-metric spaces without assuming the mixed monotone property and consequences in G-metric spaces, Fixed Point Theory Appl., 2014 (2014), 184. doi: 10.1186/1687-1812-2014-184
    [31] F. Skof, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 111 (1977), 323–329.
    [32] B. Samet, C.Vetro, F.Vetro, Remarks on G-Metric Spaces, Int. J. Anal., 2013 (2013), Article ID: 917158.
    [33] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for a \alpha-\psi-contractive type mappings, Nonlinear Anal., Theory, Methods Appl., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014
  • This article has been cited by:

    1. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611
    2. Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, 2021, 18, 1551-0018, 6552, 10.3934/mbe.2021325
    3. Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Fuzzy Mixed Variational-like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings, 2021, 13, 2073-8994, 1816, 10.3390/sym13101816
    4. Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639
    5. Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities, 2023, 8, 2473-6988, 6777, 10.3934/math.2023345
    6. Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, 2021, 7, 2473-6988, 349, 10.3934/math.2022024
    7. Muhammad Bilal Khan, Muhammad Aslam Noor, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Khalida Inayat Noor, Some Integral Inequalities for Generalized Convex Fuzzy-Interval-Valued Functions via Fuzzy Riemann Integrals, 2021, 14, 1875-6883, 10.1007/s44196-021-00009-w
    8. Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083
    9. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622
    10. Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, 2021, 19, 1551-0018, 812, 10.3934/mbe.2022037
    11. Muhammad Bilal Khan, Muhammad Aslam Noor, Mohammed M. Al‐Shomrani, Lazim Abdullah, Some novel inequalities for LR‐h‐convex interval‐valued functions by means of pseudo‐order relation, 2022, 45, 0170-4214, 1310, 10.1002/mma.7855
    12. Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, 2022, 7, 2473-6988, 15659, 10.3934/math.2022857
    13. Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions, 2022, 14, 2073-8994, 313, 10.3390/sym14020313
    14. Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341
    15. Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, Mohamed S. Soliman, Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions, 2022, 15, 1875-6883, 10.1007/s44196-022-00081-w
    16. Muhammad Bilal Khan, Muhammad Aslam Noor, Khalida Inayat Noor, Kottakkaran Sooppy Nisar, Khadiga Ahmed Ismail, Ashraf Elfasakhany, Some Inequalities for LR-\left({h}_{1}, {h}_{2}\right)-Convex Interval-Valued Functions by Means of Pseudo Order Relation, 2021, 14, 1875-6883, 10.1007/s44196-021-00032-x
    17. Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, 2021, 7, 2473-6988, 1507, 10.3934/math.2022089
    18. Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Jorge E. Macías-Díaz, Y.S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, 2022, 61, 11100168, 7089, 10.1016/j.aej.2021.12.052
    19. Hüseyin Irmak, An extensive note on various fractional-order type operators and some of their effects to certain holomorphic functions, 2022, 21, 2300-133X, 7, 10.2478/aupcsm-2022-0001
    20. Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed, Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions, 2022, 7, 2473-6988, 4338, 10.3934/math.2022241
    21. Muhammad Bilal Khan, Muhammad Aslam Noor, Hatim Ghazi Zaini, Gustavo Santos-García, Mohamed S. Soliman, The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals, 2022, 15, 1875-6883, 10.1007/s44196-022-00127-z
    22. Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322
    23. Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation, 2022, 10, 2227-7390, 204, 10.3390/math10020204
    24. Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534
    25. Muhammad Bilal Khan, Pshtiwan Othman Mohammed, José António Tenreiro Machado, Juan L. G. Guirao, Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings, 2021, 13, 2073-8994, 2352, 10.3390/sym13122352
    26. Conghui Xiong, Dan Fang, Xuebing Zou, Wei Yu, Fuzzy Mathematics-Based Evaluation Method for Comprehensive River Improvement Project Benefits, 2024, 12, 2169-3536, 126344, 10.1109/ACCESS.2024.3455320
    27. José Ramón Rabuñal, María Soto, Juan Ignacio Morales, Diego Lombao, Miguel Ángel Soares-Remiseiro, Juan Luis Fernández-Marchena, Josep Vallverdú, Las ocupaciones tardiglaciares de la Cova de Les Borres (La Febró, Tarragona), 2024, 81, 1988-3218, 992, 10.3989/tp.2024.992
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2889) PDF downloads(155) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog