
In this article, we develop a new class of trapezium-type inequalities up to twice differentiable h-convex mappings for fractional integrals of Riemann-type. We conclude numerous existing results in literature from our general inequalities. Based on our consequences, we will obtain some quadrature formulas as applications.
Citation: Muhammad Samraiz, Fakhra Nawaz, Bahaaeldin Abdalla, Thabet Abdeljawad, Gauhar Rahman, Sajid Iqbal. Estimates of trapezium-type inequalities for h-convex functions with applications to quadrature formulae[J]. AIMS Mathematics, 2021, 6(7): 7625-7648. doi: 10.3934/math.2021443
[1] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[2] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[3] | Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber . Fractional $ 3/8 $-Simpson type inequalities for differentiable convex functions. AIMS Mathematics, 2024, 9(3): 5349-5375. doi: 10.3934/math.2024258 |
[4] | Dumitru Baleanu, Muhammad Samraiz, Zahida Perveen, Sajid Iqbal, Kottakkaran Sooppy Nisar, Gauhar Rahman . Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function. AIMS Mathematics, 2021, 6(5): 4280-4295. doi: 10.3934/math.2021253 |
[5] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[6] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[7] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[8] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[9] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[10] | Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052 |
In this article, we develop a new class of trapezium-type inequalities up to twice differentiable h-convex mappings for fractional integrals of Riemann-type. We conclude numerous existing results in literature from our general inequalities. Based on our consequences, we will obtain some quadrature formulas as applications.
It is familiar that the convexity has an important and key part in many areas due to its broad applications. This idea has been broadened and summed up in different directions (see, e.g., [1,2,3,4,5,6,7,8]). Sanja Varošanec present a class of convex functions [9] which is very helpful for the mathematicians working in the field of mathematical inequalities. There is a famous inequality for convex functions known as Hermite-Hadamard inequality (see, e.g., [10,p. 137]). This inequality provides bounds of the mean value of a continuous convex function Ψ:(a,b)→R.
If Ψ:△→R on an interval △ of real numbers, such that ρ,ϱ∈U with ρ<ϱ, we can write
Ψ(ρ+ϱ2)≤1ϱ−ρϱ∫ρΨ(ϖ)dϖ≤Ψ(ρ)+Ψ(ϱ)2. | (1.1) |
Fractional calculus has vast applications in inequalities as well as in other physical sciences [11,12]. Recently Hermite-Hadamard inequalities have been reinvestigated and developed by many researchers by using several fractional calculus operators [13,14,15,16,17,18,19,20,21,22]. In [23] Sarikaya et al. studied the Hemite-Hadamard inequalities for Riemann-Liouville fractional integral (RLFI) using convex functions. Lio et al. in [24] investigated the said inequalities by involving RLFI operator for twice differentiable geometric-arithmetically s-convex functions. Such inequalities were examined by Wu et al. in [25] and Iqbal et al. in [26] for k-fractional operators via different convexities. Mevlut Tunc in [27] explored the inequality given by (1.1) for h-convex functions via RLFI operator. To enhance the flow of the work, we present some mathematical preliminaries of the theory of fractional calculus that are required to set up our results.
Definition 1.1. ([24]) A function Ψ:D⊂R+→R+ is known as geometric-arithmetically s-convex on D if for s∈(0,1] and ∀,ρ,ϱ∈D with ν∈[0,1], we have
Ψ(ρνϱ1−ν)≤νsΨ(ρ)+(1−ν)sΨ(ϱ). |
We utilize the class of h-convex SX(h,D), h-concave SV(h,D), s-convex in second sense K2s and quasi convex P(I) functions.
Sanja Varošanec present the following concept of convex and h-convex functions in [9] which are explained as follows:
Definition 1.2. A function Ψ:[ρ,ϱ]→R is said to be convex if the inequality
Ψ(ωl+(1−ω)r)≤ωΨ(l)+(1−ω)Ψ(r) |
holds for all l,r∈[ρ,ϱ] with ω∈[0,1].
Definition 1.3. Let h>0 be a function such that h:D⊂R→R. Then the function Ψ>0 is h-convex, if for Ψ:D⊂R→R, the inequality
Ψ(ωρ+(1−ω)ϱ)≤h(ω)Ψ(ρ)+h(1−ω)Ψ(ϱ),∀ρ,ϱ∈D | (1.2) |
is true. The function Ψ∈SV(h,D) is h-concave, if the inequality (1.2) is reversed.
For more detail about the classes P(D) and K2s, we refer the reader to visit the article [28].
Definition 1.4. ([29]) The left and right sided RLFI Iαρ+Ψ and Iαϱ−Ψ of order α>0 on an interval [ρ,ϱ] are defined by
Iαρ+Ψ(ω)=1Γ(α)ω∫ρ(ω−t)α−1Ψ(t)dt,ω>ρ |
and
Iαϱ−Ψ(ω)=1Γ(α)ϱ∫ω(t−ω)α−1Ψ(t)dt, ω<ϱ |
respectively. Here Γ(.) represents the Euler-Gamma function defined by
Γ(t)=∞∫0ωt−1e−ωdω,R(t)>0. |
The following results presented by Sarikaya et al. in [23] must be recalled in order to achieve our objectives.
Theorem 1.5. If Ψ:[ρ,ϱ]→R is a positive convex function on [ρ,ϱ] with 0≤ρ<ϱ and Ψ∈L1[ρ,ϱ], then the inequality
Ψ(ρ+ϱ2)≤Γ(α+1)2(ϱ−ρ)ϱ[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]≤Ψ(ρ)+Ψ(ϱ)2 |
holds.
Lemma 1.6. Let Ψ:[ρ,ϱ]→R be a differentiable mapping on (ρ,ϱ) with ρ<ϱ. If Ψ′∈L1[ρ,ϱ], then the identity
Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ρ−a)ϱ[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]=ϱ−ρ21∫0[(1−ω)α−ωα]Ψ′(ωρ+(1−ω)ϱ)dω |
holds.
The identity proved by Wang et al. in [30] stated as follows:
Lemma 1.7. Let Ψ:[ρ,ϱ]→R be a twice differentiable mapping on (ρ,ϱ) with ρ<ϱ. If Ψ″∈L1[ρ,ϱ], then the equality
Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]=(ϱ−ρ)221∫01−(1−ω)α+1−ωα+1α+1Ψ″(ωρ+(1−ω)ϱ)dω |
is true.
Lemma 1.8. ([31]) For ω∈[0,1], we have
(1−ω)α≤21−α−ωαα∈[0,1] |
and
(1−ω)α≥21−α−ωαα∈[1,∞]. |
Lemma 1.9. ([19]) Assume that Ψ:[ρ,ϱ]→R is twice differentiable on (ρ,ϱ) with ρ<ϱ. If Ψ″∈L1[ρ,ϱ], then the identity
Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]−Ψ(ρ+ϱ2)=(ϱ−ρ)221∫0m(ω)Ψ″(ωρ+(1−ω)ϱ)dω |
is true, where
m(ω)={ω−1−(1−ω)α+1−ωα+1α+1,ω∈[0,12);(1−ω)−1−(1−ω)α+1−ωα+1α+1,ω∈[12,1). |
The k-RLFI introduced by Mubeen et al. in [32] is given in the following definition.
Definition 1.10. The k-RLFI Iαρ+,kΨ and Iαϱ−,kΨ of order α>0, k>0 and ρ≥0 for Ψ∈L1[ρ,ϱ] are defined by
Iαρ+,kΨ(ω)=1kΓk(α)ω∫ρ(ω−μ)αk−1Ψ(μ)dμ,ω>ρ |
and
Iαϱ−,kΨ(ω)=1kΓk(α)ϱ∫ω(μ−ω)αk−1Ψ(μ)dμ,ω<ϱ |
respectively. Here Γk(.) is the k-Gamma function and I0ρ+,kΨ = I0ϱ−,kΨ = Ψ.
The following results are given in [25].
Theorem 1.11. Let Ψ:[ρ,ϱ]→R be a positive convex mapping for 0≤ρ<ϱ and Ψ∈L1[ρ,ϱ], then the below inequalities
Ψ(ρ+ϱ2)≤Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]≤Ψ(ρ)+Ψ(ϱ)2 |
holds.
Lemma 1.12. Let Ψ:[ρ,ϱ]→R be a differentiable mapping on (ρ,ϱ) with ρ<ϱ. If Ψ′∈L1[ρ,ϱ], then the identity for generalized RLFI
Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]=ϱ−ρ21∫0[(1−ω)αk−ωαk]Ψ′(ωρ+(1−ω)ϱ)dω |
is true.
Recently, Iqbal et al. prove the following lemma's in [26].
Lemma 1.13. Let Ψ:[ρ,ϱ]→R be a twice differentiable mapping on (ρ,ϱ) with ρ<ϱ. If Ψ″∈L1[ρ,ϱ], then the upcoming identity for generalized RLFI
Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]=(ϱ−ρ)221∫01−(1−ω)αk+1−ωαk+1(αk+1)Ψ″(ωρ+(1−ω)ϱ)dω |
holds.
Lemma 1.14. Assume that Ψ:[ρ,ϱ]→R is twice differentiable mapping on (ρ,ϱ) with ρ<ϱ. Let k>0 and Ψ″∈L1[ρ,ϱ], then
Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]−Ψ(ρ+ϱ2)=(ϱ−ρ)221∫0m(ω)Ψ″(ωρ+(1−ω)ϱ)dω, |
where
m(ω)={ω−1−(1−ω)αk+1−ωαk+1αk+1,ω∈[0,12);(1−ω)−1−(1−ω)αk+1−ωαk+1αk+1,ω∈[12,1). |
Motivated by a certain class of h-convex functions presented by Sanja Varošanec in [9] and the fractional Hermite-Hadamard inequalities [23,24,25,26,27], we will study such inequalities for h-convex functions via Riemann-type integrals. Our main results are stated in sections below.
This section focuses on trapezoid-type inequalities for twice-differentiable h-convex functions. In approximating the Riemann integral by a trapezoidal formula, such a type of inequality offers a priori error bounds. In general, they also show that the mid-point rule provides the best approximation of all Riemann sums sampled at the inside points of a given partition in the class.
Theorem 2.1. Let Iαρ+Ψ and Iαϱ−Ψ be the left and right sided RLFI of order α>0. Let Ψ:[ρ,ϱ]→R be a positive mapping with Ψ∈L1[ρ,ϱ] and 0≤ρ<ϱ. If Ψ is h-convex on [ρ,ϱ], then we have the inequality
Ψ(ρ+ϱ2)≤h(12)Γ(α+1)(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]≤αh(12)[Ψ(ρ)+Ψ(ϱ)]∫10ωα−1[h(ω)+h(1−ω)]dω. | (2.1) |
Proof. Since Ψ is an h-convex function, so we can write
Ψ(ωx+(1−ω)y)≤h(ω)Ψ(x)+h(1−ω)Ψ(y), | (2.2) |
Ψ((1−ω)x+ωy)≤h(1−ω)Ψ(x)+h(ω)Ψ(y). | (2.3) |
For ω=12, we get
Ψ(x+y2)≤h(12)Ψ(x)+h(12)Ψ(y)=h(12)[Ψ(x)+Ψ(y)]. |
If we choose x=ωρ+(1−ω)ϱ and y=ρ(1−ω)+ϱω, then we have
Ψ(ρ+ϱ2)≤h(12)[Ψ(ωρ+(1−ω)ϱ)+Ψ(ρ(1−ω)+ωϱ)]. |
Multiplying above inequality by ωα−1 and integrating with respect to ω over [0,1], we get
Ψ(ρ+ϱ2)1∫0ωα−1dω≤h(12)[1∫0ωα−1Ψ(ωρ+(1−ω)ϱ)dω+1∫0ωα−1Ψ((1−ω)ρ+ωϱ)dω], |
which can also be written as
1αΨ(ρ+ϱ2)≤h(12)[1∫0ωα−1Ψ(ωρ+(1−ω)ϱ)dω+1∫0ωα−1Ψ((1−ω)ρ+ωϱ)dω]. | (2.4) |
Now, replacing ωρ+(1−ω)ϱ=u and (1−ω)ρ+ωϱ=v, the inequality (2.4) becomes
1αΨ(ρ+ϱ2)≤h(12)Γ(α)(ϱ−ρ)α[1Γ(α)ϱ∫ρ(ϱ−u)α−1Ψ(u)du+1Γ(α)ϱ∫ρ(v−ρ)α−1Ψ(v)dv]. |
By managing the terms, we get
Ψ(ρ+ϱ2)≤h(12)Γ(α+1)(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]. | (2.5) |
By replacing x=ρ, y=ϱ in (2.2) and (2.3) respectively, then adding, we have
Ψ(ωρ+(1−ω)ϱ)+Ψ((1−ω)ρ+ωϱ)≤[h(ω)+h(1−ω)][Ψ(ρ)+Ψ(ϱ)]. | (2.6) |
Multiplying (2.6) by ωα−1, then integrating over [0,1], we get
h(12)Γ(α+1)(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]≤αh(12)[Ψ(ρ)+Ψ(ϱ)]1∫0ωα−1[h(ω)+h(1−ω)]dω. | (2.7) |
Combining (2.5) and (2.7), we get the desired result.
Remark 2.2. If we choose h(ω)=ω in Theorem 2.1, then we get the result of Sarikaya et al. [23,Theorem 2].
Example 2.3. By plotting graphs of double inequality (2.1) corresponding to the choice Ψ(℘)=e℘ and h(ω)=ω, we prove that both inequalities are correct. Obviously
Iαρ+eϱ=1Γ(α)ϱ∫ρ(ϱ−℘)α−1e℘d℘ | (2.8) |
and
Iαϱ−eρ=1Γ(α)ϱ∫ρ(℘−ρ)α−1e℘d℘. | (2.9) |
By utilizing these expressions into (2.1), we get
2eρ+ϱ2≤α(ϱ−ρ)α1∫0[(ϱ−℘)α−1+(℘−ρ)α−1]e℘d℘≤eρ+eϱ. | (2.10) |
The three functions given by the double inequality on the left, middle and right sides (2.10) are plotted in Figure 1 against α∈(0,1]. The functions curves indicate that dual inequality is correct.
Theorem 2.4. Let Iαρ+Ψ and Iαϱ−Ψ be the left and right sided RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″|b be h-convex function, then one has the following inequality
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1−2(α+1)g+1)1g(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b, | (2.11) |
where 1g+1b=1.
Proof. By using Lemma 1.7, Definition 1.3 and Hölder's inequality respectively, we have
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)221∫0|1−(1−ω)α+1−ωα+1α+1||Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(α+1)(1∫0(1−(1−ω)α+1−ωα+1)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b. |
By utilizing the fact (C−D)g≤Cg−Dg for any C>D≥0 and g≥1, we can write
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1∫0(1−(1−ω)(α+1)g−ω(α+1)g)dω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(α+1)(1−1g(α+1)+1−1g(α+1)+1)1g(1∫0(h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b)dω)1b=(ϱ−ρ)22(α+1)(1−2g(α+1)+1)1g(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. |
This completes the proof of inequality (2.11).
Corollary 2.5. If we choose h(ω)=ω, then we get the result for convex function i.e.,
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1−2(α+1)g+1)1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|b2)1b. |
Corollary 2.6. Corresponding to the choice h(ω)=ωs, where s∈(0,1), we get the result for geometric-arithmetically s-convex function.
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1−2(α+1)g+1)1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|bs+1)1b. |
Example 2.7. By plotting graphs of dual inequality in Theorem 2.4 for a convex function Ψ(℘)=e℘, corresponding to b=2, g=2 and h(℘)=℘, we prove the validity of the results.
−(ϱ−ρ)2(α+1)(2α+12α+3)12(e2ρ+e2ϱ2)12≤eρ+eϱ−α(ϱ−ρ)αϱ∫ρ[(ϱ−℘)α−1+(℘−ρ)α−1]e℘d℘≤(ϱ−ρ)2(α+1)(2α+12α+3)12(e2ρ+e2ϱ2)12. | (2.12) |
The three functions given by the double inequality on the left, middle and right sides (2.12) are plotted in Figure 2 against α∈(0,1]. The graphs of the functions prove the validity of dual inequality.
Theorem 2.8. Let Iαρ+Ψ and Iαϱ−Ψ be the left and right sided RLFI of order ϱ>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″|b be h-convex, then one has inequality via fractional integrals
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)2max{21−α−1,1−21−α}2(α+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b, |
where 1g+1b=1.
Proof. Using Lemma 1.7, Definition 1.3, Lemma 1.8 and Hölder's inequality respectively, we have
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)1∫0|1−(1−ω)α+1−ωα+1||Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(α+1)(1∫0|1−(1−ω)α+1−ωα+1|gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b. | (2.13) |
Now, 2-cases arise.
Case 1: For ϱ∈[0,1], the inequality (2.13) becomes
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1∫0(21−α−1)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(α+1)(21−α−1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)2(21−α−1)2(α+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. | (2.14) |
Case-2: For α∈[1,∞), the inequality (2.13) can be written as:
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)(1∫0(1−21−α)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(α+1)(1−21−α)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)2(1−21−α)2(α+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. | (2.15) |
By combining (2.14) and (2.15), we get the required result.
Corollary 2.9. If we choose h(ω)=ω in Theorem 2.8, then we get the result for the classical convex function.
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)2max{21−α−1,1−21−α}2(α+1)(|Ψ″(ρ)|b+|Ψ″(ϱ)|b2)1b. |
Remark 2.10. If we choos h(ω)=ωs in Theorem 2.8, where s∈(0,1), then we get the result of Liao et al. [24,Theorem 3.2].
Theorem 2.11. Let Iαρ+Ψ and Iαϱ−Ψ be the left and right sided RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″| be h-convex, then one has the following inequality
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)22(α+1)[1∫0[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω−1∫0[h(ω)(1−ω)α+1|Ψ″(ρ)|+h(1−ω)(1−ω)α+1|Ψ″(ϱ)|]dω−1∫0[h(ω)ωα+1|Ψ″(ρ)|+h(1−ω)ωα+1|Ψ″(ϱ)|]dω]. | (2.16) |
Proof. By using Lemma 1.7 and Definition 1.3 respectively, we have
|Ψ(ρ)+Ψ(ϱ)2−Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]|≤(ϱ−ρ)221∫0|1−(1−ω)α+1−ωα+1α+1||Ψ″(ωa+(1−ω)ϱ)|dω=(ϱ−ρ)22(α+1)1∫0(1−(1−ω)α+1−ωα+1)|Ψ″(ωρ+(1−ω)ϱ)|dω |
≤(ϱ−ρ)22(α+1)1∫0(1−(1−ω)α+1−ωα+1)[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω=(ϱ−ρ)22(α+1)[1∫0[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω−1∫0[h(ω)(1−ω)α+1|Ψ″(ρ)|+h(1−ω)(1−ω)α+1|Ψ″(ϱ)|]dω−1∫0[h(ω)ωα+1|Ψ″(ρ)|+h(1−ω)ωα+1|Ψ″(ϱ)|]dω]. |
Hence the inequality (2.16) holds.
Remark 2.12. By choosing h(ω)=ωs, where s∈(0,1), we get the result of Liao et al. [24,Theorem 3.1].
Example 2.13. By plotting the graphs of (2.16) for a convex function Ψ(℘)=e℘ corresponding to h(℘)=℘, we prove the validity of the results.
−α(ϱ−ρ)2(eρ+eϱ)(α+1)(α+2)≤eρ+eϱ−α(ϱ−ρ)αϱ∫ρ[(ϱ−℘)α−1+(℘−ρ)α−1]e℘d℘≤α(ϱ−ρ)2(eρ+eϱ)(α+1)(α+2). | (2.17) |
The graphs of the functions given by the left, middle and right sides of the double inequality (2.17) are plotted in Figure 3 against α∈(0,1]. The functions curves indicate that dual inequality is correct.
Theorem 2.14. Let Iαρ+Ψ and Iαϱ−Ψ be the left and right sided RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″|b be h-convex on [ρ,ϱ] for fixed α∈(0,∞), then one has the inequality
|Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]−Ψ(ρ+ϱ2)|≤(ϱ−ρ)22(α+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ρ)|b]dω)1b×((α+1)2−g−1+(ϱ+0.5)g+1−ϱg+1g+1)1g, | (2.18) |
where 1g+1b=1.
Proof. By using Lemma 1.9, Hölder's inequality and Definition 1.3 respectively, we have
|Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]−Ψ(ρ+ϱ2)|≤(ϱ−ρ)221∫0|m(ω)||Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(1∫0|m(ω)|gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(1∫0|m(ω)|gdω)1g(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)22(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b×[(12∫0|(ω−1−(1−ω)α+1−ωα+1α+1)|gdω)+(1∫12|(1−ω−1−(1−ω)α+1−ωα+1α+1)|gdω)]1g. |
By simple calculation and using the fact (1−ω)α+1+ωα+1≤1, we get
|Γ(α+1)2(ϱ−ρ)α[Iαρ+Ψ(ϱ)+Iαϱ−Ψ(ρ)]−Ψ(ρ+ϱ2)|≤(ϱ−ρ)22(α+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b |
[(α+1)12∫0ωgdω+1∫12(α+1−ω)gdω]1g=(ϱ−ρ)22(α+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b((α+1)2−g−1+(ϱ+0.5)g+1−ϱg+1g+1)1g. |
This completes the proof of Theorem 2.14.
Remark 2.15. If we choose h(ω)=ωs in Theorem 2.14, where s∈(0,1), then we get the result of Liao et al. [24,Theorem 4.2].
In this section, we present the estimates of mid-point type inequalities for k-RLFI via h-convex functions.
Theorem 3.1. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let Ψ:[ρ,ϱ]→R be a positive function with 0≤ρ<ϱ and Ψ∈L1[ρ,ϱ]. If Ψ is h-convex function on [ρ,ϱ], then
Ψ(ρ+ϱ2)≤h(12)Γk(α+k)(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]≤αh(12)k[Ψ(ρ)+Ψ(ϱ)]∫10ωαk−1[h(ω)+h(1−ω)]dω. |
Proof. Since Ψ is h-convex, then we can write
Ψ(ωx+(1−ω)y)≤h(ω)Ψ(x)+h(1−ω)Ψ(y), | (3.1) |
Ψ((1−ω)x+ωy)≤h(1−ω)Ψ(x)+h(ω)Ψ(y). | (3.2) |
Corresponding to the choice ω=12, we can write
Ψ(x+y2)≤h(12)Ψ(x)+h(12)Ψ(y)=h(12)[Ψ(x)+Ψ(y)]. |
By replacing x=ωa+(1−ω)ϱ and y=a(1−ω)+ϱω, we get
Ψ(ρ+ϱ2)≤h(12)[Ψ(ωρ+(1−ω)ϱ)+Ψ(a(1−ω)+ωϱ)]. |
Multiplying by ωαk−1 and integrating over [0,1], we get
Ψ(ρ+ϱ2)1∫0ωαk−1dω≤h(12)[1∫0ωαk−1Ψ(ωρ+(1−ω)ϱ)dω+1∫0ωαk−1Ψ((1−ω)ρ+ωϱ)dω]. |
This can also be written as:
kαΨ(ρ+ϱ2)≤h(12)[1∫0ωαk−1Ψ(ωρ+(1−ω)ϱ)dω+1∫0tαk−1Ψ((1−ω)ρ+ωϱ)dω]. | (3.3) |
Substituting ωρ+(1−ω)ϱ=u and (1−ω)ρ+ωϱ=v, the inequality (3.3) can be written as:
1αΨ(ρ+ϱ2)≤h(12)Γk(α)(ϱ−ρ)αk[1kΓk(α)ϱ∫ρ(ϱ−u)αk−1Ψ(u)du+1kΓk(α)ϱ∫ρ(v−ρ)αk−1Ψ(v)dv] |
which implies
Ψ(ρ+ϱ2)≤h(12)Γk(α+k)(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]. | (3.4) |
Choose x=ρ and y=ϱ in (3.1) and (3.2), then adding, we get
Ψ(ωρ+(1−ω)ϱ)+Ψ((1−ω)ρ+ωϱ)≤[h(ω)+h(1−ω)][Ψ(ρ)+Ψ(ϱ)]. | (3.5) |
Multiplying (3.5) by tαk−1 and integrating over [0,1], we obtain
h(12)Γk(α+k)(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]≤αh(12)k[Ψ(ρ)+Ψ(ϱ)]1∫0ωαk−1[h(ω)+h(1−ω)]dω. | (3.6) |
Combining (3.4) and (3.6), we get the required result.
Remark 3.2. If we choose h(ω)=ω in Theorem 3.1, then we get the result of Iqbal et al. [25,Theorem 2.2].
Theorem 3.3. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″|b be h-convex, then the inequality
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)(1−2(αk+1)g+1)1g(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b |
holds, where 1g+1b=1.
Proof. By using Lemma 1.13, Definition 1.3 and Hölder's inequality respectively, we can have
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)221∫0|1−(1−ω)αk+1−ωαk+1(αk+1)||Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(αk+1)(1∫0(1−(1−ω)αk+1−ωαk+1)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(αk+1)(1−1g(αk+1)+1−1g(αk+1)+1)1g(1∫0(h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b)dω)1b=(ϱ−ρ)22(αk+1)(1−2g(αk+1)+1)1g(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. |
Using the fact (1−(1−ω)αk+1−tαk+1)g≤1−(1−ω)g(αk+1)−ωg(αk+1) for any ω∈[0,1], which follows from (C−D)g≤Cg−Dg, for any C>D≥0 and g≥1.
Corollary 3.4. If we choose h(ω)=ω in Theorem 3.3, then the result for a simple convex function is given by
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)(1−2(αk+1)g+1)1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|b2)1b. |
Corollary 3.5. If we choose h(ω)=ωs corresponding to s∈(0,1) in Theorem 3.3, then we get the result for geometrically arithmetically s-convex function i.e.,
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)(1−2(αk+1)g+1)1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|bs+1)1b. |
Theorem 3.6. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈I with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″|b be h-convex, then one has the inequality via fractional integrals.
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)2max{21−αk−1,1−21−αk}2(αk+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b, |
where 1g+1b=1.
Proof. By using Lemma 1.13, Hölder's inequality, Lemma 1.8 and Definition 1.3 respectively, we can write
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(a)]|≤(ϱ−ρ)22(αk+1)1∫0|1−(1−ω)αk+1−ωαk+1||Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(αk+1)(1∫0|1−(1−ω)αk+1−ωαk+1|gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b. | (3.7) |
Now, we have the following two cases:
Case 1: For α∈[0,1], the inequality (3.7) can be written as:
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)(1∫0(21−αk−1)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(αk+1)(21−αk−1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)2(21−αk−1)2(αk+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. | (3.8) |
Case 2: For the choice of α∈[1,∞), the inequality (3.7) can be written as:
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)(1∫0(1−21−αk)gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(αk+1)(1−21−αk)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)2(1−21−αk)2(αk+1)(|Ψ″(ρ)|b1∫0h(ω)dω+|Ψ″(ϱ)|b1∫0h(1−ω)dω)1b. | (3.9) |
Combining inequalities (3.8) and (3.9), we get the inequality (3.7).
Remark 3.7. If we choose h(ω)=ωs corresponding to s∈(0,1) in Theorem 3.6, then we get the result of Iqbal et al. [26,Theorem 2.4].
Theorem 3.8. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. Let |Ψ″| be h-convex, then the inequality
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)[1∫0[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω−1∫0[h(ω)(1−ω)αk+1|Ψ″(ρ)|+h(1−ω)(1−ω)αk+1|Ψ″(ϱ)|]dω−1∫0[h(ω)ωαk+1|Ψ″(ρ)|+h(1−ω)ωαk+1|Ψ″(ϱ)|]dω] |
holds.
Proof. Using Lemma 1.13 and Definition 1.3 respectively, we get
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)22(αk+1)1∫0(1−(1−ω)αk+1−ωαk+1)|Ψ″(ωρ+(1−ω)ϱ)|dω≤(ϱ−ρ)22(αk+1)1∫0(1−(1−ω)αk+1−ωαk+1)[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω=(ϱ−ρ)22(αk+1)[1∫0[h(ω)|Ψ″(ρ)|+h(1−ω)|Ψ″(ϱ)|]dω−1∫0[h(ω)(1−ω)αk+1|Ψ″(ρ)|+h(1−ω)(1−ω)αk+1|Ψ″(ϱ)|]dω−1∫0[h(ω)ωαk+1|Ψ″(ρ)|+h(1−ω)ωαk+1|Ψ″(ϱ)|]dω]. |
This completes the proof of Theorem 3.8.
Remark 3.9. By choosing h(ω)=ωs, where s∈(0,1), we get the result of Iqbal et al. [26,Theorem 2.3].
Theorem 3.10. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let Ψ∈SX(h,D), ρ,ϱ∈D with ρ<ϱ and Ψ∈L1[ρ,ϱ]. If |Ψ″|b is h-convex on [ρ,ϱ] for α∈(0,∞) and ϱ∈(0,∞), we get the inequality
|Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]−Ψ(ρ+ϱ2)|≤(ϱ−ρ)22(αk+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ρ)|b]dω)1b×((αk+1)2−g−1+(αk+0.5)g+1−(αk)g+1g+1)1g, |
where 1g+1b=1.
Proof. Using Lemma 1.14, Hölder's inequality and Definition 1.3 respectively, we have
|Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]−Ψ(a+ϱ2)|≤(ϱ−ρ)22(1∫0|m(ω)|gdω)1g(1∫0|Ψ″(ωρ+(1−ω)ϱ)|bdω)1b≤(ϱ−ρ)22(1∫0|m(ω)|gdω)1g(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b=(ϱ−ρ)22(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b×[(12∫0|(ω−1−(1−ω)αk+1−ωαk+1αk+1)|gdω)+(1∫12|(1−ω−1−(1−ω)αk+1−ωαk+1αk+1)|gdω)]1g=(ϱ−ρ)22(αk+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b×[(12∫0|((αk+1)ω−1+(1−ω)αk+1+ωαk+1)|gdω)+(1∫12|(αk+1−(αk+1)ω−1+(1−ω)αk+1+ωαk+1)|gdω)]1g |
Since (1−ω)αk+1+ωαk+1≤1, therefore we can write
|Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]−Ψ(ρ+ϱ2)|≤(ϱ−ρ)22(αk+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b×[(αk+1)12∫0ωgdω+1∫12(αk+1−ω)gdω]1g=(ϱ−ρ)22(αk+1)(1∫0[h(ω)|Ψ″(ρ)|b+h(1−ω)|Ψ″(ϱ)|b]dω)1b[(αk+1)2−g−1+(ϱ+0.5)g+1−ϱg+1g+1]1g, |
The proof of Theorem 3.10 is done.
Remark 3.11. If we choose h(ω)=ωs,s∈(0,1] in Theorem 3.10, then we get the result of Iqbal et al. [26,Theorem 2.6].
Theorem 3.12. Let Iαρ+,kΨ and Iαϱ−,kΨ be the left and right sided k-RLFI of order α>0. Let h:J⊂R→R and Ψ:[ρ,ϱ]→R be positive functions with 0≤ρ<ϱ and hb(ω)∈L1[0,1], Ψ∈L1[ρ,ϱ]. If |Ψ′| is h-convex mapping on [ρ,ϱ], then the inequality
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤(ϱ−ρ)[|Ψ′(ρ)|+|Ψ′(ϱ)|]2[(2gαk+1−12pαk+1(gαk+1))1g−(12gαk+1(gαk+1))1g]×[(12∫0(h(ω))bdω)1b+(1∫12(h(ω))bdω)1b] |
holds, where α>0, g>0 and 1g+1b=1.
Proof. Since |Ψ′| is h-convex, then by Lemma 1.12, we can write
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+,kΨ(ϱ)+Iαϱ−,kΨ(ρ)]|≤ϱ−ρ21∫0|(1−ω)αk−ωαk||Ψ′(ωρ+(1−ω)ϱ)|dω≤ϱ−ρ2[12∫0[(1−ω)αk−ωαk][h(ω)|Ψ′(ρ)|+h(1−ω)|Ψ′(ϱ)|]dω+1∫12[ωαk−(1−ω)αk][h(ω)|Ψ′(ρ)|+h(1−ω)|Ψ′(ϱ)|]dω]=ϱ−ρ2[|Ψ′(ρ)|12∫0(1−ω)αkh(ω)dω−|Ψ′(ρ)|12∫0ωαkh(ω)dω+|Ψ′(ϱ)|12∫0(1−ω)αkh(1−ω)dω−|Ψ′(ϱ)|12∫0ωαkh(1−ω)dω+|Ψ′(ρ)|1∫12ωαkh(ω)dω−|Ψ′(ρ)|1∫12(1−ω)αkh(ω)dω+|Ψ′(ϱ)|1∫12ωαkh(1−ω)dω−|Ψ′(ϱ)|1∫12(1−ω)αkh(1−ω)dω]. | (3.10) |
Using Hölder's inequality on the right side of (3.10), we get
|Ψ(ρ)+Ψ(ϱ)2−Γk(α+k)2(ϱ−ρ)αk[Iαρ+Ψ(ϱ)+Iϱb−Ψ(ρ)]|=(ϱ−ρ)[|Ψ′(ρ)|+|Ψ′(ϱ)|]2[(2gαk+1−12gαk+1(gαk+1))1g−(12gαk+1(gαk+1))1g]×[(12∫0(h(ω))bdω)1b+(1∫12(h(ω))bdω)1b]. |
This completes the proof of the result.
Remark 3.13. If we choose k=1 in Theorem 3.12, we get the result of Tunc. [27,Theorem 5].
This section is devoted to some particular inequalities which generalize some classical results such as trapezoid-type, mid-point-type and Hadamard's inequality.
Proposition 4.1. (Hadamard's inequality). Under the assumptions of Theorem 2.1 with α=1 and h(ω)=ω, we get the "Hadamard's inequality"
Ψ(ρ+ϱ2)≤1ϱ−ρϱ∫ρΨ(ω)dω≤Ψ(ρ)+Ψ(ϱ)2. |
Proposition 4.2. Let the assumptions of Theorem 2.4 be fulfilled with α=1 and h(ω)=ω, then we obtain the "Trapezoid inequality"
|(ϱ−ρ)Ψ(ρ)+Ψ(ϱ)2−ϱ∫ρΨ(ω)dω|≤(ϱ−ρ)34(2g−12g+1)1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|b2)1b. |
Proposition 4.3. Let the assumptions of Theorem 2.11 be fulfilled with α=1 and h(ω)=ω, then we obtain the "Trapezoid inequality"
|(ϱ−ρ)Ψ(ρ)+Ψ(ϱ)2−ϱ∫ρΨ(ω)dω|≤(ϱ−ρ)324[|Ψ″(ρ)|+|Ψ″(ϱ)|]. |
Proposition 4.4. Under the assumptions of Theorem 2.14 with α=1 and h(ω)=ω, we get the following "Mid-point inequality"
|(ϱ−ρ)Ψ(ρ+ϱ2)−ϱ∫ρΨ(ω)dω|≤(ϱ−ρ)34(1+3g+1−2g2g(g+1))1g(|Ψ″(ρ)|b+|Ψ″(ϱ)|b2)1b. |
Proposition 4.5. Let the assumptions of Theorem 3.12 be fulfilled with α=1 and h(ω)=ω, then we get the following "Trapezoid inequality"
|(ϱ−ρ)Ψ(ρ)+Ψ(ϱ)2−ϱ∫ρΨ(ω)dω|≤(ϱ−ρ)2[|Ψ′(ρ)|+|Ψ′(ϱ)|]2×[(2g+1−12g+1(g+1))1g−(12g+1(g+1))1g][(2b+1−12b+1(b+1))1b+(12b+1(b+1))1b]. |
We aim at designing the generalizations of some Trapezoid-type inequalities for Riemann-type fractional integrals in the present article. We use h-convex function to this ends and develops numerous inequalities. We prove the validity of our results by using the examples and their graphs. The work presented consists of the formulas of quadrature as a boundary of the new inequalities. The results of these studies complement those of earlier studies. The earlier findings are supported by simple, recent studies and play an additional role in generalizations.
The authors Bahaaeldin Abdalla and Thabet Abdeljawad would like to thank Prince Sultan University for funding this research through the group: Nonlinear Analysis Methods in Applied Mathematics (NAMAM), group number RG-DES-2017-01-17.
The authors declares that there is no conflict of interests regarding the publication of this paper.
[1] |
J. Liao, S. Wu, T. Du, The Sugeno integral with respect to α-preinvex functions, Fuzzy Set. Syst., 379 (2020), 102-114. doi: 10.1016/j.fss.2018.11.008
![]() |
[2] | S. Wu, M. U. Awan, Estimates of upper bound for a function associated with Riemann-Liouville fractional integral via h-convex functions, J. Funct. Space., 2019 (2019), 1-7. |
[3] | İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237-244. |
[4] | S. Wu, On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mt. J. Math., 39 (2009), 1741-1749. |
[5] | Y. Bai, S. Wu, Y. Wu, Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m)-P-convex, J. Funct. Space., 2018 (2018), 1693075. |
[6] | S. Wu, I. A. Baloch, İ. İşcan, On Harmonically (p,h,m)-preinvex functions, J. Funct. Space., 2017 (2017), 2148529. |
[7] | G. Toader, Some generalizations of the convexity, Univ. Cluj-Napoca, Cluj-Napoca, (1985), 329-338. |
[8] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, CMC Books in Mathematics, New York, USA, 2004. |
[9] | S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. |
[10] | J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical application, Acadmic Press, New York, USA, 1992. |
[11] |
I. Koca, P. Yaprakdal, A new approach for nuclear family model with fractional order Caputo derivative, Appl. Math. Nonlinear Sci., 5 (2020), 393-404. doi: 10.2478/amns.2020.1.00037
![]() |
[12] |
S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593-602. doi: 10.2478/amns.2020.2.00064
![]() |
[13] |
M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard-type via m-convexity, Appl. Math. Lett., 23 (2010), 1065-1070. doi: 10.1016/j.aml.2010.04.037
![]() |
[14] |
X. Wu, J. Wang, J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 845. doi: 10.3390/math7090845
![]() |
[15] |
S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019), 807. doi: 10.3390/math7090807
![]() |
[16] |
E. Set, M. E. Özdemir, S. S. Dragomir, On the Hadamard-type inequalities involving several kinds of convexity, J. Inequal. Appl., 2010 (2010), 286845. doi: 10.1155/2010/286845
![]() |
[17] |
E. Set, M. E. Özdemir, S. S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., 2010 (2010), 148102. doi: 10.1155/2010/148102
![]() |
[18] |
M. Z. Sarikaya, Y. Hüseyin, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049-1059. doi: 10.18514/MMN.2017.1197
![]() |
[19] |
Y. Zhang, J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., 2013 (2013), 220. doi: 10.1186/1029-242X-2013-220
![]() |
[20] | S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 86. |
[21] |
M. Z. Sarikaya, N. Aktan, On the generalizations of some integral inequalitirs and their applications, Math. Comput. Model., 54 (2011), 2175-2182. doi: 10.1016/j.mcm.2011.05.026
![]() |
[22] |
M. E. Özdemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α,m)-convexity, Comput. Math. Appl., 61 (2011), 2614-2620. doi: 10.1016/j.camwa.2011.02.053
![]() |
[23] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
![]() |
[24] |
Y. Liao, J. Deng, J. Wang, Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: For twice differentiable geometric-arithmetically s-convex functions, J. Inequal. Appl., 2013 (2013), 1-13. doi: 10.1186/1029-242X-2013-1
![]() |
[25] |
S. Wu, S. Iqbal, M. Aamir, M. Samraiz, A. Younus, On some Hermite-Hadamard inequalities involving k-fractional calculus, J. Inequal. Appl., 2021 (2021), 32. doi: 10.1186/s13660-020-02527-1
![]() |
[26] | S. Iqbal, M. Aamir, M. Samraiz, Fractional Hermite-Hadamard inequalities for twice differenciable geometric-arithmetically s-convex functions, J. Math. Anal., 11 (2020), 13-31. |
[27] |
M. Tunc, On new inequalities for h-convex functions via Riemann Liouville fractional integration, Filomat, 27 (2013), 559-565. doi: 10.2298/FIL1304559T
![]() |
[28] | S. S. Dragomir, J. E. Pečaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, New York, London, 2006. |
[30] | J. Wang, X. Li, M. Fečkan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2012), 2241-2253. |
[31] |
J. Deng, J. Wang, Fractional Hermite-Hadamard inequalities for (α,m)-logrithmically convex functions, J. Inequali. Appl., 2013 (2013), 364. doi: 10.1186/1029-242X-2013-364
![]() |
[32] | S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2016), 89-94. |
1. | Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709 | |
2. | Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6 | |
3. | Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080 | |
4. | Muhammad Samraiz, Maria Malik, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon, Hermite–Hadamard-type inequalities via different convexities with applications, 2023, 2023, 1029-242X, 10.1186/s13660-023-02957-7 | |
5. | Sikander Mehmood, Pshtiwan Othman Mohammed, Artion Kashuri, Nejmeddine Chorfi, Sarkhel Akbar Mahmood, Majeed A. Yousif, Some New Fractional Inequalities Defined Using cr-Log-h-Convex Functions and Applications, 2024, 16, 2073-8994, 407, 10.3390/sym16040407 | |
6. | Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3 |