Research article Special Issues

A constraint handling technique using compound distance for solving constrained multi-objective optimization problems

  • Received: 06 March 2021 Accepted: 07 April 2021 Published: 09 April 2021
  • MSC : 90C29, 58E17, 11Y16

  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and p-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.

    Citation: Jiawei Yuan. A constraint handling technique using compound distance for solving constrained multi-objective optimization problems[J]. AIMS Mathematics, 2021, 6(6): 6220-6241. doi: 10.3934/math.2021365

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the p--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and p-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.





    [1] M. Baioletti, A. Milani, V. Santucci, MOEA/DEP: An algebraic decomposition-based evolutionary algorithm for the multiobjective permutation flowshop scheduling problem, In: European Conference on evolutionary Computation in Combinatorial Optimization, Springer, Cham, (2018), 132-145.
    [2] M. Zangari, A. Mendiburu, R. Santana, A. Pozo, Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem, Inf. Sci., 397 (2017), 137-154.
    [3] O. Kabadurmus, M. F. Tasgetiren, H. Oztop, M. S. Erdogan, Solving 0-1 bi-objective multi-dimensional knapsack problems using binary genetic algorithm, Springer, Cham, (2021), 51-67.
    [4] K. Florios, G. Mavrotas, Generation of the exact pareto set in multi-objective traveling salesman and set covering problems, Appl. Math. Comput., 237 (2014), 1-19. doi: 10.1016/j.amc.2014.03.110
    [5] H. K. Singh, T. Ray, R. Sarker, Optimum oil production planning using infeasibility driven evolutionary algorithm, Evol. Comput., 21 (2013), 65-82. doi: 10.1162/EVCO_a_00064
    [6] Y. Yang, J. Liu, S. Tan, A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism, Appl. Soft Comput., 89 (2020), 106104. doi: 10.1016/j.asoc.2020.106104
    [7] J. Yuan, H. L. Liu, C. Peng, Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems, Int. J. Pattern Recognit Artif. Intell., 31 (2017), 1759006. doi: 10.1142/S0218001417590066
    [8] H. Ma, H. Wei, Y. Tian, R. Cheng, X. Zhang, A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints, Inf. Sci., 560 (2021), 68-91. doi: 10.1016/j.ins.2021.01.029
    [9] P. Myszkowski, M. Laszczyk, Diversity based selection for many-objective evolutionary optimisation problems with constraints, Inf. Sci., 546 (2021), 665-700. doi: 10.1016/j.ins.2020.08.118
    [10] M. Ming, A. Trivedi, R. Wang, D. Srinivasan, T. Zhang, A dual-population based evolutionary algorithm for constrained multi-objective optimization, IEEE Trans. Evol. Comput., 2021. DOI: 10.1109/TEVC.2021.3066301.
    [11] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. doi: 10.1016/S0045-7825(99)00389-8
    [12] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, et al., An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions, Soft Comput., 23 (2019), 12491-12510. doi: 10.1007/s00500-019-03794-x
    [13] Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [14] J. P. Li, Y. Wang, S. Yang, Z. Cai, A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization, In: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2016), 4175-4182.
    [15] Y. Yang, J. Liu, S. Tan, H. Wang, A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio, Appl. Soft Comput., 80 (2019), 42-56. doi: 10.1016/j.asoc.2019.02.041
    [16] H. Afshari, W. Hare, S. Tesfamariam, Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures, Appl. Soft Comput., 83 (2019), 105631. doi: 10.1016/j.asoc.2019.105631
    [17] M. A. Jan, N. Tairan, R. A. Khanum, Threshold based dynamic and adaptive penalty functions for constrained multiobjective optimization, In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, IEEE, (2013), 49-54.
    [18] A. Panda, S. Pani, A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems, Appl. Soft Comput., 46 (2016), 344-360. doi: 10.1016/j.asoc.2016.04.030
    [19] L. Jiao, J. Luo, R. Shang, F. Liu, A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems, Appl. Soft Comput., 14 (2014), 363-380. doi: 10.1016/j.asoc.2013.10.008
    [20] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput., 18 (2013), 602-622.
    [21] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20 (2016), 773-791. doi: 10.1109/TEVC.2016.2519378
    [22] M. A. Jan, R. A. Khanum, A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D, Appl. Soft Comput., 13 (2013), 128-148. doi: 10.1016/j.asoc.2012.07.027
    [23] Z. Z. Liu, Y. Wang, P. Q. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400-419. doi: 10.1016/j.ins.2018.06.063
    [24] Z. Fan, Y. Fang, W. Li, X. Cai, C. Wei, E. Goodman, MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems, Appl. Soft Comput. J., 74 (2019), 621-633. doi: 10.1016/j.asoc.2018.10.027
    [25] M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE Trans. Evol. Comput., 19 (2014), 445-460.
    [26] S. Z. Martinez, C. A. C. Coello, A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization, In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, (2014), 429-436.
    [27] F. Qian, B. Xu, R. Qi, H. Tianfield, Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization, Soft Comput., 16 (2012), 1353-1372. doi: 10.1007/s00500-012-0816-6
    [28] C. Peng, H. L. Liu, E. D. Goodman, Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance, Swarm Evol. Comput., 55 (2020), 100676. doi: 10.1016/j.swevo.2020.100676
    [29] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Push and pull search for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 44 (2019), 665-679. doi: 10.1016/j.swevo.2018.08.017
    [30] Z. Fan, Z. Wang, W. Li, Y. Yuan, Y. You, Z. Yang, et al., Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 54 (2020), 100651. doi: 10.1016/j.swevo.2020.100651
    [31] K. Li, R. Chen, G. Fu, X. Yao, Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 303-315.
    [32] Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., 25 (2021), 102-116. doi: 10.1109/TEVC.2020.3004012
    [33] J. Yi, J. Bai, H. He, J. Peng, D. Tang, ar-MOEA: A novel preference-based dominance relation for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 788-802.
    [34] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712-731. doi: 10.1109/TEVC.2007.892759
    [35] K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput., 19 (2014), 694-716.
    [36] H. L. Liu, F. Gu, Q. Zhang, Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Trans. Evol. Comput., 18 (2013), 450-455.
    [37] J. Yuan, H. L. Liu, F. Gu, Q. Zhang, Z. He, Investigating the properties of indicators and an evolutionary many-objective algorithm based on a promising region, IEEE Trans. Evol. Comput., 25 (2021), 75-86. doi: 10.1109/TEVC.2020.2999100
    [38] J. Yuan, H. L. Liu, F. Gu, A cost value based evolutionary many-objective optimization algorithm with neighbor selection strategy, In: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2018), 1-8.
    [39] X. Chen, Z. Hou, J. Liu, Multi-objective optimization with modified pareto differential evolution, In: 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, (2008), 90-95.
    [40] K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Inf., 26 (1996), 30-45.
    [41] K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective evolutionary optimization, In: International Conference on Evolutionary Multi-Criterion Optimization, Springer, (2001), 284-298.
    [42] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Difficulty adjustable and scalable constrained multi-objective test problem toolkit, Evol. Comput., 28 (2020), 339-378. doi: 10.1162/evco_a_00259
    [43] Z. Ma, Y. Wang, Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons, IEEE Trans. Evol. Comput., 23 (2019), 972-986. doi: 10.1109/TEVC.2019.2896967
    [44] Z. Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [45] P. A. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput., 7 (2003), 174-188. doi: 10.1109/TEVC.2003.810761
    [46] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3 (1999), 257-271. doi: 10.1109/4235.797969
    [47] I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8 (1998), 631-657.
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On 2×2 Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
    65. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3165) PDF downloads(213) Cited by(11)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog