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Abstract: Guiding the working population to evenly explore the valuable areas which are not
dominated by feasible solutions is important in the process of dealing with constrained multi-objective
optimization problems (CMOPs). To this end, according to the angular distance and `p-norm, this
paper introduces a new compound distance to measure individual’s search diameter in the objective
space. After that, we propose a constraint handling technique using the compound distance and
embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals
with large search diameters in the valuable areas are given priority to be preserved. This can prevent
the working population from getting stuck in the local areas and then find the optimal solutions for
CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has
better performance and robustness than several existing state-of-the-art constrained multi-objective
evolutionary algorithms in dealing with different CMOPs.
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1. Introduction

This paper focuses on the constrained multi-objective optimization problems (CMOPs), which exist
widely in the real world [1–7] and are generally formulated as follows [8–10]:

minimize F(x) = ( f1(x), f2(x), · · · , fm(x))T

subject to


gi(x) 6 0, i = 1, · · · , r,
h j(x) = 0, j = r + 1, · · · , q,
x = (x1, . . . , xn)T ∈ Ω ⊂ Rn,

(1.1)
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where f1(x), f2(x), · · · , fm(x) are m real-valued objective functions, gi(x) 6 0 and h j(x) = 0 are
inequality and equality constraints, respectively, and Ω is the search space. In order to facilitate the
analysis, the constraint violation value of an individual x is usually calculated as:

c(x) =

r∑
i=1

max(gi(x), 0) +

q∑
j=r+1

max(|h j(x)| − ε, 0), (1.2)

where ε (e.g., ε = 10−4) is a sufficiently small positive number to relax equality constraints h j(x) =

0, j = r + 1, · · · , q. Obviously, if and only if c(x) = 0, the individual x satisfies all the constraints and
is called the feasible solution. When c(x) > 0, x is recorded as an infeasible solution. For any two
solution x1, x2 ∈ Ω, if F(x1) , F(x2) and ∀i = 1, ..,m, fi(x1) 6 fi(x2), then it is said that x1 dominates x2,
denoted as x1 ≺ x2. A solution that is not dominated by other solutions in Ω is called the unconstrained
Pareto optimal solution, and the geometry formed by all unconstrained Pareto optimal solutions in the
objective space is defined as the unconstrained Pareto front (UPF). Similarly, the constrained Pareto
front (CPF) is formed by all the feasible solutions that are not dominated by other feasible ones in Ω.
Therefore, the essence of dealing with CMOP is to find a set of feasible solutions which are uniformly
distributed on its CPF.

In the research community, a variety of constrained multi-objective evolutionary algorithms
(CMEAs) have been proposed to deal with CMOPs [11–16]. Therein, many different constraint
handling techniques (CHTs) have been used to balance objectives and constraints statically or
dynamically. In penalty-based CHTs [17–19], the constraint violation value of an individual is
transformed into the punishment for its objectives by the dynamic and adaptive penalty functions.
Feasibility-led CHTs, such as constraint dominance principle (CDP) [20–24] and epsilon
constraint-handling method (EC) [25–27], prefer individuals with smaller constraint violation values.
Considering that the working populations guided by these two types of CHTs are easy to get stuck in
the local areas and then fail to find the CPFs [24, 28], several new CHTs tend to use the method of
ignoring the feasibility and only optimizing the objectives to improve their global search ability. For
example, the push and pull search (PPS) [29, 30] first pushes the working populations toward UPFs
without considering constraints in its push stage, and then pulls them back to CPFs by an improved
EC in the pull stage. In C-TAEA [31] and CCMO [32], one population that prefers feasible solutions
is used to provide search pressure to CPFs, while another population that ignores feasibility to
optimize the objectives is used to force the working population to jump out of the local regions. Many
numerical experiments show that these new CHTs do improve the ability of the working population to
cross the complex feasible regions in front of the CPFs. Nevertheless, as overly emphasize the
importance of optimizing constraints and objectives, these CHTs may mislead the population to jump
over the feasible regions containing constrained Pareto optimal solutions. This would lead to missing
some or even all of the fragments of CPF. So, it is still a valuable research topic to design the effective
CHTs to deal with CMOPs.

To deal with the CMOPs effectively, this paper proposes a compound distance-based CHT, which
aims to guide the population to explore the valuable areas that are not dominated by feasible solutions
and avoid the insufficient search for some areas. Specifically, according to the angle and `p-norm, we
first introduce a compound distance into the objective space to measure individual’s search diameter.
Then, the individuals with large search diameters in the valuable areas are given priority to be
preserved. This effectively guides the working population to distribute evenly in the valuable areas
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and avoid missing the feasible regions containing constrained Pareto optimal solutions. In other
words, the compound distance-based CHT is effective in guiding the working population to find
CPFs. Accordingly, we propose a CMEA with the compound distance-based CHT, which is denoted
as CD-CMEA, for solving CMOPs. Similar to the existing CMEAs, the proposed CD-CMEA also use
a feasibility-oriented archive to record the best solutions for CMOPs. Besides, to balance the local
search and global search in the evolutionary process, we use a dynamic mixing strategy to select
individuals from the archive and the current population evenly scattered in the valuable areas to
generate offspring. A series of numerical experiments on several benchmark problems are carried out
to test the performance of the proposed CD-CMEA. And the experimental results show that
CD-CMEA performs better than the state-of-the-art CEMAs in dealing with different CMOPs.

The main contributions of this paper can be summarized as follows:

1. We propose a novel compound distance-based CHT that guides the population to explore the
valuable areas evenly. It can effectively prevent the population from being stuck in local areas.

2. We introduce a dynamic mixing strategy to guide the generation of offspring in each generation.
This helps to make full use of the information of the current population and the archive to balance
the local search and global search in the evolution process.

3. We carry out a series of numerical experiments to verify the effectiveness of the proposed
algorithm.

The rest of this paper is organized as follows. Section 2 describes the compound distance-based
CHT in detail. In Section 3, we embed the compound distance-based CHT into evolutionary
algorithm for dealing with CMOPs. Section 4 organizes a series of numerical experiments to compare
the performances of the proposed algorithm and the existing CMEAs. Section 5 concludes this paper.

2. Compound distance-based constraint handling technique

In this section, we describe in detail the proposed compound distance-based CHT, which aims
to guide the population to explore the valuable areas that are not dominated by feasible solutions
and is quite different from the existing CHTs. Let the objective vector of any individual xq in Ω be
Fq = ( f1(xq), ..., fm(xq))T , and f min

i (i = 1, ...,m) be the minimum value that has been found on the
i-th objective. To facilitate the analysis, we shift the objective space to Rm

+ according to the following
transformations:

fi(xq) = fi(xq) − f min
i , i = 1, ...,m, (2.1)

and introduce two symbols as follows: f (x1,x2)
i,max = max( fi(x1), fi(x2)),

f (x1,x2)
i,min = min( fi(x1), fi(x2)).

(2.2)

Besides, before introducing the proposed compound distance-based CHT, we first give a lemma, which
is helpful to prove the properties of the compound distance involved.

Lemma 1. ∀ fi(x1), fi(x2), fi(x3) > 0,

1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

>
f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

. (2.3)
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Proof. (i) If fi(x1) > max( fi(x2), fi(x3)) > 0, then the right side of inequality (2.3) can be simplified as

f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

6
fi(x2)

f (x2,x3)
i,max

+
fi(x3)

f (x2,x3)
i,max

= 1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

. (2.4)

(ii) If 0 < fi(x1) 6 min( fi(x2), fi(x3)), then we can get that

f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

6
f (x2,x3)
i,min

f (x2,x3)
i,min

+
f (x2,x3)
i,min

f (x2,x3)
i,max

= 1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

. (2.5)

(iii) If 0 < f (x2,x3)
i,min 6 fi(x1) 6 f (x2,x3)

i,max , then it follows 1

f (x2 ,x3)
i,min

> 1
fi(x1) >

1

f (x2 ,x3)
i,max

> 0. The right side of

inequality (2.3) is calculated as

f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

=


fi(x2)
fi(x1)

+
fi(x1)
fi(x3)

, fi(x2) ≤ fi(x1) ≤ fi(x3),

fi(x1)
fi(x2)

+
fi(x3)
fi(x1)

, fi(x3) ≤ fi(x1) ≤ fi(x2),
(2.6)

=
f (x2,x3)
i,min

fi(x1)
+

fi(x1)

f (x2,x3)
i,max

. (2.7)

According to the Sequence Inequality,

f (x2,x3)
i,min

fi(x1)
+

fi(x1)

f (x2,x3)
i,max

6
fi(x1)
fi(x1)

+
f (x2,x3)
i,min

f (x2,x3)
i,max

= 1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

. (2.8)

By substituting Eq (2.8) into Eq (9), we have

f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

6 1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

. (2.9)

Thus, we have from (i), (ii) and (iii) that ∀ fi(x1), fi(x2), fi(x3) > 0,

1 +
f (x2,x3)
i,min

f (x2,x3)
i,max

>
f (x1,x2)
i,min

f (x1,x2)
i,max

+
f (x1,x3)
i,min

f (x1,x3)
i,max

. (2.10)

�

2.1. Compound distance

When dealing with unconstrained multi-objective optimization problems, the angle is widely used
as a diversity measure and has shown its effectiveness of guiding the population to evenly search for
different segments of PF [33–36]. However, it can not accurately reflect the relative distance between
different individuals. For example, point A = (1, 1) is close to point B = (2, 2) and far from point

AIMS Mathematics Volume 6, Issue 6, 6220–6241.



6224

C = (100, 100), but it is easy to get that the angular distance between A, B is equal to that between A,C.
This is not conducive to guiding the population to search different regions evenly when dealing with
CMOPs. In order to take the advantage of angle in guiding the population to search for the different
segments of CPF and overcome its deficiency in measuring the relative distance between different
individuals, we introduce a new compound distance in the objective space Rm

+ of CMOPs, which takes
into account both the angular distance and the relative position between considered individuals and
defines the distance between any two points F1,F2 ∈ Rm

+ as:

dp(F1,F2) = 〈F1,F2〉 + k p

√√√ m∑
i=1

(1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

)p, p > 1, (2.11)

where 〈∗, ∗〉 represents the angle between the two vectors, and k is a constant greater than 0. For the
three points A, B,C mentioned above, we can easily calculate that

dp(A, B) = k p

√√
2∑

i=1

(1 −
1
2

)p < dp(A,C) = k p

√√
2∑

i=1

(1 −
1

100
)p, p > 1. (2.12)

This shows that the compound distance dp(∗, ∗) can effectively evaluate the crowding degree of
individuals. As a distance function in the objective space, dp(∗, ∗) needs to satisfy four necessary
properties, which are proved as below.

Property 1 (Non-negativity). dp(F1,F2) > 0, for all F1,F2 ∈ Rm
+ .

Proof. For all F1,F2 ∈ Rm
+ , it is the fact that

〈F1,F2〉 ∈ [0, π/2],

1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

> 0, i = 1, ...,m.
(2.13)

Thus, according to the definition of dp(∗, ∗) (see Eq (2.11)), we can easily get that dp(F1,F2) > 0. �

Property 2 (Identity). dp(F1,F2) = 0, if and only if F1 = F2.

Proof. According to the definition of dp(∗, ∗),

dp(F1,F2) = 0⇔ 1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

, i = 1, ...,m,

⇔ f (x1,x2)
i,min = f (x1,x2)

i,max , i = 1, ...,m,

⇔ fi(x1) = fi(x2), i = 1, ...,m,
⇔ F1 = F2.

(2.14)

�

Property 3 (Symmetry). ∀F1,F2 ∈ Rm
+ , dp(F1,F2) = dp(F2,F1).
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Proof. It is obvious. �

Property 4 (Triangle inequality). ∀F1,F2,F3 ∈ Rm
+ , dp(F1,F2) + dp(F1,F3) > dp(F2,F3).

Proof. For any F1,F2,F3 ∈ Rm
+ , it is obvious that

〈F1,F2〉 + 〈F1,F3〉 > 〈F2,F3〉. (2.15)

Besides, according to the Minkowski Inequality,

p

√√√ m∑
i=1

(1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

)p +
p

√√√ m∑
i=1

(1 −
f (x1,x3)
i,min

f (x1,x3)
i,max

)p >
p

√√√ m∑
i=1

(2 −
f (x1,x2)
i,min

f (x1,x2)
i,max

−
f (x1,x3)
i,min

f (x1,x3)
i,max

)p. (2.16)

By using Lemma 1, we can further transform Eq (2.16) as follows

p

√√√ m∑
i=1

(1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

)p +
p

√√√ m∑
i=1

(1 −
f (x1,x3)
i,min

f (x1,x3)
i,max

)p >
p

√√√ m∑
i=1

(1 −
f (x2,x3)
i,min

f (x2,x3)
i,max

)p. (2.17)

So, it can inferred from Eq (2.15) and Eq (2.17) that

dp(F1,F2) + dp(F1,F3) = 〈F1,F2〉 + k p

√√√ m∑
i=1

(1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

)p + 〈F1,F3〉 + k p

√√√ m∑
i=1

(1 −
f (x1,x3)
i,min

f (x1,x3)
i,max

)p

> 〈F1,F2〉 + k p

√√√ m∑
i=1

(1 −
f (x1,x2)
i,min

f (x1,x2)
i,max

)p

= dp(F2,F3).

(2.18)

�

2.2. Compound distance-based CHT

Using the compound distance dp(∗, ∗), we define the search diameter of a point Fi in F ⊂ Rm
+ as:

Rp(Fi|F) = min
F j∈F\{Fi}

dp(Fi,F j). (2.19)

Since Properties 1 to 4 have shown that dp(∗, ∗) is a measure in the space Rm
+ , the larger the value

of dp(Fi,F j) obviously means that the distance between two individuals Fi,F j is larger. So, a point
Fi with a large search diameter Rp(Fi|F) means that it has a great contribution for F to searching
different areas. Consider the point set F = {A, B,C} ⊂ R2

+ mentioned in Subsection 2.1 as an example.
It is easy to get that Rp(A|F) = dp(A, B), Rp(B|F) = dp(B, A), Rp(C|F) = dp(C, B). As dp(A, B) =

dp(B, A) = 2 p√2 < dp(C, B) = 50 p√2, it follows that Rp(A|F) = Rp(B|F) < Rp(C|F), which is consistent
with the distribution of points A, B,C in space R2

+. Therefore, in the process of reducing the size of
the considered population, the proposed compound distance-based CHT preferentially removes the
individuals with the smallest search diameters and retains the individuals with larger search diameters.
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Suppose that the size of the considered population is N∗, which exceeds its limited size N. Then
the pseudo codes of pruning it using the proposed compound distance-based CHT is shown in
Algorithm 1. Specifically, it first calculates the search diameter of each solution by the use of
Eq (2.19) and determines the number of deleted solutions according to DN = N∗ − N. After that, the
DN worst solutions with the smallest search diameters are removed from the considered population
one by one (Lines 3 to 7 in Algorithm 1). Considering that the removal of the worst individual may
affect the search diameters of some remaining individuals and then results in the inaccurate of
determining the next worst solutions, we update the search diameters of all remaining individuals in
Line 7. Finally, the N retained individuals in the considered population are output as the results.

Algorithm 1: Pruning steps by using the proposed compound distance-based CHT
Input: The considered population X of size N∗ and the limited size N;
Output: The refined population X with size N;

1 Calculate the search diameter of each solution x in X by Eq (2.19);
2 Determine the number of solutions that need to be deleted: DN = N∗ − N;
3 for i = 1 : DN do
4 Determine the worst solution x′ ∈ X with the smallest search diameter:

x′ = arg min
x j∈X

Rp(F j|F);

5 Remove x′ from X: X = X \ {x′};
6 Update the search diameters of the remaining individuals in X by Eq (2.19);
7 end
8 return Population X.

It is easy to get that in the process of determining the best individuals in the considered population,
the proposed compound distance-based CHT do not take into account their performance in optimizing
constraints and objectives. This is the main difference between the proposed compound distance-based
CHT and the existing CHTs. In this way, the proposed compound distance-based CHT can avoid being
lured to the local areas by deceptive constraints and guide the working population search for CPFs
more effectively.

3. Proposed algorithm framework

In this section, we embed the compound distance-based CHT into evolutionary algorithm and
propose a new CMEA with the compound distance-based CHT (denoted as CD-CMEA) to solve the
CMOPs. The details of the proposed CD-CMEA are described below.

3.1. Update mechanism of the current population

Due to the emergence of new individuals, the size N∗ of the working population Xt in the
t-generation will exceed the preset size N. In order to effectively guide the Xt to search for CPFs, we
use the compound distance-based CHT to select the N individuals of Xt who perform best in
uniformly searching valuable areas to form the current population Xt+1 of the next generation.
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Specifically, we first identify the set of individuals located in the valuable areas as:

VXt = {x ∈ Xt|@x′ ∈ Xt, c(x′) = 0, x′ ≺ x}. (3.1)

If the size of VXt is small than N, i.e., |VXt| < N, we initialize the current population of the next
generation Xt+1 as VXt and then select (N − |VXt|) individuals closest to the valuable areas from the
remaining individuals to fill Xt+1, where the distance from an individual to the valuable areas
determined by VXt is calculated as:

dis(x,VXt) = min
x′∈VXt

min
i∈{1,...,m}

( fi(x) − fi(x′)). (3.2)

Otherwise, we use Algorithm 1 to select the best N individuals of VXt who perform best in uniformly
searching valuable areas to form Xt+1. We simplify the above steps to the pseudo-code form in
Algorithm 2.

Algorithm 2: Update mechanism of the current population
Input: The current working population Xt and preset size N;
Output: The population Xt+1 for the next generation;

1 Identify the set VXt of valuable individuals by Eq (3.5);
2 if |VXt| < N then
3 Let Xt+1 = VXt and Xt = Xt \ VXt;
4 Calculate the distance dis(x,VXt) of each individual in Xt by Eq (3.2);
5 Select (N − |VXt|) individuals with the smallest values of dis(x,VXt) from Xt to fill Xt+1;
6 else
7 Use the Algorithm 1 to select N individuals of VXt to form Xt+1;
8 end
9 return Xt+1.

3.2. Archive

In the proposed CD-CMEA, the best solutions for solving CMOPs are recorded in an archive, which
prefers feasible solutions. The pseudo codes of forming the archive are shown in Algorithm 3. First,
the feasible solutions of the working population are used to initialize the archive. Then, if the number
of individuals in archive is smaller than the preset size N, the infeasible solutions with the smallest
constraint violation values are selected to fill the archive; otherwise, we use environmental selection
of PREA [37,38], which has showed its excellent performance in dealing with different unconstrained
MOPs and won the championship in IEEE WCCI 2018 Competition of Many-Objective Optimization,
to prune the archive. The specific steps of environmental selection of PREA is as follows:

1. Shift the archive Λ to R+
m as:

f ′i (x) = fi(x) − f Fmin
i + 10−6, i = 1, ...,m, (3.3)

where f Fmin
i is the minimum value found by feasible solutions on the objective fi.
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2. Calculate the fitness value of each individual xi ∈ Λ by the following equation:

Fitness(xi|Λ) = min
x j∈Λ\xi


max

l∈{1,...,m}

fl(x j)
fl(xi)

, if ∃ fl(x j) > fl(xi);

min
l∈{1,...,m}

fl(x j)
fl(xi)

, otherwise.
(3.4)

3. Determine the nondominated solutions in Λ:

Λ′ = {x|Fitness(x|Λ) > 0, x ∈ Λ}. (3.5)

If |Λ′| 6 N, terminate the calculation and let Λ retain only the N individuals with the best value
of Fitness(x|Λ). Otherwise, let Λ = Λ′ and mark N solutions with the best fitness values:

ΛB = {xq1 , ..., xqN } ⊂ Λ. (3.6)

These solutions are then used to form a promising region and to identify valuable candidates ΛC

as follows: ΛC = {x|F′(x) � ( f max∗
1 , ..., f max∗

m ), x ∈ Λ},

F′(x) = ( f ′1(x), ..., f ′m(x)), f max∗
i = max

x∈ΛB
f ′i (x). (3.7)

After that, the individuals with the minimum crowding distance in Λ are eliminated one by one
until the size of Λ is reduced to N. In each iteration, the one with the smaller fitness value of the
two nearest individuals is removed from Λ. Therein, a parallel distance is used to measure the
distance between any two solutions in Λ and is calculated as follows:

di j = {

m∑
l=1

( f̂ i
l − f̂ j

l )2 − [
m∑

l=1

( f̂ i
l − f̂ j

l )]2/m}0.5, (3.8)

where f̂ i
l = f ′l (xi)/ f max∗

l .

Algorithm 3: Process of forming archive
Input: The current working population Xt and preset size N;
Output: Archive Λ;

1 Initialize the archive Λ as all the feasible solutions in Xt;
2 if |Λ| < N then
3 Select (N − |Λ|) individuals with the smallest constraint violation values from the

remaining infeasible solutions to fill Λ;
4 else
5 Reduce the size of Λ to N by the environmental selection of PREA [37];
6 end
7 return Archive Λ.
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3.3. Offspring production

To balance the local search and global search in the evolutionary process, we introduce a dynamic
mixing strategy to randomly select individuals from the current population and the archive to form the
mating pool of size N. Therein, the number of individuals selected from the current population of the
t-th generation is calculated as:

Nt = b
N(T − t)

T
c, (3.9)

where T is the maximum number of evolutionary generation, and function b∗c returns the largest
integer not exceed the argument. The individuals of mating pool selected from the archive is (N − Nt).
According to Eq (3.9), it is easy to get that with the deepening of the optimization process, that is, the
increase of t value, the number Nt of individuals from the current population in mating pool gradually
decreased from the initial N to 0. This helps the CMEA to make full use of the information of
individuals evenly scattered in the valuable areas for global search in the early evolutionary stage, and
to focus on local search using the archive in the late evolutionary stage. For each individual x in the
mating pool, its two spouses have a 0.7 probability of being the individuals with the smallest angles
with x in the objective space, and a 0.3 probability of being randomly selected from the mating pool.
After that, we implement the differential evolution operator (DE) [39] and polynomial mutation
(PM) [40] for these matched individuals to produce offspring. The specific steps for generating
offspring are shown in Algorithm 4.

Algorithm 4: Offspring production
Input : The current working population Xt, archive Λ, and the preset size N;
Output: Offspring Y;

1 Let Y = ∅;
2 Use Eq (3.9) to calculate the value of parameter Nt;
3 Randomly select Nt and (N − Nt) individuals from Xt and Λ to form the mating pool MP;
4 for each xi ∈ MP do
5 if rand < 0.7 then
6 The two individuals x′, x′′ with the smallest angle to xi are regarded as the spouses of

xi;
7 else
8 Randomly select two individuals x′, x′′ from MP and regard them as the spouses of xi;
9 end

10 Implement the genetic operators, including DE and PM, on xi, x′, x′′ to produce a new
individual yi;

11 Let Y = Y ∪ {yi};
12 end
13 return Offspring Y.
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3.4. Framework of the proposed CD-CMEA

The flow chart of the proposed CD-CMEA is given in Figure 1, and its pseudo-code is shown in
Algorithm 5. Specifically, N individuals are randomly generated to initialize the current population
X0 and the archive Λ. After that, the following steps are repeated many times until the stopping
criteria are met, which include using Algorithm 4 to produce offspring Y, updating the archive Λ by
Algorithm 3, and using Algorithm 2 to select the best N solutions from Xt, Λ and Y to form the next
generation population Xt+1. Finally, archive Λ is output as the result. For simplicity, in the proposed
CD-CMEA, we set the parameters k and p of the compound distance (see Eq (2.11)) as π

2 p√m and 1,
respectively. According to the framework of the proposed CD-CMEA, it can be easily found that the
complexity of CD-CMEA mainly lies in two the processes: 1) calculating the search diameter of each
individual by Eq (2.19); and 2) updating the archive set by the environmental selection of PREA. As
the complexity of calculating the search diameter of an individual is O(mN log N), the complexity of
calculating all individuals in the current population is O(mN2 log N). Also, the number of objectives m
is generally smaller than the population size N and the complexity of PREA is O(N3) [37]. Therefore,
the complexity of the proposed CD-CMEA is O(N3).

Figure 1. The flow chart of the proposed CD-CMEA.

Algorithm 5: Framework of CD-CMEA
Input: The preset size N and stopping criteria;
Output: The archive Λ;

1 Randomly generate the initial population X0 of size N and let Λ = X0, t = 0;
2 while the stopping criteria are not met do
3 Use Algorithm 4 to produce offspring Y;
4 Merge Xt, Λ and Y to form a big working population Zt;
5 Select N solutions from Zt to update Λ by Algorithm 3;
6 Determine the current population Xt+1 of size N for the next generation by Algorithm 2;
7 Let t = t + 1;
8 end
9 return The archive Λ.

4. Numerical experiments and analysis

In this section, we have carried out a series of numerical experiments to investigate the performance
of the proposed algorithm CD-CMEA, which is compared with that of other state-of-the-art CMEAs.
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4.1. Experimental design

In our simulation experiments, several benchmark suites, including CTP1-8 [41],
DASCMOP1-9 [42], MW1-14 [43], C-DTLZ-series [20] and DC1-3-DTLZ1 [31], are regarded as the
test problems. To vividly show the performance difference between the proposed CD-CMEA and the
existing CMEAs, six state-of-the-art algorithms, that is, CMOEA/D-DE-CDP [22],
CMOEA/D-DE-SR [22], C-TAEA [31], PPS [29], ToP [44] and AnD [23], are selected for
comparison. The core ideas of these comparison algorithms are given below.

1. CMOEA/D-DE-CDP [22] is a decomposition-based differential evolution algorithm. It uses the
CDP to determine the best solutions in the current population. Specifically, in the process of
evaluating the quality of candidate solutions, the solutions with smaller constraint violation values
are considered to be better. And when the constraint violation values of the candidate solutions
are all the same, the solutions with the best fitness values under the evaluation of Tchebycheff

method are regarded as the optimal solutions.
2. CMOEA/D-DE-SR [22] is an improved version of CMOEA/D-DE-CDP and uses a stochastic

ranking approach (SR) to balance the constraints and objectives. Specifically, when the candidate
solutions are both infeasible and the randomly generated number is smaller than the preset small
probability value p f , it ignores the constraint and determines the optimal solutions according to
the performances of these candidate individuals on optimizing objectives; Otherwise, it also uses
the CDP to selects the best solutions.

3. C-TAEA [31] is a two-archive CMEA that simultaneously maintains two collaborative archives,
i.e., the convergence oriented archive CA and diversity oriented archive DA. Therein, CA prefers
feasible individuals and provides pressure to push the population to search for CPF, while DA
evaluated by only optimizing the objectives focuses on exploring the areas that have not been
exploited by CA.

4. PPS [29] is such a CMEA that divides the search process into two different stages: the push stage
and the pull stage. In the push stage, constraints are ignored, and the population is evolved by
optimizing only the objectives. In the pull stage, it uses an improved ε-CDP to pull the population
to search for the CPF.

5. ToP [44] is a two-phase based CMEA for CMOPs. In the first phase, it transforms the original
CMOP into a constrained single-objective optimization problem, which is then solved by a
constrained single-objective evolutionary algorithm. In the second phase, it focuses on the
promising area discovered in the first phase and uses the NSGA-II with CDP to find the CPF.

6. AnD [23] is a CMEA that uses angle-based selection strategy, shift-based density estimation
strategy, and CDP. In the process of comparing individual quality, those with smaller violations
of constraints will be selected for the next generation.

Considering that the released version of these compared algorithms may be their best form, we set their
private parameters to be consistent with those in their published papers. For the sake of fairness, in
terms of public parameters, the population size and the maximum function evaluation of all algorithms
on each test problem are set to 100 and 2 × 105, respectively. And the number of independent runs of
the algorithms on each test problem is set to 20.
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Two widely used metrics, i.e., inverted generational distance (IGD) [45] and hypervolume
(HV) [46], are adopted in this paper to evaluate the performance of the seven considered algorithms
on each test problem. These two metrics are defined as follows:

IGD-metric: Let P be a set of uniformly distributed points on the CPF, and S is the final feasible
results of an algorithm in the objective space, then the IGD of S to P is calculated as:

IGD(S|P) =

∑
p∈P

min
s∈S
‖s − p‖2

|P|
. (4.1)

Obviously, the smaller the IGD(S|P) is, the better it is to approximate the CPF with S. For each
test instance in this paper, we use the method of Das and Dennis [47] to generate the uniformly
distributed point set P with the size of 10,000.

HV-metric: Let z∗ = (z1, ..., zm)T = 1.1 × ( f max
1 , ..., f max

m )T be a reference point determined by the
maximum value of each objective, i.e., f max

i , i = 1, ...,m, in the CPF. Then the HV value of the
feasible solution set S obtained by a CMEA is calculated as:

HV(S|z) = VOL(
⋃
s∈S

[s1, z1] × ... × [sm, zm]), (4.2)

where VOL(∗) is the Lebesgue measure. It is easy to get that a large value of HV(S|z) means good
quality of S in the objective space.

To hear the voice from statistics, we use the Wilcoxon Rank Sum Test with a significance level
of 0.05 to analyze the performance differences between the proposed CD-CMEA and the other six
existing CMEAs on each test problem. Therein, three symbols “+”, “=” and “–” are introduced, which
represent that the final results obtained by the compared algorithms are significantly better than, equal
to, and worse than the proposed CD-CMEA, respectively.

4.2. Experimental results and analysis

The comparison results among the seven considering CMEAs on each test instance under IGD and
HV metrics are listed in Tables 1 and 2. In these tables, we highlight the best algorithm for each test
problem with a gray background and a bold way. Besides, in order to visually show the excellent
performance of the proposed CD-CMEA, we take DASCMOP series as the examples to draw the
feasible solutions obtained by these seven comparing algorithms in Figures 2 and 3. As can be seen
from these Tables 1 and 2, compared with the other six CMEAs, the proposed CD-CMEA performs
better in the test instances, and it has better robustness in dealing with different CMOPs. This is to be
expected. Next, we will analyze the reasons for this in detail.

AIMS Mathematics Volume 6, Issue 6, 6220–6241.



6233

Table 1. Comparison results of the seven CMEAs on the test instances under IGD metric.

Instances m CD-CMEA
CMOEA/D-DE

C-TAEA PPS ToP AnDCDP SR

CTP1 2 0.0043 0.0057(–) 0.0078(–) 0.0051(–) 0.0059(–) 0.0052(–) 0.0544(–)
CTP2 2 0.0015 0.0049(–) 0.0070(–) 0.0083(–) 0.0028(–) 0.0026(–) 0.0214(–)
CTP3 2 0.0056 0.0059(–) 0.0261(–) 0.0116(–) 0.0071(–) 0.0043(=) 0.0601(–)
CTP4 2 0.0614 0.0748(–) 0.1758(–) 0.0687(–) 0.0790(–) 0.0475(+) 0.1379(–)
CTP5 2 0.0013 0.0037(–) 0.0139(–) 0.0108(–) 0.0025(=) 0.0017(+) 0.0117(–)
CTP6 2 0.0045 0.9677(–) 0.9718(–) 0.0066(–) 0.0051(–) 0.3577(–) 0.0099(–)
CTP7 2 0.0101 0.0115(–) 0.0113(–) 0.0119(–) 0.0103(–) 0.0102(–) 0.0360(–)
CTP8 2 0.0022 1.8624(–) 1.2681(–) 0.0083(–) 0.0030(–) 0.8375(–) 0.0787(–)

DASCMOP1 2 0.0032 0.6681(–) 0.5085(–) 0.2684(–) 0.0052(=) 0.7762(–) 0.7180(–)
DASCMOP2 2 0.0030 0.2313(–) 0.2209(–) 0.1111(–) 0.0039(+) 0.7240(–) 0.2670(–)
DASCMOP3 2 0.0194 0.3364(–) 0.3449(=) 0.1587(+) 0.0195(+) 0.6844(–) 0.3546(–)
DASCMOP4 2 0.0014 0.2312(–) 0.2573(–) 0.0117(–) 0.0783(–) NaN(–) 0.0387(–)
DASCMOP5 2 0.0028 0.0618(–) 0.0845(–) 0.0075(–) 0.0072(–) NaN(–) 0.1507(–)
DASCMOP6 2 0.0268 0.1323(–) 0.1929(–) 0.0258(–) 0.1191(–) NaN(–) 0.1201(–)
DASCMOP7 3 0.0327 0.1580(–) 0.1286(–) 0.0401(–) 0.1840(–) NaN(–) 0.0392(–)
DASCMOP8 3 0.0429 0.1652(–) 0.1746(–) 0.0570(–) 0.1192(–) NaN(–) 0.0511(–)
DASCMOP9 3 0.0409 0.3528(–) 0.3832(–) 0.2440(–) 0.0977(–) 0.5982(–) 0.2646(–)

MW1 2 0.0021 0.0039(–) 0.0037(–) 0.0022(–) 0.0029(–) NaN(–) 0.0041(–)
MW2 2 0.0054 0.1131(–) 0.1551(–) 0.0131(–) 0.1567(–) 0.1048(–) 0.0241(–)
MW3 2 0.0054 0.0043(+) 0.1011(–) 0.0049(+) 0.0062(–) 0.6030(–) 0.0092(–)
MW4 3 0.0466 0.0609(–) 0.0616(–) 0.0467(–) 0.0574(–) NaN(–) 0.0447(=)
MW5 2 0.0016 0.5217(–) 0.5961(–) 0.0088(–) 0.2308(–) NaN(–) 0.1764(–)
MW6 2 0.0029 0.5138(–) 0.5580(–) 0.0078(–) 0.4263(–) 0.4271(–) 0.0407(–)
MW7 2 0.0037 0.0043(+) 0.0140(–) 0.0055(–) 0.0049(=) 0.0628(–) 0.0270(–)
MW8 3 0.0495 0.1887(–) 0.2072(–) 0.0544(–) 0.1646(–) 0.4963(–) 0.0519(–)
MW9 2 0.0089 0.3235(–) 0.4699(–) 0.0103(–) 0.6060(–) 0.0222(–) 0.0078(=)
MW10 2 0.0041 NaN(–) NaN(–) 0.0149(–) NaN(–) NaN(–) 0.1618(–)
MW11 2 0.0039 0.0059(–) 0.0096(–) 0.0075(–) 0.0043(–) 0.2690(–) 0.3632(–)
MW12 2 0.0044 0.0043(=) 0.0168(–) 0.0067(–) 0.0064(–) NaN(–) 0.0768(–)
MW13 2 0.0044 0.1973(–) 0.2892(–) 0.0135(–) 0.2190(–) 0.1783(–) 0.0465(–)
MW14 3 0.0419 0.1243(–) 0.1236(–) 0.0466(–) 0.0542(–) 0.1504(–) 0.0471(–)

C1-DTLZ1 3 0.0437 0.0609(–) 0.0551(–) 0.0467(–) 0.0517(–) NaN(–) 0.0436(=)
C2-DTLZ2 3 0.0450 0.0703(–) 0.0739(–) 0.0562(–) 0.0555(–) 0.0580(–) 0.0462(=)
C3-DTLZ4 3 0.0488 0.0729(–) 0.1101(–) 0.0558(–) 0.0719(–) 0.0712(–) 0.0533(–)

DC1-DTLZ1 3 0.0321 0.2340(–) 0.1370(–) 0.0248(+) 0.0338(–) 0.0908(–) 0.0371(–)
DC2-DTLZ1 3 0.0439 0.0614(–) 0.0615(–) 0.0467(–) 0.0569(–) NaN(–) NaN(–)
DC3-DTLZ1 3 0.0204 0.8495(–) 1.4803(–) 0.0264(–) 0.1406(–) 3.7102(–) 0.0626(–)

Summary(+/=/–) —— 2/1/34 0/1/36 3/0/34 2/3/32 2/1/34 0/4/33
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Table 2. Comparison results of the seven CMEAs on the test instances under HV metric.

Instances m CD-CMEA
CMOEA/D-DE

C-TAEA PPS ToP AnDCDP SR

CTP1 2 0.3793 0.3790(–) 0.3779(–) 0.3789(–) 0.3782(–) 0.3785(–) 0.3631(–)
CTP2 2 0.4289 0.4284(–) 0.4237(–) 0.4233(–) 0.4290(=) 0.4290(=) 0.4142(–)
CTP3 2 0.4074 0.4082(=) 0.3892(–) 0.4017(–) 0.4058(–) 0.4105(+) 0.3762(–)
CTP4 2 0.3595 0.3495(–) 0.2536(–) 0.3548(–) 0.3462(–) 0.3720(+) 0.3058(–)
CTP5 2 0.4106 0.4117(+) 0.3919(–) 0.4041(–) 0.4096(+) 0.4122(+) 0.3746(–)
CTP6 2 0.4657 0.2081(–) 0.2046(–) 0.4631(–) 0.4648(–) 0.3688(–) 0.4594(–)
CTP7 2 0.5474 0.5474(=) 0.5469(–) 0.5446(–) 0.5481(+) 0.5481(+) 0.5152(–)
CTP8 2 0.3703 0.0367(–) 0.1368(–) 0.3632(–) 0.3700(=) 0.2184(–) 0.3431(–)

DASCMOP1 2 0.2032 0.0165(–) 0.0632(–) 0.1606(–) 0.1961(–) 0.0020(–) 0.0071(–)
DASCMOP2 2 0.3510 0.2547(–) 0.2563(–) 0.2954(–) 0.3506(+) 0.0456(–) 0.2419(–)
DASCMOP3 2 0.3125 0.2131(–) 0.2072(–) 0.2528(+) 0.3121(+) 0.0488(–) 0.2085(–)
DASCMOP4 2 0.2039 0.1539(–) 0.1493(–) 0.1968(–) 0.1844(–) NaN(–) 0.1878(–)
DASCMOP5 2 0.3512 0.3211(=) 0.3147(–) 0.3480(–) 0.3491(=) NaN(–) 0.2656(–)
DASCMOP6 2 0.3078 0.2653(–) 0.2427(–) 0.3079(=) 0.2731(–) NaN(–) 0.2583(–)
DASCMOP7 3 0.2879 0.2402(–) 0.2493(–) 0.2871(+) 0.2238(–) NaN(–) 0.2860(+)
DASCMOP8 3 0.2076 0.1733(–) 0.1643(–) 0.2033(–) 0.1773(–) NaN(–) 0.2054(=)
DASCMOP9 3 0.2078 0.1324(–) 0.1191(–) 0.1459(–) 0.1905(–) 0.0765(–) 0.1437(–)

MW1 2 0.4875 0.4867(–) 0.4867(–) 0.4889(=) 0.4884(=) NaN(–) 0.4871(–)
MW2 2 0.5802 0.4291(–) 0.3854(–) 0.5662(–) 0.3884(–) 0.4430(–) 0.5472(–)
MW3 2 0.5442 0.5455(+) 0.4883(–) 0.5450(+) 0.5436(–) 0.1787(–) 0.5386(–)
MW4 3 0.8359 0.8001(–) 0.8005(–) 0.8382(+) 0.8114(–) 0.0222(–) 0.8368(=)
MW5 2 0.3235 0.1575(–) 0.1352(–) 0.3189(–) 0.2483(–) NaN(–) 0.2620(–)
MW6 2 0.3269 0.0841(–) 0.0771(–) 0.3171(–) 0.1261(–) 0.1326(–) 0.2923(–)
MW7 2 0.4123 0.4116(+) 0.4079(–) 0.4095(–) 0.4121(+) 0.3731(–) 0.4007(–)
MW8 3 0.5328 0.2570(–) 0.3010(–) 0.5208(–) 0.2966(–) 0.2250(–) 0.5251(–)
MW9 2 0.3908 0.1719(–) 0.1820(–) 0.3915(–) 0.1385(–) 0.3777(–) 0.3913(=)

MW10 2 0.4533 NaN(–) NaN(–) 0.4398(–) NaN(–) NaN(–) 0.3452(–)
MW11 2 0.4471 0.4470(=) 0.4414(–) 0.4438(–) 0.4476(=) 0.3233(–) 0.2912(–)
MW12 2 0.6047 0.6043(=) 0.5866(–) 0.6008(–) 0.6019(–) NaN(–) 0.5419(–)
MW13 2 0.4749 0.2753(–) 0.2375(–) 0.4602(–) 0.2565(–) 0.3033(–) 0.4236(–)
MW14 3 0.4584 0.3962(–) 0.3984(–) 0.4671(=) 0.4539(–) 0.3841(–) 0.4683(+)

C1-DTLZ1 3 0.8385 0.7999(–) 0.8082(–) 0.8376(–) 0.8195(–) NaN(–) 0.8367(–)
C2-DTLZ2 3 0.5082 0.4978(–) 0.4785(–) 0.5070(–) 0.5017(–) 0.4730(–) 0.5155(+)
C3-DTLZ4 3 0.7931 0.7807(–) 0.7496(–) 0.7855(–) 0.7643(–) 0.7570(–) 0.7852(–)

DC1-DTLZ1 3 0.6202 0.5135(–) 0.5753(–) 0.6492(+) 0.6328(+) 0.5885(–) 0.6337(+)
DC2-DTLZ1 3 0.8384 0.8024(–) 0.8023(–) 0.8381(–) 0.8030(–) NaN(–) NaN(–)
DC3-DTLZ1 3 0.5155 0.2015(–) 0.1775(–) 0.6584(+) 0.5705(+) 0.0643(–) 0.6123(+)

Summary (+/=/–) —— 3/5/29 0/0/37 6/3/28 7/5/25 4/1/32 5/3/29
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Figure 2. The feasible solutions obtained by CD-CMEA (1st column), CMOEA/D-DE-CDP
(2nd column), CMOEA/D-DE-SR (3rd column), C-TAEA (4th column), PPS (5th column),
ToP (6th column) and AnD (7th column) in dealing with DASCMOP1-4. Rows 1–4 refer to
problems DASCMOP1–4, respectively.
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Figure 3. The feasible solutions obtained by CD-CMEA (1st column), CMOEA/D-DE-CDP
(2nd column), CMOEA/D-DE-SR (3rd column), C-TAEA (4th column), PPS (5th column),
ToP (6th column) and AnD (7th column) in dealing with DASCMOP5–9. Rows 1–5 refer to
problems DASCMOP5–9, respectively.
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When dealing with CTP1-5,7, C2-DTLZ2, C3-DTLZ4 and DC1-DTLZ1, we can see that there
is little difference in the performance of the seven algorithms. The main reason for this is that the
constraints of these instances are very simple and they actually do not pose any challenge for the
seven algorithms to find the CPFs. So, the proposed CD-CMEA and the other six algorithms can
easily find the CPFs of these test instances, and the slight difference in performance among them is
caused by their diversity maintenance mechanism. Since these problems have irregular PFs, which
are captured more accurately by the PREA adopted in CD-CMEA than by the reference point-based
and angle-based diversity maintenance mechanism of other algorithms [37], it is not surprising that the
proposed CD-CMEA outperforms CMOEA/D-DE-CDP, CMOEA/D-DE-SR, C-TAEA, PPS, and AnD
on them. Besides, Tables 1 and 2 also show that ToP performs better than the proposed CD-CMEA in
solving CTP1-5,7. That is not surprising. Because the update mechanism of ToP is NSGA-II, which
has excellent performance in capturing irregular CPF in two-dimensional objective space. As NSGA-II
performs poorly in selecting the individuals with good diversity in the space with the dimension number
larger than 2, we can see that the performance of ToP on the three-objective instances C2-DTLZ2, C3-
DTLZ4 and DC1-DTLZ1 is poor. When it comes to CTP6,8, whose CPFs below the infeasible regions
in the objective space, the feasibility-led CMEAs, i.e., CMOEA/D-DE-CDP, CMOEA/D-DE-SR, ToP
and AnD, are easily trap into the local areas and than fail to find the entire CPFs. As the individuals of
the working population in the proposed CD-CMEA are forced to distribute evenly in the valuable areas
according to their search diameters, they can easily cross the infeasible regions of the CTP6,8 and find
the CPFs. So, it is natural that the performance of CD-CMEA is better than that of CMOEA/D-DE-
CDP, CMOEA/D-DE-SR, ToP and AnD on CTP6,8. Due to the objective-led CHT that ignores the
constraints to only optimize the objectives, C-TAEA and PPS can also effectively force the working
population to cross the infeasible region in front of CPFs and find CPFs of CTP6,8. Nevertheless,
because the diversity maintenance mechanism of CD-CMEA performs better than that of C-TAEA and
PPS in capturing the irregular CPFs of CTP6,8, CD-CMEA is better than C-TAEA and PPS in dealing
with CTP6,8.

For dealing with DASCMOP1–9, MW1–14, DC2-DTLZ1 and DC3-DTLZ1, it can see from
Tables 1 and 2 that the proposed CD-CMEA is superior to CMOEA/D-DE-CDP, CMOEA/D-DE-SR,
ToP and AnD. The reason for this is easy to get. As there are complex infeasible regions in front of
the CPFs of DASCMOP1–9, MW1–14, DC2-DTLZ1 and DC3-DTLZ1 in the objective space, the
feasibility-led CHT in CMOEA/D-DE-CDP, CMOEA/D-DE-SR, ToP and AnD fails to guide the
working population to cross these infeasible regions, and this leads to the poor performances of
CMOEA/D-DE-CDP, CMOEA/D-DE-SR, ToP and AnD on DASCMOP1–9, MW1–14, DC2-DTLZ1
and DC3-DTLZ1. For the three algorithms CD-CMEA, C-TAEA and PPS, they can effectively cross
the complex infeasible regions of these instances and find the CPFs. However, because some instance
of DASCMOP-series is the unbalanced problem, that is, the probability of populations appearing in
different regions of the objective space is very different, the objective-led CHT in C-TAEA and PPS is
easy to mislead the working population to the local feasible regions and miss some other feasible
regions containing CPF fragments. So, C-TAEA and PPS fail to find the entire CPFs of some instance
of DASCMOP1–9. As the individuals of the working population in the proposed CD-CMEA are
forced to distribute evenly in the valuable areas according to their search diameters, they can easily
find the entire CPFs of DASCMOP1–9. In addition, the CPFs of DASCMOP1–9, MW1–14,
DC2-DTLZ1 and DC3-DTLZ1 are irregular, and CD-CMEA performs better than C-TAEA and PPS
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in capturing them. Therefore, it is not surprising that CD-CMEA is superior to C-TAEA and PPS on
DASCMOP1–9, MW1–14, DC2-DTLZ1 and DC3-DTLZ1.

In summary, compared with the six state-of-the-art CMEAs, i.e., CMOEA/D-DE-CDP,
CMOEA/D-DE-SR, C-TAEA, PPS, ToP and AnD, the proposed CD-CMEA performs better and has
better robustness in dealing with different CMOPs. In other words, the proposed CD-CMEA is a
promising algorithm for CMOPs.

4.3. Further investigation

In order to investigate the effective of the proposed compound distance, we take the DC2-DTLZ1
as an example to compare the differences of archives obtained by the proposed algorithm using the
compound distance and the Euclidean distance, respectively. The comparison results are shown in
Figure 4. It can be seen from Figure 4 that Euclidean distance prefers the solutions far from the origin
in the objective space and fails to guide the population to cross the infeasible regions in front of CPF.
On the contrary, the proposed compound distance can effectively guide the population to search the
different areas of the objective space evenly, whether they are close to or far from the origin. This
makes the population guided by the proposed compound distance easily cross the infeasible regions in
front of CPF and then find CPF of DC2-DTLZ1. Therefore, compared with Euclidean distance, the
proposed compound distance is more beneficial to guide the population to explore the objective space
evenly when solving the CMOPs.

Figure 4. Comparison results of the archives obtained by the proposed compound distance
and the Euclidean distance at different evolutionary stages in dealing with DC2-DTLZ1.

5. Conclusions and future work

In this paper, we introduce a compound distance into the objective space to measure individual’s
search diameter according to the angle and `p-norm. After that, a compound distance-based CHT, in
which the individuals with larger search diameter in the valuable areas are given priority to be
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preserved, is proposed to force the working population to fully explore the valuable areas that are not
dominated by feasible solutions. Embedding the compound distance-based CHT in the evolutionary
algorithm, we proposed a new method named CD-CMEA to deal with CMOPs. Numerical
experimental results show that the proposed CD-CMEA performs better than the other six existing
state-of-the-art CMEAs in dealing with different CMOPs. So, CD-CMEA is a promising method for
solving CMOPs. Considering that the main characteristic of the proposed CD-CMEA is to force the
working population to explore the valuable areas uniformly, we believe that the CHTs with similar
properties should also perform well in dealing with CMOPs. Thus, in the future, we will further study
the other forms of CHTs that can force the working population to explore the valuable areas evenly.
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