Research article

Optimality necessary conditions for an optimal control problem on time scales

  • Received: 29 December 2020 Accepted: 17 March 2021 Published: 24 March 2021
  • MSC : 49J21

  • An optimal control problem with quadratic cost functional on time scales is studied and some optimality necessary conditions are derived. The main tool used is the integration by parts on time scales.

    Citation: Qiu-Yan Ren, Jian-Ping Sun. Optimality necessary conditions for an optimal control problem on time scales[J]. AIMS Mathematics, 2021, 6(6): 5639-5646. doi: 10.3934/math.2021333

    Related Papers:

    [1] Folashade Agusto, Daniel Bond, Adira Cohen, Wandi Ding, Rachel Leander, Allis Royer . Optimal impulse control of West Nile virus. AIMS Mathematics, 2022, 7(10): 19597-19628. doi: 10.3934/math.20221075
    [2] Xin Wang, Yuxiang Liu, Lisha Wang . Necessary optimality conditions for two-step descriptor systems. AIMS Mathematics, 2022, 7(5): 9039-9056. doi: 10.3934/math.2022503
    [3] Houssine Zine, Abderrahim El Adraoui, Delfim F. M. Torres . Mathematical analysis, forecasting and optimal control of HIV/AIDS spatiotemporal transmission with a reaction diffusion SICA model. AIMS Mathematics, 2022, 7(9): 16519-16535. doi: 10.3934/math.2022904
    [4] Aziz Belmiloudi . Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928
    [5] Mingzhan Huang, Shouzong Liu, Ying Zhang . Mathematical modeling and analysis of biological control strategy of aphid population. AIMS Mathematics, 2022, 7(4): 6876-6897. doi: 10.3934/math.2022382
    [6] Liu Yang, Lijun Yin, Zuicha Deng . Drift coefficient inversion problem of Kolmogorov-type equation. AIMS Mathematics, 2021, 6(4): 3432-3454. doi: 10.3934/math.2021205
    [7] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels . Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Mathematics, 2016, 1(3): 225-260. doi: 10.3934/Math.2016.3.225
    [8] Jun Moon . A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 2023, 8(10): 22924-22943. doi: 10.3934/math.20231166
    [9] Gerardo Sánchez Licea . Strong and weak measurable optimal controls. AIMS Mathematics, 2021, 6(5): 4958-4978. doi: 10.3934/math.2021291
    [10] Beyza Billur İskender Eroǧlu, Dilara Yapışkan . Generalized conformable variational calculus and optimal control problems with variable terminal conditions. AIMS Mathematics, 2020, 5(2): 1105-1126. doi: 10.3934/math.2020077
  • An optimal control problem with quadratic cost functional on time scales is studied and some optimality necessary conditions are derived. The main tool used is the integration by parts on time scales.



    In recent years, the calculus of variations and optimal control problems on time scales have attracted much attention. For example, the calculus of variations on time scales was discussed in [1,2,3,4], some maximum principles on time scales were studied in [5,6,7,8,9], while the existence of optimal solutions or the necessary conditions of optimality for some optimal control problems on time scales were investigated in [10,11,12,13,14,15]. In particular, Peng et al. [11] presented the necessary conditions of optimality for the Lagrange problem of systems governed by linear dynamic equations on time scales with quadratic cost functional. It is necessary to point out that the controlled state variable in [11] satisfies the initial value condition.

    Throughout this paper, we always assume that T is a time scale, that is, T is an arbitrary nonempty closed subset of the real numbers [16], T>0 is fixed, 0, TT and σ(T)=T. For each interval I of R, we denote by IT=IT. The notation σ, which is standard in the study of time scales will be recalled in section 2 as well as the related tools required to follow the paper.

    Let Uad be the admissible control set. For any given control policy uUad, it is assumed that the change in the controlled state variable x(t) can be described by the following dynamic equation

    xΔ(t)+p(t)x(σ(t))=f(t)+q(t)u(t), t[0,T]T. (1.1)

    At the same time, we assume that x(t) satisfies the following loop condition

    x(0)=x(T). (1.2)

    Suppose that xu is the solution of the controlled system (1.1)–(1.2) corresponding to the control policy u and xd is the desired value. In this paper, we will study optimality necessary conditions for the optimal control problem (P): Find a u0Uad such that

    J(u)J(u0) for all uUad,

    where

    J(u)=T0[xu(σ(t))xd(t)]2Δt+T0u2(t)Δt, uUad

    is the quadratic cost functional. By using the integration by parts on time scales, we obtain some optimality necessary conditions for the problem (P).

    The theory of time scales, which has recently received a lot of attention, was introduced by Hilger in his PhD thesis [17] in 1988 in order to unify continuous and discrete analysis. For more details, one can see [16,18,19]. In this section, we will recall some foundational definitions and results from the calculus on time scales which will be used in the paper.

    Definition 2.1. The forward jump operator σ:TT is defined by

    σ(t):=inf{sT:s>t} for all tT,

    while the backward jump operator ρ:TT is defined by

    ρ(t):=sup{sT:s<t} for all tT.

    In this definition we put inf=supT and sup=infT, where denotes the empty set. If σ(t)>t, then t is called right-scattered, while if ρ(t)<t, then t is called left-scattered. Also, if t<supT and σ(t)=t, then t is called right-dense, and if t>infT and ρ(t)=t, then t is called left-dense. If T has a left-scattered maximum m, then we define Tk=T{m}, otherwise Tk=T. Finally, the graininess function μ:T[0,+) is defined by

    μ(t):=σ(t)t for all tT.

    Definition 2.2. Assume f:TR is a function and let tTk. Then fΔ(t) is defined to be the number (provided it exists) with the property that given any ϵ>0, there is a neighborhood U of t(i.e.,U=(tδ,t+δ)T for some δ>0) such that

    |f(σ(t))f(s)fΔ(t)(σ(t)s)|ϵ|σ(t)s| for all sU.

    In this case, fΔ(t) is called the delta derivative of f at t.

    Moreover, f is called delta differentiable on Tk provided fΔ(t) exists for all tTk. The function fΔ:TkR is called the delta derivative of f on Tk. A function F:TR is called an antiderivative of f:TR provided

    FΔ(t)=f(t) holds for all tTk.

    If F:TR is an antiderivative of f:TR, then the Cauchy integral is defined by

    baf(t)Δt=F(b)F(a) for all a,bT.

    Definition 2.3. A function f:TR is called rd-continuous provided it is continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T.

    In the following we will provide some important properties of the exponential function which is specific to time scales. Their proofs can be found in [16].

    Definition 2.4. A function p:TR is called regressive provided

    1+μ(t)p(t)0 foralltTk

    holds. The set of all regressive and rd-continuous functions will be denoted by R. The set of positively regressive functions R+ is defined as the set consisting of those pR satisfying

    1+μ(t)p(t)>0 foralltT.

    Lemma 2.1. [16] Let pR, t0,sT and ep(,t0) be the exponential function on T. Then

    (ⅰ)  ep(t,t)1 for all tT;

    (ⅱ)  eΔp(t,t0)=p(t)ep(t,t0) for all tTk;

    (ⅲ)   ep(t,t0)=1ep(t0,t) for all tT;

    (ⅳ)   ep(t,s)ep(s,t0)=ep(t,t0) for all tT;

    (ⅴ)   (1ep(t,t0))Δ=p(t)ep(σ(t),t0) for all tTk.

    Moreover, if pR+, then

    ep(t,t0)>0foralltT.

    Lemma 2.2. [16] Assume f,g:TR are differentiable at tTk. Then the product fg:TR is differentiable at t with

    (fg)Δ(t)=fΔ(t)g(t)+f(σ(t))gΔ(t)=f(t)gΔ(t)+fΔ(t)g(σ(t)), tTk.

    Lemma 2.3. [16] If a,bT and f,g:TR are rd-continuous functions, then

    baf(σ(t))gΔ(t)Δt=(fg)(b)(fg)(a)bafΔ(t)g(t)Δt.

    In the remainder of this paper, we always assume that Banach space

    Crd([0,T]T,R):={x | x:[0,T]TR is rd-continuous}

    is equipped with the norm x=maxt[0,T]T|x(t)|, p:[0,T]T(0,+) is rd-continuous and denote

    L=ep(T,0)1ep(T,0)  and  M=1ep(T,0)1.

    Lemma 2.4. For any gCrd([0,T]T,R), the following first-order linear periodic boundary value problem (PBVP for short)

    {yΔ(t)=p(t)y(t)+g(t), t[0,T]T,y(0)=y(T) (2.1)

    has a unique solution

    y(t)=ep(t,0)[t0ep(0,σ(s))g(s)Δs+LT0ep(0,σ(s))g(s)Δs], t[0,T]T. (2.2)

    Proof. Since g and ep are rd-continuous, we know that the right side of (2.2) is well defined. By the equation in (2.1), Lemma 2.1 and Lemma 2.2, we get

    [y(t)ep(0,t)]Δ=ep(0,σ(t))g(t), t[0,T]T.

    So,

    y(t)=ep(t,0)[y(0)+t0ep(0,σ(s))g(s)Δs], t[0,T]T. (2.3)

    It follows from (2.3) and the boundary condition in (2.1) that

    y(0)=LT0ep(0,σ(s))g(s)Δs.

    And so,

    y(t)=ep(t,0)[t0ep(0,σ(s))g(s)Δs+LT0ep(0,σ(s))g(s)Δs], t[0,T]T.

    Lemma 2.5. [20] For any hCrd([0,T]T,R), the following first-order linear PBVP

    {xΔ(t)+p(t)x(σ(t))=h(t), t[0,T]T,x(0)=x(T)

    has a unique solution

    x(t)=1ep(t,0)[t0ep(s,0)h(s)Δs+MT0ep(s,0)h(s)Δs], t[0,T]T.

    From now on, we always suppose that the control space is Crd([0,T]T,R) and the admissible control set Uad is a nonempty convex subset of Crd([0,T]T,R).

    Theorem 3.1. Assume that f,qCrd([0,T]T,R). Let (xu0,u0)Crd([0,T]T,R)×Uad be an optimal pair of the problem (P). Then

    {xΔu0(t)+p(t)xu0(σ(t))=f(t)+q(t)u0(t), t[0,T]T,xu0(0)=xu0(T)  (3.1)

    and there exists a function φCrd([0,T]T,R) such that

    T0[u(t)u0(t)][φ(t)q(t)+u0(t)]Δt0foranyuUad.

    Proof. Since (xu0,u0)Crd([0,T]T,R)×Uad is an optimal pair of the problem (P), it must satisfy (3.1).

    According to Lemma 2.4, we know that the following PBVP

    {φΔ(t)=p(t)φ(t)+xd(t)xu0(σ(t)), t[0,T]T,φ(0)=φ(T) (3.2)

    has a unique solution φ.

    In what follows, we shall show that

    T0[u(t)u0(t)][φ(t)q(t)+u0(t)]Δt0 for any uUad. (3.3)

    For any fixed uUad, we first consider the following PBVP

    {zΔ(t)+p(t)z(σ(t))=q(t)[u(t)u0(t)], t[0,T]T,z(0)=z(T). (3.4)

    By Lemma 2.5, we know that the PBVP (3.4) has a unique solution z.

    Next, for ϵ[0,1], we denote

    uϵ=u0+ϵ(uu0). (3.5)

    Then, the hypothesis that Uad is a nonempty convex set yields uϵUad for ϵ[0,1] and moreover from Lemma 2.5 we obtain

    xuϵxu0=ϵz, ϵ[0,1]. (3.6)

    In view of (3.2), (3.4) and Lemma 2.3, we have

    T0z(σ(t))[xu0(σ(t))xd(t)]Δt=T0z(σ(t))[φΔ(t)+p(t)φ(t)]Δt=T0φ(t)[zΔ(t)+p(t)z(σ(t))]Δt=T0φ(t)q(t)[u(t)u0(t)]Δt,

    which together with (3.5) and (3.6) indicates that for any ϵ[0,1],

    J(uϵ)J(u0)=T0{[xuϵ(σ(t))xd(t)]2[xu0(σ(t))xd(t)]2}Δt+T0[u2ϵ(t)u20(t)]Δt=T0[xuϵ(σ(t))xu0(σ(t))][xuϵ(σ(t))+xu0(σ(t))2xd(t)]Δt+T0[uϵ(t)+u0(t)][uϵ(t)u0(t)]Δt=ϵT0z(σ(t))[xuϵ(σ(t))+xu0(σ(t))2xd(t)]Δt+ϵT0[u(t)u0(t)]{2u0(t)+ϵ[u(t)u0(t)]}Δt=ϵT0z(σ(t)){[xuϵ(σ(t))xu0(σ(t))]+2[xu0(σ(t))xd(t)]}Δt+ϵ2T0[u(t)u0(t)]2Δt+2ϵT0u0(t)[u(t)u0(t)]Δt=ϵ2T0z2(σ(t))Δt+2ϵT0φ(t)q(t)[u(t)u0(t)]Δt+ϵ2T0[u(t)u0(t)]2Δt+2ϵT0u0(t)[u(t)u0(t)]Δt=ϵ2T0{z2(σ(t))+[u(t)u0(t)]2}Δt+2ϵT0[u(t)u0(t)][φ(t)q(t)+u0(t)]Δt.

    Since u0 is an optimal solution of the problem (P), for any ϵ[0,1], we get

    ϵ(ϵT0{z2(σ(t))+[u(t)u0(t)]2}Δt+2T0[u(t)u0(t)][φ(t)q(t)+u0(t)]Δt)0,

    which implies that for any uUad,

    T0[u(t)u0(t)][φ(t)q(t)+u0(t)]Δt0.

    This work was supported by the National Natural Science Foundation of China (Grant no. 11661049).

    The authors declare that there are no conflict of interest regarding the publication of this paper.



    [1] Z. Bartosiewicz, N. Martins, D. F. M. Torres, The second Euler-Lagrange equation of variational calculus on time scales, Eur. J. Control, 17 (2011), 9–18. doi: 10.3166/ejc.17.9-18
    [2] R. A. C. Ferreira, A. B. Malinowska, D. F. M. Torres, Optimality conditions for the calculus of variations with higher-order delta derivatives, Appl. Math. Lett., 24 (2011), 87–92. doi: 10.1016/j.aml.2010.08.023
    [3] R. Hilscher, V. Zeidan, First order conditions for generalized variational problems over time scales, Comput. Math. Appl., 62 (2011), 3490–3503. doi: 10.1016/j.camwa.2011.08.065
    [4] A. B. Malinowska, N. Martins, D. F. M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett., 5 (2011), 41–53. doi: 10.1007/s11590-010-0189-7
    [5] P. Stehlik, B. Thompson, Maximum principles for second order dynamic equations on time scales, J. Math. Anal. Appl., 331 (2007), 913–926. doi: 10.1016/j.jmaa.2006.09.003
    [6] R. Hilscher, V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Anal., 70 (2009), 3209–3226. doi: 10.1016/j.na.2008.04.025
    [7] L. Bourdin, E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Optim., 51 (2013), 3781–3813. doi: 10.1137/130912219
    [8] S. Zhou, H. Li, Maximum principles for dynamic equations on time scales and their applications, J. Appl. Math., 2014 (2014), 434582.
    [9] M. Bohner, K. Kenzhebaev, O. Lavrova, O. Stanzhytskyi, Pontryagin's maximum principle for dynamic systems on time scales, J. Difference Equ. Appl., 23 (2017), 1161–1189. doi: 10.1080/10236198.2017.1284829
    [10] Y. Gong, X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales, J. Ind. Manage. Optim., 5 (2009), 1–10.
    [11] Y. Peng, X. Xiang, Y. Gong, G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales, Comput. Math. Appl., 58 (2009), 2035–2045. doi: 10.1016/j.camwa.2009.08.032
    [12] G. Liu, X. Xiang, Y. Peng, Nonlinear integro-differential equations and optimal control problems on time scales, Comput. Math. Appl., 61 (2011), 155–169. doi: 10.1016/j.camwa.2010.10.013
    [13] D. A. Carlson, The existence of optimal controls for problems defined on time scales, J. Optim. Theory Appl., 166 (2015), 351–376. doi: 10.1007/s10957-014-0674-8
    [14] O. E. Lavrova, Conditions for the existence of optimal control for some classes of differential equations on time scales, J. Math. Sci., 222 (2017), 276–295. doi: 10.1007/s10958-017-3299-2
    [15] J. P. Sun, Q. Y. Ren, Y. H. Zhao, An optimal control problem governed by nonlinear first order dynamic equation on time scales, Math. Probl. Eng., 2020 (2020), 3869089.
    [16] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
    [17] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988.
    [18] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
    [19] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
    [20] J. P. Sun, W. T. Li, Existence of solutions to nonlinear first-order PBVPs on time scales, Nonlinear Anal., 67 (2007), 883–888. doi: 10.1016/j.na.2006.06.046
  • This article has been cited by:

    1. Ola W. Al-Naser, Akram H. Mahmood, 2025, 3224, 0094-243X, 070027, 10.1063/5.0254442
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2987) PDF downloads(140) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog