This paper focuses on topology optimization for additive manufacturing, where the minimum length scale of designs must be greater than the nozzle's length scale. We present a general framework for controlling the minimum length scale in topology optimization using the phase field method, which is applicable to mechanical, heat transfer, and thermal-mechanical coupled topology optimization. The proposed method introduces an energy functional as the objective function of topology optimization, which includes the surface free energy, strain energy, volume constraints, minimum length scale constraints, and necessary boundary terms to satisfy the equilibrium condition of elasticity. A newly defined convolution operation $ {\mathcal B}_r $ (where $ r $ is the radius related to the length scale) is combined with established skeleton extraction techniques to achieve control over the minimum length scale. At the same time, the skeletons of new designs are preserved in a way that is consistent with those obtained from designs without size control. To find the minimum of the constructed energy functional, the augmented Lagrangian method is first used to derive the extremum functional. Then the stationary point of the extremum functional is transformed into the solution of a time-dependent Allen-Cahn type equation, which effectively converts the topology optimization problem into solving partial differential equations. An operator-splitting-based hybrid numerical method is proposed to solve the Allen-Cahn type equation. The numerical results of mechanical, heat transfer, and thermal-mechanical coupled topology optimizations are presented to demonstrate the efficiency and scalability of the proposed minimum length scale control framework.
Citation: Qian Yu, Yuyan Liu, Mingyuan Yang. Minimum length scale control in thermal-mechanical coupled topology optimization based on phase field method[J]. AIMS Mathematics, 2025, 10(7): 16720-16743. doi: 10.3934/math.2025750
This paper focuses on topology optimization for additive manufacturing, where the minimum length scale of designs must be greater than the nozzle's length scale. We present a general framework for controlling the minimum length scale in topology optimization using the phase field method, which is applicable to mechanical, heat transfer, and thermal-mechanical coupled topology optimization. The proposed method introduces an energy functional as the objective function of topology optimization, which includes the surface free energy, strain energy, volume constraints, minimum length scale constraints, and necessary boundary terms to satisfy the equilibrium condition of elasticity. A newly defined convolution operation $ {\mathcal B}_r $ (where $ r $ is the radius related to the length scale) is combined with established skeleton extraction techniques to achieve control over the minimum length scale. At the same time, the skeletons of new designs are preserved in a way that is consistent with those obtained from designs without size control. To find the minimum of the constructed energy functional, the augmented Lagrangian method is first used to derive the extremum functional. Then the stationary point of the extremum functional is transformed into the solution of a time-dependent Allen-Cahn type equation, which effectively converts the topology optimization problem into solving partial differential equations. An operator-splitting-based hybrid numerical method is proposed to solve the Allen-Cahn type equation. The numerical results of mechanical, heat transfer, and thermal-mechanical coupled topology optimizations are presented to demonstrate the efficiency and scalability of the proposed minimum length scale control framework.
| [1] |
J. Pellens, G. Lombaert, B. Lazarov, M. Schevenels, Combined length scale and overhang angle control in minimum compliance topology optimization for additive manufacturing, Struct. Multidiscip. O., 15 (2019), 2005–2022. https://doi.org/10.1007/s00158-018-2168-z doi: 10.1007/s00158-018-2168-z
|
| [2] |
E. Fernández, C. Ayas, M. Langelaar, P. Duysinx, Topology optimisation for large-scale additive manufacturing: generating designs tailored to the deposition nozzle size, Virtual Phys. Prototyp., 16 (2021), 196–220. https://doi.org/10.1080/17452759.2021.1914893 doi: 10.1080/17452759.2021.1914893
|
| [3] |
Z. Li, L. Wang, T. Lv, Additive manufacturing-oriented concurrent robust topology optimization considering size control, Int. J. Mech. Sci., 250 (2023), 108269. https://doi.org/10.1016/j.ijmecsci.2023.108269 doi: 10.1016/j.ijmecsci.2023.108269
|
| [4] |
R. L. Cortez, M. Setta, R. Picelli, E. Wadbro, Minimum size control for binary topology optimization, Struct. Multidiscip. O., 68 (2025). https://doi.org/10.1007/s00158-025-03975-3 doi: 10.1007/s00158-025-03975-3
|
| [5] |
W. Zhang, W. Zhong, X. Guo, An explicit length scale control approach in SIMP-based topology optimization, Comput. Method. Appl. M., 282 (2014), 71–86. https://doi.org/10.1016/j.cma.2014.08.027 doi: 10.1016/j.cma.2014.08.027
|
| [6] |
H. Azegami, S. Kaizu, K. Takeuchi, Regular solution to topology optimization problems of continua, JSIAM Lett., 3 (2011), 1–4. https://doi.org/10.14495/jsiaml.3.1 doi: 10.14495/jsiaml.3.1
|
| [7] |
O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optimization, 16 (1998), 68–75. https://doi.org/10.1007/BF01214002 doi: 10.1007/BF01214002
|
| [8] |
T. Borrvall, J. Petersson, Topology optimization using regularized intermediate density control, Comput. Method. Appl. M., 190 (2001), 4911–4928. https://doi.org/10.1016/S0045-7825(00)00356-X doi: 10.1016/S0045-7825(00)00356-X
|
| [9] |
Q. Li, G. Liang, Y. Luo, F. Zhang, S. Liu, An explicit formulation for minimum length scale control in density-based topology optimization, Comput. Method. Appl. M., 404 (2023), 115761. https://doi.org/10.1016/j.cma.2022.115761 doi: 10.1016/j.cma.2022.115761
|
| [10] |
L. Song, J. Zhao, T. Gao, J. Li, L. Tang, Y. Li, et al., Length scale control in density-based multi-material topology optimization, Comput. Method. Appl. M., 401 (2022), 115655. https://doi.org/10.1016/j.cma.2022.115655 doi: 10.1016/j.cma.2022.115655
|
| [11] |
J. Huang, J. Liu, Derivable skeletons in topology optimization for length scale control, Comput. Method. Appl. M., 421 (2024), 116778. https://doi.org/10.1016/j.cma.2024.116778 doi: 10.1016/j.cma.2024.116778
|
| [12] |
M. Jansen, Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints, Struct. Multidiscip. O., 59 (2019), 1775–1788. https://doi.org/10.1007/s00158-018-2162-5 doi: 10.1007/s00158-018-2162-5
|
| [13] |
J. L. Barrera, M. J. Geiss, K. Maute, Minimum feature size control in level set topology optimization via density fields, Struct. Multidiscip. O., 65 (2022). https://doi.org/10.1007/s00158-021-03096-7 doi: 10.1007/s00158-021-03096-7
|
| [14] |
Y. Wang, T. Hu, Z. Zou, Y. Wang, X. Zhang, Constraint-free length scale control for topology optimization using the velocity field level set method, Struct. Multidiscip. O., 68 (2025). https://doi.org/10.1007/s00158-025-03971-7 doi: 10.1007/s00158-025-03971-7
|
| [15] |
J. L. Barrera, M. J. Geiss, K. Maute, Hole seeding in level set topology optimization via density fields, Struct. Multidiscpip. O., 61 (2020), 1319–1343. https://doi.org/10.1007/s00158-019-02480-8 doi: 10.1007/s00158-019-02480-8
|
| [16] |
M. Zhou, B. Lazarov, F. Wang, O. Sigmund, Minimum length scale in topology optimization by geometric constraints, Comput. Methods Appl. Mech. Eng., 293 (2015), 266–282. https://doi.org/10.1016/j.cma.2015.05.003 doi: 10.1016/j.cma.2015.05.003
|
| [17] |
L. Zhou, T. Gao, W. Zhang, Hole control methods in feature-driven topology optimization, Comput. Method. Appl. M., 417 (2023), 116447. https://doi.org/10.1016/j.cma.2023.116447 doi: 10.1016/j.cma.2023.116447
|
| [18] |
A. Takezawa, S. Nishiwaki, M. Kitamura, Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys., 229 (2010), 2697–2718. https://doi.org/10.1016/j.jcp.2009.12.017 doi: 10.1016/j.jcp.2009.12.017
|
| [19] |
J. L$\acute{o}$pez, N. Valizadeh, T. Rabczuk, An isogeometric phase-field based shape and topology optimization for flexoelectric structures, Comput. Method. Appl. M., 391 (2022), 114564. https://doi.org/10.1016/j.cma.2021.114564 doi: 10.1016/j.cma.2021.114564
|
| [20] |
W. Xie, J. Feng, Q. Xia, J. Kim, Y. Li, Design of the shell-infill structures using a phase field-based topology optimization method, Comput. Method. Appl. M., 429 (2024), 117138. https://doi.org/10.1016/j.cma.2024.117138 doi: 10.1016/j.cma.2024.117138
|
| [21] |
Q. Xia, J. Kim, B. Xia, Y. Li, An unconditionally energy stable method for binary incompressible heat conductive fluids based on the phase–field model, Comput. Math. Appl., 123 (2022), 26–39. https://doi.org/10.1016/j.camwa.2022.07.022 doi: 10.1016/j.camwa.2022.07.022
|
| [22] |
D. Cai, B. Fu, R. Gao, X. Kong, J. Yang, Phase-field computation for 3D shell reconstruction with an energy-stable and uniquely solvable BDF2 method, Comput. Math. Appl., 189 (2025), 1–23. https://doi.org/10.1016/j.camwa.2025.03.022 doi: 10.1016/j.camwa.2025.03.022
|
| [23] |
O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidiscip. O., 21 (2001), 120–127. https://doi.org/10.1007/s001580050176 doi: 10.1007/s001580050176
|
| [24] |
J. V. Carstensen, J. K. Guest, Projection-based two-phase minimum and maximum length scale control in topology optimization, Struct. Multidiscip. O., 58 (2018), 1845–1860. https://doi.org/10.1007/s00158-018-2066-4 doi: 10.1007/s00158-018-2066-4
|
| [25] | R. B. Haber, M. P. Bendose, C. S. Jog, Perimeter constrained topology optimization of continuum structures. In IUTAM Symposium on Optimization of Mechanical Systems (eds. D. Bestle and W. Schiehlen), Kluwer Academic Publishers, (1996), 113–120. https://doi.org/10.1007/978-94-009-0153-7_15 |
| [26] |
S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
|
| [27] |
C. Lee, S. Ham, Y. Hwang, S. Kwak, J. Kim, An explicit fourth-order accurate compact method for the Allen-Cahn equation, AIMS Math., 9(1) (2024), 735–762. https://doi.org/10.3934/math.2024038 doi: 10.3934/math.2024038
|
| [28] |
Q. Yu, K. Wang, B. Xia, Y. Li, First and second order unconditionally energy stable schemes for topology optimization based on phase field method, Appl. Math. Comput., 405 (2021), 126267. https://doi.org/10.1016/j.amc.2021.126267 doi: 10.1016/j.amc.2021.126267
|
| [29] |
T. Zobaer, A. Sutradhar, Maximum thickness control in topology optimization using an inflection-point-based geometric constraint, Comput. Method. Appl. M., 414 (2023), 116171. https://doi.org/10.1016/j.cma.2023.116171 doi: 10.1016/j.cma.2023.116171
|
| [30] |
J. Liu, L. Li, Y. Ma, Uniform thickness control without pre-specifying the length scale target under the level set topology optimization framework, Adv. Eng. Softw., 115 (2018), 204–216. https://doi.org/10.1016/j.advengsoft.2017.09.013 doi: 10.1016/j.advengsoft.2017.09.013
|
| [31] |
J. Liu, Y. Ma, A new multi-material level set topology optimization method with the length scale control capability, Comput. Method. Appl. M., 329 (2018), 444–463. https://doi.org/10.1016/j.cma.2017.10.011 doi: 10.1016/j.cma.2017.10.011
|
| [32] |
K. Crane, C. C. Weischedel, M. Wardetzky. Geodesics in heat: A new approach to computing distance based on heat flow, ACM T. Graphic., 32 (2013), 152. https://doi.org/10.1145/2516971.2516977 doi: 10.1145/2516971.2516977
|
| [33] |
T. Lee, R. L. Kashyap, C. Chu, Building skeleton models via 3-D medial surface/axis thinning algorithms, Computer Vision, Graphics, Image Processing, 56 (1994), 462–478. https://doi.org/10.1006/cgip.1994.1042 doi: 10.1006/cgip.1994.1042
|
| [34] |
X. Yan, J. Chen, H. Hua, Y. Zhang, X. Huang, Smooth topological design of structures with minimum length scale and chamfer$/$round controls, Comput. Method. Appl. M., 383 (2021), 113939. https://doi.org/10.1016/j.cma.2021.113939 doi: 10.1016/j.cma.2021.113939
|
| [35] |
M. P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer Science & Business Media, (2013). http://doi.org/10.1007/978-3-662-05086-6 doi: 10.1007/978-3-662-05086-6
|
| [36] |
O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. O., 48 (2013), 1031–1055. https://doi.org/10.1007/s00158-013-0978-6 doi: 10.1007/s00158-013-0978-6
|
| [37] |
A. R. Conn, N. Gould, A. Sartenaer, Ph. L. Toint, Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints, SIAM J. Optimiz., 6 (1996), 674–703. https://doi.org/10.1137/S1052623493251463 doi: 10.1137/S1052623493251463
|
| [38] |
E. Burman, P. Hansbo, M. G. Larson, The augmented lagrangian method as a framework for stabilised methods in computational mechanics, Arch. Comput. Methods Eng., 30 (2023), 2579–2604. https://doi.org/10.1007/s11831-022-09878-6 doi: 10.1007/s11831-022-09878-6
|
| [39] |
M. Hintermüller, M. Hinze, Moreau–Yosida regularization in state constrained elliptic control problems: Error estimates and parameter adjustment, SIAM J. Numer. Anal., 47 (2009), 1666–1683. https://doi.org/10.1137/080718735 doi: 10.1137/080718735
|
| [40] |
Y. Cai, C. Ming, Y. Qin, Skeleton extraction based on the topology and Snakes model, Results Phys., 7 (2017), 373–378. https://doi.org/10.1016/j.rinp.2016.12.026 doi: 10.1016/j.rinp.2016.12.026
|
| [41] |
Y. Li, Q. Xia, S. Yoon, C. Lee, B. Lu, J. Kim, Simple and efficient volume merging method for triply periodic minimal structures, Comput. Phys. Commun., 264 (2021), 107956. https://doi.org/10.1016/j.cpc.2021.107956 doi: 10.1016/j.cpc.2021.107956
|
| [42] |
Y. Li, S. Guo, Triply periodic minimal surface using a modified Allen–Cahn equation, Appl. Math. Comput., 295 (2017), 84–94. https://doi.org/10.1016/j.amc.2016.10.005 doi: 10.1016/j.amc.2016.10.005
|
| [43] |
J. Yang, J. Kim, Unconditionally maximum principle-preserving linear method for a mass-conserved Allen–Cahn model with local Lagrange multiplier, Commun. Nonlinear Sci., 139 (2024), 108327. https://doi.org/10.1016/j.cnsns.2024.108327 doi: 10.1016/j.cnsns.2024.108327
|
| [44] |
M. Wallin, N. Ivarsson, O. Amir, D. Tortorelli, Consistent boundary conditions for PDE filter regularization in topology optimization, Struct. Multidiscip. O., 62 (2020), 1299–1311. https://doi.org/10.1007/s00158-020-02556-w doi: 10.1007/s00158-020-02556-w
|
| [45] |
A. Clausen, E. Andreassen, On filter boundary conditions in topology optimization, Struct. Multidisc. Optim., 56 (2017), 1147–1155. https://doi.org/10.1007/s00158-017-1709-1 doi: 10.1007/s00158-017-1709-1
|
| [46] |
S. Li, P. Zeng, N. Lin, M. Lu, J. Lin, A. Yang, Topology optimization based on improved DoubleU-Net using four boundary condition datasets, Optim. Eng., 57 (2025), 884–902. https://doi.org/10.1080/0305215X.2024.2338189 doi: 10.1080/0305215X.2024.2338189
|
| [47] |
T. Dbouk, A review about the engineering design of optimal heat transfer systems using topology optimization, Appl. Therm. Eng., 112 (2017), 841–854. https://doi.org/10.1016/j.applthermaleng.2016.10.134 doi: 10.1016/j.applthermaleng.2016.10.134
|
| [48] |
T. E. Bruns, Topology optimization of convection-dominated, steady-state heat transfer problems, Int. J. Heat Mass Tran., 50 (2007), 2859–2873. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.039 doi: 10.1016/j.ijheatmasstransfer.2007.01.039
|
| [49] |
I. Ahmed, A. E. Abouelregal, D. Atta, M. Alesemi, A fractional dual-phase-lag thermoelastic model for a solid half-space with changing thermophysical properties involving two-temperature and non-singular kernels, AIMS Math., 9 (2024), 6964–6992. https://doi.org/10.3934/math.2024340 doi: 10.3934/math.2024340
|
| [50] |
X. Yang, H. Li, L. Gao, Thermal-mechanical coupling topology optimization of multi-phase infill structures with a non-gradient porosity optimization method, Int. J. Heat Mass Tran., 210 (2023), 124198. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124198 doi: 10.1016/j.ijheatmasstransfer.2023.124198
|