Research article Special Issues

Bifurcation analysis and the modulation instability in a nonlinear silica optical fibers

  • Received: 19 May 2025 Revised: 05 July 2025 Accepted: 17 July 2025 Published: 24 July 2025
  • MSC : 35C05, 35Q53

  • The Schäfer-Wayne equation (SWE), a crucial model for ultrashort pulse propagation in nonlinear silicon optical fibers, is investigated using the $ F $-expansion method and enhanced modified extended tanh expansion method (EMETEM). We derive diverse solitary wave solutions, including dark, bright, periodic, multi-peak periodic, and breather-like periodic solutions, visualized through $ 2D $ and $ 3D $ graphics. Novel contributions include comprehensive bifurcation analysis via planar dynamical systems revealing phase portrait classifications, modulation instability analysis for solution stability evaluation, and sensitivity analysis assessing parameter dependence and initial condition effects. The diverse solitary wave solutions represent a new advancement in understanding SWE dynamics. The study demonstrates the methods' robustness in examining nonlinear wave dynamics with applications in optics, engineering, and telecommunications.

    Citation: Maha Alammari, Muhammad Abuzar, Solomon Manukure. Bifurcation analysis and the modulation instability in a nonlinear silica optical fibers[J]. AIMS Mathematics, 2025, 10(7): 16692-16719. doi: 10.3934/math.2025749

    Related Papers:

  • The Schäfer-Wayne equation (SWE), a crucial model for ultrashort pulse propagation in nonlinear silicon optical fibers, is investigated using the $ F $-expansion method and enhanced modified extended tanh expansion method (EMETEM). We derive diverse solitary wave solutions, including dark, bright, periodic, multi-peak periodic, and breather-like periodic solutions, visualized through $ 2D $ and $ 3D $ graphics. Novel contributions include comprehensive bifurcation analysis via planar dynamical systems revealing phase portrait classifications, modulation instability analysis for solution stability evaluation, and sensitivity analysis assessing parameter dependence and initial condition effects. The diverse solitary wave solutions represent a new advancement in understanding SWE dynamics. The study demonstrates the methods' robustness in examining nonlinear wave dynamics with applications in optics, engineering, and telecommunications.



    加载中


    [1] U. Demirbilek, A. H. Tedjani, A. R. Seadawy, Analytical solutions of the combined Kairat-Ⅱ-x equation: A dynamical perspective on bifurcation, chaos, energy, and sensitivity, AIMS Mathematics, 10 (2025), 13664–13691. https://doi.org/10.3934/math.2025615 doi: 10.3934/math.2025615
    [2] S. Manukure, T. Booker, A short overview of solitons and applications, Partial Differ. Equ. Appl. Math., 4 (2021), 100140. https://doi.org/10.1016/j.padiff.2021.100140 doi: 10.1016/j.padiff.2021.100140
    [3] N. Akhmediev, M. Karlsson, Cherenkov radiation emitted by solitons in optical fibers, Phys. Rev. A., 51 (1995), 2602. https://doi.org/10.1103/PhysRevA.51.2602 doi: 10.1103/PhysRevA.51.2602
    [4] H. Ma, R. U. Rahman, S. Manukure, Dynamical analysis and bifurcations in a fractional integrable equation, Alex. Eng. J., 125 (2025), 600–623. https://doi.org/10.1016/j.aej.2025.03.138 doi: 10.1016/j.aej.2025.03.138
    [5] M. Junjua, A. M. Mostafa, N. F. AlQahtani, A. Bekir, Impact of truncated M-fractional derivative on the new types of exact solitons to the (4+1)-dimensional DSKP model, Mod. Phys. Lett. B, 38 (2024), 2450313. https://doi.org/10.1142/S0217984924503135 doi: 10.1142/S0217984924503135
    [6] A. K. Alsharidi, M. Junjua, Kink, dark, bright, and singular optical solitons to the space–time nonlinear fractional (4+1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili model, Fractal Fract., 8 (2024), 388. https://doi.org/10.3390/fractalfract8070388 doi: 10.3390/fractalfract8070388
    [7] M. A. Alomair, M. Junjua, Analysis of truncated M-fractional mathematical and physical (2+1)-dimensional nonlinear Kadomtsev–Petviashvili-modified equal-width model, Fractal Fract., 8 (2024), 442. https://doi.org/10.3390/fractalfract8080442 doi: 10.3390/fractalfract8080442
    [8] W. B. Rabie, H. M. Ahmed, T. A. Nofal, S. Alkhatib, Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method, AIMS Mathematics, 9 (2024), 31882–31897. https://doi.org/10.3934/math.20241532 doi: 10.3934/math.20241532
    [9] N. Raza, R. Ur Rahman, A. Seadawy, A. Jhangeer, Computational and bright soliton solutions and sensitivity behavior of Camassa–Holm and nonlinear Schrödinger dynamical equation, Int. J. Mod. Phys. B, 35 (2021), 2150157. https://doi.org/10.1142/S0217979221501575 doi: 10.1142/S0217979221501575
    [10] A. H. Arnous, Chaotic dynamics and bifurcation analysis of optical solitons in birefringent fibers governed by the Sasa-Satsuma equation with stochastic perturbation, Nonlinear Dyn., 113 (2025), 18469–18484. https://doi.org/10.1007/s11071-025-11107-1 doi: 10.1007/s11071-025-11107-1
    [11] I. Samir, H. M. Ahmed, W. Rabie, W. Abbas, O. Mostafa, Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods, AIMS Mathematics, 10 (2025), 3392–3407. https://doi.org/10.3934/math.2025157 doi: 10.3934/math.2025157
    [12] S. S. Miah, M. A. Akbar, K. Khan, Solitary wave solutions and stability analysis of the fractional Sawada-Kotera equation using the extended modified auxiliary equation mapping method, J. Umm Al-Qura Univ. Appl. Sci., 2025. https://doi.org/10.1007/s43994-025-00230-9 doi: 10.1007/s43994-025-00230-9
    [13] N. Raza, A. Jhangeer, R. Ur Rahman, A. R. Butt, Y. M. Chu, Sensitive visualization of the fractional Wazwaz-Benjamin-Bona-Mahony equation with fractional derivatives: A comparative analysis, Results Phys., 25 (2021), 104171. https://doi.org/10.1016/j.rinp.2021.104171 doi: 10.1016/j.rinp.2021.104171
    [14] I. Hamid, S. Kumar, Newly formed solitary wave solutions and other solitons to the (3+1)-dimensional mKdV–ZK equation utilizing a new modified Sardar sub-equation approach, Mod. Phys. Lett. B, 39 (2025), 2550027. https://doi.org/10.1142/S0217984925500277 doi: 10.1142/S0217984925500277
    [15] D. Kumar, A. Saharan, A. Kumar, Exploring soliton patterns and dynamical analysis of the solitary wave form solutions of the (3+1)-dimensional Wazwaz–Benjamin–Bona–Mahony equation, Mod. Phys. Lett. B, 39 (2025), 2550102. https://doi.org/10.1142/S0217984925501027 doi: 10.1142/S0217984925501027
    [16] H. W. A. Riaz, J. Lin, Darboux transformation for a semi-discrete matrix coupled dispersionless system, Appl. Math. Lett., 158 (2024), 109217. https://doi.org/ 10.1016/j.aml.2024.109217 doi: 10.1016/j.aml.2024.109217
    [17] R. Ur Rahman, Z. Li, J. He, Magnetic wave dynamics in ferromagnetic thin films: Interactions of solitons and positons in Landau-Lifshitz-Gilbert equation, Physica D, 479 (2025), 134719. https://doi.org/10.1016/j.physd.2025.134719 doi: 10.1016/j.physd.2025.134719
    [18] K. K. Ali, A. Saha, M. N. Ali, T. Ak, M. M. A. Khater, Dynamical properties of Schäfer-Wayne equation for propagation of short pulses in silica optical fibers, Opt. Quant. Electron., 56 (2024), 1334. https://doi.org/10.1007/s11082-024-07238-1 doi: 10.1007/s11082-024-07238-1
    [19] B. F. Feng, L. Ling, Z. Zhu, Defocusing complex short-pulse equation and its multi-dark-soliton solution, Phys. Rev. E, 93 (2016), 052227. https://doi.org/10.1103/PhysRevE.93.052227 doi: 10.1103/PhysRevE.93.052227
    [20] H. W. A. Riaz, M. Ul Hassan, On soliton solutions of multi-component semi-discrete short pulse equation, J. Phys. Commun., 2 (2018), 025005. https://doi.org/10.1088/2399-6528/aaa4e1 doi: 10.1088/2399-6528/aaa4e1
    [21] V. Kumar, A. Biswas, M. Ekici, L. Moraru, A. K. Alzahrani, M. R. Belic, Time–dependent coupled complex short pulse equation: Invariant analysis and complexitons, Chaos Soliton. Fract., 150 (2021), 111151. https://doi.org/10.1016/j.chaos.2021.111151 doi: 10.1016/j.chaos.2021.111151
    [22] D. Zhao, Zhaqilao, On two new types of modified short pulse equation, Nonlinear Dyn., 100 (2020), 615–627. https://doi.org/10.1007/s11071-020-05530-9 doi: 10.1007/s11071-020-05530-9
    [23] V. K. Kuetche, T. B. Bouetou, T. C. Kofane, On two-loop soliton solution of the Schäfer-Wayne short-pulse equation using Hirota's method and Hodnett-Moloney approach, J. Phys. Soc. Jpn., 76 (2007), 024004. https://doi.org/10.1143/JPSJ.76.024004 doi: 10.1143/JPSJ.76.024004
    [24] A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A: Math. Gen., 39 (2006), L361. https://doi.org/10.1088/0305-4470/39/22/L03 doi: 10.1088/0305-4470/39/22/L03
    [25] Y. Chung, C. K. R. T. Jones, T. Schäfer, C. E. Wayne, Ultra-short pulses in linear and nonlinear media, Nonlinearity, 18 (2005), 1351. https://doi.org/10.1088/0951-7715/18/3/021 doi: 10.1088/0951-7715/18/3/021
    [26] D. Ampilogov, S. Leble, Evolution equation for interaction of opposite directed waves with arbitrary polarization in 1D-metamaterial, J. Nonlinear Opt. Phys. Mater., 31 (2022), 2150013. https://doi.org/10.1142/S0218863521500132 doi: 10.1142/S0218863521500132
    [27] J. Xu, N. Guo, H. Li, Y. Tu, On the double-pole solutions of the complex short-pulse equation, Mod. Phys. Lett. B, 35 (2021), 2150129. https://doi.org/10.1142/S0217984921501293 doi: 10.1142/S0217984921501293
    [28] H. Esen, M. Ozisik, A. Secer, M. Bayram, Optical soliton perturbation with Fokas-Lenells equation via enhanced modified extended tanh-expansion approach, Optik, 267 (2022), 169615. https://doi.org/10.1016/j.ijleo.2022.169615 doi: 10.1016/j.ijleo.2022.169615
    [29] J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, The improved $F$-expansion method and its applications, Phys. Lett. A, 350 (2006), 103–109. https://doi.org/10.1016/j.physleta.2005.10.099 doi: 10.1016/j.physleta.2005.10.099
    [30] M. A. Akbar, N. H. M. Ali, The improved $F$-expansion method with Riccati equation and its applications in mathematical physics, Cogent Math., 4 (2017), 1282577. https://doi.org/10.1080/23311835.2017.1282577 doi: 10.1080/23311835.2017.1282577
    [31] M. M. A. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M. Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. Phys. Lett. B, 35 (2021), 2150381. https://doi.org/10.1142/S0217984921503814 doi: 10.1142/S0217984921503814
    [32] R. Ur Rahman, Z. Hammouch, A. S. A. Alsubaie, K. H. Mahmoud, A. Alshehri, E. A. Az-Zo'bi, et al., Dynamical behavior of fractional nonlinear dispersive equation in Murnaghan's rod materials, Results Phys., 56 (2024), 107207. https://doi.org/10.1016/j.rinp.2023.107207 doi: 10.1016/j.rinp.2023.107207
    [33] J. C. Brunelli, The short pulse hierarchy, J. Math. Phys., 46 (2005), 123507. https://doi.org/10.1063/1.2146189 doi: 10.1063/1.2146189
    [34] A. Sakovich, S. Sakovich, The short pulse equation is integrable, J. Phys. Soc. Jpn., 74 (2005), 239–241. https://doi.org/10.1143/JPSJ.74.239 doi: 10.1143/JPSJ.74.239
    [35] O. Gonzalez-Gaxiola, Bright and dark optical solitons of the Schäfer–Wayne short-pulse equation by Laplace substitution method, Optik, 200 (2020), 163414. https://doi.org/10.1016/j.ijleo.2019.163414 doi: 10.1016/j.ijleo.2019.163414
    [36] V. K. Kuetche, T. B. Bouetou, T. C. Kofane, On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota's method and Hodnett–Moloney approach, J. Phys. Soc. Jpn., 76 (2007), 024004. https://doi.org/10.1143/JPSJ.76.024004 doi: 10.1143/JPSJ.76.024004
    [37] T. Schäfer, C. E. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196 (2004), 90–105. https://doi.org/10.1016/j.physd.2004.04.007 doi: 10.1016/j.physd.2004.04.007
    [38] W. Blanc, B. Dussardier, Formation and applications of nanoparticles in silica optical fibers, J. Opt., 45 (2016), 247–254. https://doi.org/10.1007/s12596-015-0281-6 doi: 10.1007/s12596-015-0281-6
    [39] Y. Shen, N. Whitaker, P. G. Kevrekidis, N. L. Tsitsas, D. J. Frantzeskakis, Ultrashort pulses and short-pulse equations in 2+1 dimensions, Phys. Rev. A, 86 (2012), 023841. https://doi.org/10.1103/PhysRevA.86.023841 doi: 10.1103/PhysRevA.86.023841
    [40] G. Agrawal, Nonlinear fiber optics, 5 Eds, Berlin: Springer, 2013. https://doi.org/10.1016/C2011-0-00045-5
    [41] H. W. A. Riaz, J. Lin, J. Wang, On an extended semi-discrete matrix coupled dispersionless system: Darboux transformation and explicit solutions, Phys. Lett. A, 528 (2024), 130060. https://doi.org/10.1016/j.physleta.2024.130060 doi: 10.1016/j.physleta.2024.130060
    [42] H. W. A. Riaz, Quasi-Wronskian solitons in the non-commutative kuralay-IIA equation: Analysis and simulations, Phys. Scr., 100 (2025), 025239. https://doi.org/10.1088/1402-4896/ada4ee doi: 10.1088/1402-4896/ada4ee
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(678) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog