### AIMS Mathematics

2021, Issue 1: 737-753. doi: 10.3934/math.2021045
Research article

# Two-exponential estimators for estimating population mean

• Received: 29 July 2020 Accepted: 27 October 2020 Published: 30 October 2020
• MSC : 26A33, 42A38

• We introduce two-exponential shrinkage estimator using two stage two phase sampling for estimating population mean of study variable. Some properties of the proposed two-exponential shrinkage estimator are presented. The mathematical comparison in terms of the mean square error is done in order to demonstrate some conditions for which the proposed shrinkage estimators is more efficient than the already existing estimators in literature. A real life application is provided to show the performance of the proposed shrinkage estimator.

Citation: Riffat Jabeen, Aamir Sanaullah, Muhammad Hanif, Azam Zaka. Two-exponential estimators for estimating population mean[J]. AIMS Mathematics, 2021, 6(1): 737-753. doi: 10.3934/math.2021045

### Related Papers:

• We introduce two-exponential shrinkage estimator using two stage two phase sampling for estimating population mean of study variable. Some properties of the proposed two-exponential shrinkage estimator are presented. The mathematical comparison in terms of the mean square error is done in order to demonstrate some conditions for which the proposed shrinkage estimators is more efficient than the already existing estimators in literature. A real life application is provided to show the performance of the proposed shrinkage estimator.

 [1] P. V. Sukhatme, B. V. Sukhatme, S. Sukhatme, C. Asok, Sampling theory of surveys with applications, U.S.A.: Lowa State University Press, 1984. [2] M. Srivastava, N. Garg, A general class of estimators of a finite population means using multi-auxiliary information under two stage sampling scheme, J. Reliab. Stat. Stud., 2 (2009), 103-118. [3] N. Koyuncu, C. Kadilar, Family of estimators of population mean using two auxiliary variables in stratified random sampling, Commun. Stat. Theor. M., 38 (2009), 2398-2417. doi: 10.1080/03610920802562723 [4] R. Jabeen, A. Sanaullah, M. Hanif, Generalized estimator for estimating population mean under two-stage sampling, Pak. J. Stat., 30 (2014), 465-486. [5] M. Saini, S. Bahl, Estimation of population mean in two stage design using double sampling for stratification and multi-auxiliary information, Int. J. Comput. Appl., 47 (2009), 17-21. [6] H. P. Singh, R. S. Solanki, A. K. Singh, A generalized ratio-cum-product estimator for estimating the finite population mean in survey sampling, Commun. Stat. Theor. M., 45 (2016), 158-172. doi: 10.1080/03610926.2013.827719 [7] J. Shabbir, S. Gupta, Estimation of finite population mean using two auxiliary variables in stratified two-phase sampling, Commun. Stat. Simul. Comput., 46 (2017), 1238-1256. doi: 10.1080/03610918.2014.995817 [8] H. Goldstein, Multilevel statistical models, New York: Halstead Press, 1995. [9] M. Q. Shahbaz, M. Hanif, A general shrinkage estimator in survey sampling, World Appl. Sci. J., 7 (2009), 593-596. [10] U. C. Su, K. Aditiya, H. Chandra, R. Parsad. Two phase sampling with two phases at the second stage of sampling for estimation of a finite population mean under random response mechanism, J. Indian Soc. Agric. Stat., 67 (2013), 305-317. [11] S. K. Thompson, Sampling, New York: John Wiley and Sons, 1992.
###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

2.739 2.4

Article outline

Tables(4)

• On This Site