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Abstract: We introduce two-exponential shrinkage estimator using two stage two phase sampling for
estimating population mean of study variable. Some properties of the proposed two-exponential
shrinkage estimator are presented. The mathematical comparison in terms of the mean square error is
done in order to demonstrate some conditions for which the proposed shrinkage estimators is more
efficient than the already existing estimators in literature. A real life application is provided to show
the performance of the proposed shrinkage estimator.
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1. Introduction

In large scale surveys, it is a usual practice to prefer multi-stage sampling to estimate the
population characteristics over single-stage sampling. The main purpose to use multi-stage sampling
is the clear reduction in the cost of survey operations even if estimates derived from multi-stage
sampling are likely to be less efficient than those of the single-stage sampling. Sukhatme et al. [1]
advised some ratio and regression type estimators in two-stage sampling using single auxiliary
variable when first stage units are of unequal or equal sizes. The suitable use of auxiliary information
in estimation stage results as a considerable reduction in the mean square error of the estimator. By
making use of auxiliary information, Srivastava and Garg [2] proposed separate-type estimator for
the estimation of population mean in two-stage sampling design. Taking inspiration from Srivastava
and Garg [2], Koyuncu and Kadilar [3] and Jabeen et al. [4] proposed separate type estimator under
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two-stage sampling. In the literature, the use of two-phase sampling under two-stage sampling design
is not well documented. Saini and Bahl [5] proposed estimator under two-stage sampling design
using double sampling for stratification and multi-auxiliary information. A generalized ratio cum
product estimator for population mean in simple random sampling was developed by Singh et al. [6].
Shabbir [7] produces the estimators of population mean under stratified two phase sampling.

In the literature ([8-11]), the use of two phase sampling under two stage sampling design is not
well documented. Also the shrinkage estimators have been discussed several times in literature by
considering the unbiasedness of the estimators but no one has discussed the situation when the
property of unbiasedness is not fulfill that is very common in real life applications. In order to fill
this gap, we are motivated to produce two-exponential estimators under two stage two phase
sampling that is discussed in section 2. Also we will discuss general shrinkage estimator in section 3.
We will compare both estimators mathematically and by using real population data in section 4 and 5.
Finally the conclusion will be discussed in section 6.

Let a population consists of N first stage units, each containing M, second-stage units where

i=1, 2,...,N. Let a first-stage sample of size n (c=N) is selected and subsequently a second-stage
sample of m,,, (= m;) units is selected and information on some auxiliary variables say Xjj() is

taken. Here it is assumed that each first stage unit/cluster is of different size so each cluster is
assigned a weight 7, =& to it. Let a sub-sample (second-phase sample) of m;,, units is selected
M

from m units are observed so as to collect

v (first-phase sample) such that m,

@2 < Mi . Let mi(z)

information regarding study variable y;,, and auxiliary variables x;,,. Let X :%%%MXL

be the mean in the population and X, :l\j-%lx” be the mean of i" first stage unit in the population.
1 - 1 ny : .

Let X, =H;77iii(l) and X, Z?,Z_l“x“(z) respectively are the means of first-phase and

second-phase sample in two-stage sampling where X, and X, be the sample means of first phase

and second phase in ith stage. Let S? =ﬁi(m X, —X,)? be the population variance between

fsu’s and S’ =ﬁi(xij -X,)> be the population variance within first stage units. Similarly these
i +i=l

notations can be defined for other variables. Further we consider that the selection of units at each

stage (or phase) has been made by simple random sampling without replacement.

2. Materials and method

2.1. Proposed generalized estimator

We propose a generalized estimator by considering the exponential relationship as:

t° =y exp| a|1- X0 exp| B| 1- bZe (1)
s (X +(@-1) Kts(l)) (Z +(b-1) ZtS(Z))

AIMS Mathematics Volume 6, Issue 1, 737—753.




739

Where (a,b) are constants to be determined such that the mean square error is minimum, («, ) are

known constants takes the value (0, 1, -1) to produce different ratio-type and product-type
estimators as presented in Table B1 (Appendix B).

2.2. Bias and mean square error of generalized estimator

To derive the bias and mean square error, we proceed as follows:

yts(z) _Yts _e Zs(l) - th —g Zs(z) - Zts —e th(z) t —e zts(l) - Zts —e
Y 0(2) X 1)’ 7 2(2) X (2)1 7 2(1)

ts ts ts ts ts

Further we assume that E(eo(z)): E(el(z))z E(ez(z)): E( 2(1)) (el(l))z 0, and some expectations
under two-stage sampling design are obtained in order to obtain the bias and mean square error as,

2
E(e2)) =Coz0(2)"

2
E(ey2)) = o022y’

2)_c

Eleyp %)= Ca00(2)°

e %)= 000"

E(e Ee )=C

12)°10)
E (e

2(1) 002(1)’ 200(1)

Eo(2)82)) = C110(2) ECu2)®2(2)) = Cr012)
EB(ey(2)%2(2)) = Co11(2)’
Eley Ele(2)%201)) = Co110)

Bleo &)’ =Cr100)

1(2)%21) = Cro1(1)”
Where

1)1 1).2 1 N o 1 1 |2

—Jl=—=s = ! —-—— |82 ., b,
020(2) tZ{[n N) yb+nNi§1']I m M. | ywi

S

_ L)1 1)g2 +i§ 201 1 1s2
C2000) =32 |ln ") S0 NS T | P

1)1 1) 1 8o
Co002) = 2{(,1 stxb*nNEl’?i

1 (1 1] 1 g z Lo
110(1) Yts th n N ><yb yb xb ”Nl I |(1) M xyW| yW| ><WI

1 (1 1 1 N o 1 1
C LY | : =
1102) “V_X {[n N] Payb Syb S0 o 2, [mi v

-
}

Lt ),
™ M Pyawi Sawi Sxwi

1 11 N 5 1
C == [7 —J S. S P
101(2
01(2) ztsxtJn N )Pxeb 2o >xb * nNI 1

PO T | S B P
Pyawi ZWI XWI 200(1) z ’t xb “xb nN;Z 1I m(l) Mi Xwi ~xwi

1 11 1 2| 1 1 1 1 N o1 1
COll(z)ZtsYts{ no ﬂj Pyab zb yb NN Zlfl [ 2 IJ Pyzwi S i yW| 011(1) z Y 1n N) Pyzb Szb Syb+mi§177i [mi(l)_MinyzwiSzwisywi]
2)
Using (2) we can express (1) to derive the bias and mean square error as,
a, @-1) " B, (b—-1) -
=Y, (1+ eo(z))exp e (1+—a el(l)) exXp| — € (1+ - ez(z)j , ?3)

AIMS Mathematics Volume 6, Issue 1, 737—753.



740

-1 -1
If ‘el(l)‘ <1, we expand the series, (1+@em)j and (1+%ez(z)j up to the order n"!, we get,
a

a2

b-1 b—1)?
exp{—ﬁez(z) (1—(—b)e2(2) +uez(2)2 + ﬂ

_ a—1 a-1)?
t® =Y, (1+e0(2))exp{—%e1(l) (1_( . )em)+( ) e1(1)2+---ﬂ
4)

b b?

If the contribution of terms involving powers in 90(2) : 91(1) and 92(2) higher than two is negligible, we

have;
- a a(a-1)? 1a® Yij L(b—1) 14
t¢ =Y, (1+ €2 ){1—5%) e e’ +§¥e21(1) 1—Ee2(2) P R +§Fezz(2) : -
or
a a(a-1) ap o’ B s Bb-1)
B €00 5 G +Tezl(1) *2p S0 e +2—a2e2m) ~p 2@ +2_b292(2)2 + Tezu)z (6)

t€-Y, =Y, :

o
—L ) €y —— € &
b 22 0@ ae1(1) 0(2)

In order to get the bias, we take expectation on (6) and get,

ot a(a-1) s pb-1 p a apf
2_a2 200(1) + -2 CZOO(l) + Z_bz Cooz(z) + b—z C002(2) - E Cou(z) - CllO(l) + g E C101(1) ’ (7)

Bias (t°) =V, { : .

To get the mean square error of the estimator, we take square and retain terms up to first order of e’s
then we take expectation of (6) and we obtain,

2 2
_ a a p ap
MSE( tG ) = Ytzs (Cozo@) + (Ej C200(1) + (éj C002(2) -2 E C110(1) -2 B C011(2) +2 E B C101(1) ]’
(8)

For the following optimal value of the constants a and b, we achieve the minimum Variance

among the class of proposed generalized estimator,

2
A= O‘(Czoo(l)cooz(z) _C101(2) ) and /B(Czoou) C002(2) _C101(2)2) (9)
C110(1)Cooz(2) _C011(1)C101(2) ' B C200(1) C011(1) _Cllo(l)clol(Z) '
We obtain minimum mean square error as,
_ C,,0n2C +C,..n2C —2C,,01Cia1n C
: G)_ w2 110(1) ~002(2) 011(1) ~200(1) 110(1) ~101(2) ~011(1)
min MSE (1°) =Y2| Cozoqz) — G -~ , (10)
200(1) ~002(2) ~ “101(2)
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We observe from (10) that proposed generalized estimator gives us more precise results under
the optimal conditions, as compare to its class of the estimators.

From (7)—(10), we get expressions of the bias, mean square error, optimal values and
minimum mean square error for the exponential-type estimators presented in Table B1 as class of
estimators. Some of the results are discussed as,

i). For =1, /=1, we get a class of exponential-type ratio-cum-ratio estimators given in Table B1

and expressions of the mean square error and bias for these estimators are given as,

i — 1 1 1 1 1 .
MSE (t/™*") =< V¢ C020(2)+_20200(1)+—20002(2)_2—C110(1)—2—0011(2)*'2_(:101(1)) I(eG)=135;,
a b a b ab
and
Bias (") = 1V, | 222 oo + — ooty + e Conney + — Coazy ~ —C ——c i(€G)=135
s | 2 Cao0w 57 Canoy 002(2) + sz 002(2) 1, Cao102) 110(1) 3,5¢,

(11)

Substitution of the different values of a and b yield the mean square error and bias for the estimators
belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values which lead to
minimum mean square error for the class of exponential ratio-cum-ratio estimators is obtained as,

C,n1C —C,oim’ C,n1C —C,oym?
200(1) ~002(2) 101(2) and b= 200(1) ~002(2) 101(2)

C110(1)C002(2) - COll(l)Clol(Z) C200(1)C011(1) - C110(1)C101(2)

ii). For a=-1, f=-1, we get exponential-type product-cum-product estimators given in Table
B1.The mean square error of t are expressed using as,

MSE(t) %) = { 's (Cozo(z) +—Czoo(1) + b_Cooz(z) +2- C110(1) 27 , Couy * 2_bClOl(l)j I(€G)=24, 6}

and

- (a-1 1 b-1 1 1 1 .
Biast! ™) =Y (_Czooa) +—Coo) + —5 Coo22) + =7 Coo2(2) — 7~ Cr01(2) +_C110(1)j , J(€G)=2,4,6
a? 2a® b 2b b a (12)

Substitution of the different values of “a” and “b” yield the Mean Square Error and bias for the
estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values
which lead to minimum mean square error for the class of exponential product-cum-product
estimators is obtained as,

2 2

C -C,,,1 C C —-C,00 1 C
101(2) 200(1) ~002(2) and b= 101(2) 200(1) ~002(2)

a=

C110(1)C002(2) - COll(l)Clol(Z) C200(1)C011(1) - C110(1)C101(2)

iii). For ¢ =-1, =1, we get exponential-type product-cum-ratio estimators given in Table B1.The
mean square error of t© is expressed as,
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i — 1 1 1 1 1 .
MSE (t'*") = {Ytsz (Cozo(z) + gczooa) + Bcooz(z) + chllo(l) - ZBCOH(Z) - 2£C101(1) j i(eG)=7, 9711}

and

i - [a-1 1 b-1 1 1 1 .

Bias (t'™") =Yy | —5~Caoow + =7 Ca000) +~7 Covz(2) + = Coo2(2) - Cron) + = Cuaoq | + 1(€G) =7,9.11
a 2a b 2b b a

(13)

Substitution of the different values of “a” and “b” yield the mean square error and bias for the

estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values

which lead to minimum mean square error for the class of exponential product-cum-ratio estimators

are obtained as,

2
a= C101(2) - C200(1)C002(2) and b= C200(1)C011(1) _C110(1)C1021(2) _

C110(1)C002(2) - C011(1)C101(2) C200(1)Cooz(2) - C101(2)

iv). For a =1, 8 =-1, we get exponential-type ratio-cum-product estimators given in Table Al. The

G .
mean square error of t” is expressed as,

i — 1 1 1 1 11 .
MSE (t/"") =1V Coz02) + =200y + 7 Coo22) 2= Crao +27-Corz) 2~ Crony | j(€G)=8,10,12
a b a b ab
and
. i - (a-1 1 b-1 1 1 1 .
Bias (t!*") = {Yts [—2 Coooqy + gczoo(l) + b_2C002(2) + Wcoozu) + EC101(2) _gClIO(l)J , ieG)= 8,10,12}

(14)

Substitution of the different values of “a” and “b” yield the mean square error and bias for the
estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values
which lead to minimum mean square error for the class of exponential ratio-cum-product estimators,
are obtained as,

2

C,00nC -C C,0.> —C,01,C
200(1) ~002(2) 101(2) and b= 101 200(1) ~002(2)

C110(1)C002(2) - C011(1)C101(2) C200(1)C011(1) - C110(1)C101(2)

It is to mention that minimum mean square error of t' " i i and i in (11)-(14)
will be same but the conditions under which these attain minimum value are not unique.

3. Proposed two-exponential general Shrinkage estimator

In literature, the shrinkage estimators have been discussed several times considering the
property that the estimators are unbiased. In many practical situations the property of unbiasedness is
not met so consequently the existing literature will not be helpful. Such deviations from the said
property have motivated us to consider the shrinkage estimators following the property of biasedness.
Important results are presented in theorem and subsequently proof is provided in Appendix A.

AIMS Mathematics Volume 6, Issue 1, 737—753.
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3.1. Theorem for estimating any population characteristic

For any general estimatort, let t be a general shrinkage estimator for estimating any population

characteristic T (e.g., population mean) which is unknown to us,
t, = At (15)

S

A general form for the bias and mean square error of a general shrinkage estimator up to the first
order of approximation may be given as,

Bias(t, ) =(2—1)T + Bias(t) (16)
and
MSE (t,) =T2(2—1)" + 22MSE (t) + 2T A(1 —1)Bias(t) (17)

And form of the optimal shrinkage estimator in (15) along with minimum bias and minimum mean
square error will be as,

. :(T +MSE(t)+2TBias(t))t

18
) T(T + Bias(t) (18)
Bias (tgpt) - (T2 . l\.:Z.ESEaiT(SiaS(t)) -1 T +Bias(t) (19)
and
min MSE (t, ) =T T(T +Bias() (20)

"T? 4 MSE(t) + 2TBias(t)

Proof: For details see Appendix A.
By using (15), generalized form of a shrinkage class of estimator is,

t° = At

where

B axs(l) bzts(Z)
te = Vi 1= "z (21)
’ exp[a{ (xts+(a—1)xs@)BeXp[ﬁ{ (Zts+(b‘1)7ts<2>)n

For different choices of the values of the constants«, 3,a,b, we get different family of shrinkage

estimators as given in Table B2 (See Appendix).
Following the Theorem, we can directly write the mean square error and bias expressions of t

using (7) and (8) respectively as,

AIMS Mathematics Volume 6, Issue 1, 737—753.
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. - | a(@a-1 ol (b-1) 2 a -
Bias(t;) = 1Y, {g Caoowy * 57 Canoy + £00) Conzzy + £ C £ C Cio [tYs(A-D), 0"

a’ Z_az b2 2p? 002(2) ~ b 101(2) _g
Bias (t°) = A Bias(t®*) +Y, (1 -1), (22)
and
- aY g 2 a p apf 2
MSE (tS ) = ﬂz Ytzs C020(2) + = C200(1) + _j Cooz(z) - Z_Cno(l) - 2_C011(2) + 2__C101(1) +(/1_1) Ytsz
a b a b ab
— | a(@a-1) a? B(-1) B B a
+24 (ﬁ' _1)Yts |:TC200(1) + ﬁ C200(1) + T COOZ(Z) + W 0002(2) - E C101(2) - g C110(1)
or

MSE (18 ) = 2°MSE (1) +(4-1)" ¥,* + 2V, A(A-1)MSE (t°*) (23)
The optimal value of 4, which minimize the expression (23) is obtained as,

(T?+MSE (t°°)+ 2T Bias(t°)) (24)
T (T +Bias(t®™)

Using (23), the optimal estimator for the shrinkage family of estimator (t¢) is written as

o (%2 MSEE ) +2Y, Bias(t®)) a% b2y 25
ts _yts Y_LS(Y_ls_i_Bias(the) &p) a 1_m P ﬂ 1_(2_[5""(13—_1)75(2)) ( )

The expression for minimum value of min MSE(tS ) is obtained as,

Y2 (Vts + Bias(tG‘e))2
[ Y2+ MSE (t°°%) + 2V Bias (t° )

min MSE (t¢) =Y -

. 2 (26)
(l+ Bla_s(ta)j
min MSE (t¢ ) =Y2|1- LI
LWL, B

From (22)—(26), we get expressions of the bias, mean square error, optimal values and minimum
mean square error for the exponential-type estimators presented in Table B2 (See Appendix B) as
class of estimators. Some of the results are discussed as,

i). For =14 =1, we get a class of exponential-type ratio-cum-ratio estimators given in Table B2

(See Appendix) and expressions of the mean square error and bias for these estimators are given as,
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MSE (tJ ") =JY2|1- : : i(€G)=135
MSE(t"e”) Bias(t"e”)
1+ = +2 =
Yts Yts
and _ _ (27)
) _ : j—err
Bias(tge"):{vts {ﬂ[%]ﬂl—b ] j(eG):1,3,5}
ts

Substitution of the different values of a and b produce the mean square error and bias for the
estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values
which lead to minimum mean square error for the class of exponential product-cum-ratio estimators
are obtained as,

2

and b= Czoo(l)cooz(z) - C101(2)2 . (T2 + MSE (the) + 2T Bias (tG—e))
200(1)C011(l) - CllO(l)Clol(Z) T (T + BlaS (tGie)

C200(1)C002(2) - C101(2)

a=

C110(1)C002(2) - COll(l)C101(2)

— 1 1 1 1 11
where MSE (tG ) =Y’ {Cozo@ + ?Cmoa) + Fcooz(z) - Zacllo(l) - 260011(2) + Zgaclol(l) }
. — (a-1 1 b-1 1 1 1
Bias (tG ) = Yts (?Czooa) + g Czooa) + b_2 C002(2) + W Cooz(z) - B C101(2) - 50110(1) j

ii). For ¢ =-1 f=-1, we get exponential-type product-cum-product estimators given in Table B2
(See Appendix B).The mean square error of tsG is expressed using as,

MSE (tJ ) = Y2

and

1-

{1+ Biau;(_tie")}2
YIS

[H

MSE (ti‘e") ,
N

Bias(ti‘e")

v/ 2
Yts

v/ 2
Yts

|

j(€eG)=2,4,6

(28)

Bias (tJ ")

Bias(tgepp)={\7ts (4 +(1-1) ] j(eG)=2,4,6}

ts

Substitution of the different values of a and b yield the mean square error and bias for the estimators
belongs to the class of exponential-type product-cum-product estimators. The optimal values which
lead to minimum mean square error for the class of exponential product-cum-ratio estimators are
obtained as,
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a= C200(1)C002(2) - le(z)2 and b = C200(1)C002(2) - 0101(2)2 A= (T + MSE(t°™) + ZTBiaS(tefe))
C110(1)C002(2) - C011(1)C101(2) C200(1)C011(1) - C110(1)C101(2) T (T + Bias(teie)
1 1 1 1 11
2 |:C020(2) + gczooa) + b_2C002(2) - chllo(l) - 26 C011(2) + 256 C101(1) }

where MSE (t°) =Y,

. — (a-1 1 b-1 1 1 1
Biast®) = Y (?Czooa) + 2_a2C200(1) + b_zcooz(z) + Wcooz(a b Cioie) — gcno(l)J

iii). For a=-1, =1, we get exponential-type product-cum-ratio estimators given in Table B2. The
mean square error of tZ is expressed as,

[1+Bias(_tie”)J2
Yts
{H ee (€] Bias(ti—err)}

and (29)

o _ [ Bias(t)®P
Bias (t{*?) = {Yts (ﬂ#

MSE (t]*®) = Y2 |1- j(eG)=7,9,11

ts

+(A-1) J i(€G)= 7,9,11}

Substitution of the different values of a and b produce the mean square error and bias for the
estimators belongs to the class of exponential-type ratio-cum-product estimators. The optimal values
which lead to minimum mean square error for the class of exponential ratio-cum-product estimators,
are obtained as,

2 G-e H G-e
a= CaooyCooz(2) — C101(2)2 and b = CaooyCooz(2) — C101(2)2 A= (T +MSE(t™) + 2TBias(t ))
Ci100Coo22) ~ Coriy Crouz) CaooCory ~ Crrow Crowz T(T +Bias(t®)

e\ o 1 1 1 1 11
where MSE (tG ) = Yts2 |:C020(2) + ¥C200(1) + b_2C002(2) - Zacno(l) - ZECOM(Z) + zggclol(l) }

a-1 1 b-1 1 1

. P 1
Biast®™) =Y (? Cooomy + 2_8.2C200(1) + b_2C002(2) + 2_b2C002(2) - BC101(2) _gCllo(l)j

iv). For a =1, 8 =-1, we get exponential-type ratio-cum-product estimators given in Table B2. The
mean square error of t is expressed as,

[1+ Bias(_tlerr)\J2
Y'(S
[u MSE (") p Bias(ti‘e"q

YE Y2

ts

MSE (t ") ={Y2 |1 j(eG)=8,10,12

and (30)

Bias (tJ ") ={ﬁs (zwuz—n j j(€G) :8,10,12}

ts
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Substitution of the different values of a and b yield the mean square error and bias for the estimators
belongs to the class of exponential-type product-cum-ratio estimators. The optimal values which lead
to minimum mean square error for the class of exponential product-cum-ratio estimators, are
obtained as,

2 G- - G-
a= CaooConz) _C101(2)2 and b= Caoo Conz) _C101(2)2 A= (T +MSE (t°°) + 2T Bias(t e))

1 - G_e
C110(1)C002(2) - C011(1)C101(2) C200(1)C011(1) - C110(1)C101(2) T(T +Bias(t™ )

— 1 1 1 1 11
where MSE (tG ) = Yt52 ‘:Cozo(z) + gczooa) + b_gcooz(z) - chno(l) - 26(:011(2) + Zggclol(l) }

a-1 1 b-1 1 1 1 )

- G v
Bias (t ) :Yts [? C200(1) +EC200(1) +b_zcooz(2) + Wcooz(a _BC101(2) _gcno(l)

It is to mention that minimum mean square error of tJ=%", tJ=¢" tJ=*" ‘and tJ~*""in (27)—(30) will

be same but the conditions under which these attain minimum value are not unique.
4. Efficiency comparison

In this section, some efficiency conditions have been derived in terms of mean square error and
bias. The efficiency comparison of proposed two-exponential general shrinkage estimator (see
section 3) and two-exponential estimator (see section 2) with unbiased estimator in two-stage
sampling. In order to derive the efficiency conditions, consider the following notations,

2 2
o (24 (24
Ai = C020(2) + (EJ CZOO(].) + (éj C002(2) -2 (E) CllO(l) -2 (gj C011(2) +2 (EJ(%J C101(1)

a(a-1) a? Lb-1) ik Yij a
A = {T Coooy + Py Coooy + BT Conzry + e Conzz) = N Cion — 2 Ciiow

As = C020(2) + C200(1) + Cooz(z) - 2C110(1) - 2C011(2) + 2C101(1)

2 2
C110(1) C002(2) +C011(l) C200(1) - 2C110(1)C101(2)Con(1)
A4 = C020(2) -

2
C200(1)Cooz(2) - C1o1(2)

[ 1 1
AS = 22 —+ 2]«(1 —l) [; CZOO(:L) + ECZOO(].) j:|

Ae = ﬂvz (Cno(l) - g le(!) j + l(l _1) (C200(1) - C110(1) ):|

A7 = )“2 [(gj 0002(2) - 2§C011(2)]+ (ﬂL _1)2 + 2/10L _1) (%Cm(z) +(§j C002(2) _gclol(l) ]]

4.1. When a,b is known and A is unknown

The efficiency conditions may be written as:

MSE (t;) — MSE (Y,,) <0 if
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o PR 0 A 2R G )) | R0 A) -0 A2 G ) | (31)
(1-A) (1-A)
MSE (t€) -~ MSE(t,) <0
- (1-A)2 (=AY -+ A +2)(A)) e (1-A)% (- A) -+ A +24)(A)) (32)
(1-A) o 1-A)

MSE (t°)—MSE (t°) <0

(1-4A)

. (1-A)+, @A) -1+ A+2A)(A))
(1-A)

<4<max{(l’*z)+¢((“z)z“”““‘”“‘”J (33)

MSE (t) — min MSE (t®) <0

min

(1-A) (1-4)

(l_AZ)i\/((l_Az)z_(1+A+2A2)(A4))J<1<max{(l_Az)i\/((l_Az)z_(1+A1+2A2)(A4))J (34)

4.2. Ifaisunknown A,b isknown

MSE (t®) — MSE (V) <0 if

min[Aﬁi\/Aﬁz_ps(A_Cozm))JSlSmaX[Asi\/Asz—As(A—cozom)J (35)
ahs a ah

MSE (t°) — MSE (t,) <0

min[Aei Af—ﬂs(A;—As)]S1Smax[&r\/¥—&m—&)] (36)

akh akh

Substituting different values of («,8,a,b) in above equations, we get different mathematical
comparisons for the estimators given in Table B2 (See Appendix B). Also similar comparison is
obtained if we assume b as unknown and A,a is known.

5. Numerical study

For the demonstration of the performance of proposed two-exponential general shrinkage
estimator, we take real population consists of four clusters with unequal first stage units. The
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description about the populations is given in Table B1 in Appendix B. The mean square error and
percentage relative efficiency values for each of the estimators are given in Table C2.For this
population, correlations within the clusters are positive (see Table C1). It is therefore the population
is applicable only for ratio/ratio-type estimators.

The performance of the proposed two-exponential general shrinkage estimator and
two-exponential estimator under two stage two phase sampling has been expressed in form of their
mean square error and percentage relative efficiency values in Table C2. From Table C2 we see that
the minimum mean square error of two-exponential general shrinkage estimatort® that is equal to

the mean square error oft’. The percentage relative efficiency demonstrate the same result as the
percentage relative efficiency of the proposed two-exponential general shrinkage is high among the
family of proposed two-exponential general shrinkage and t_is the same efficient as t¢.

We also see that the two-exponential general shrinkage estimator (section 3) is better to be used
as compare to two-exponential estimator (section 2). The performance of t. is better thant',
similarly t?performs better thant®. So it is concluded that for this particular population the use of
two-exponential general shrinkage estimator in two stage two phase sampling produce better results.

6. Conclusion

Finally from the above empirical results, it is concluded that the performance of the
two-exponential general shrinkage estimator (section 3) is higher as compare to proposed
two-exponential estimator in two stage two phase sampling. So the two-exponential general
shrinkage estimator (section 3) is acceptable for the real life application in two stage two phase
sampling design.
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Appendix A

Proof of Theorem. Let t be any general estimator of some population parameter T in two stage

sampling for which a general shrinkage estimator t._ is defined as,

t =At, (37)

S

By definition the bias of t. is

or

or

Bias(t,)=2E(t)-T
= AE(t-T)+(A-1)T

= ABias(t)+(A-1)T (38)

By definition the MSE of t, may be defined as,

or

consider t=T(l+e_),with E(e )=0 and E(e *)=

MSE(t,)=E(t, ~T)
=E(1t-T)

Var(t) MSE(t)
TZ - T2 )

—E{A(T(Lre)-T)
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or ~T2E{2? (L+er )’ +1-24(L+er )|
or MSE (t, ) = T2 {12 [1+£2(t)]+1— 2,1}
T

We may also write (B-3) as
MSE (£, ) = A°MSE (1) + (2 -1)* T°

or
MSE (t)

MSE(t;)=2°T?C? +(2-1)°T>  Where ¢z
=

Where C, is a coefficient of variation of an estimator t.

Partially differentiating (40) w.r.t 1and simplifying, we get:
A :m ’
or
2 :%
Now using (41) in (15), (16) and (17) respectively, we may get,

. t
T 1+TMSE(t)

Bia(sS):lJr'l"z—T\/IS(E)l; B(ias t° T(F)/IT%

MSE (t)

MSE . (t. |=———————
min ( ) 1+T*MSE(t)
Alternatively we may also produce the expressions in (44) to (46) as,

Lot
1+C!

Bias (tS ) = %(Bias(tﬁct2 T)
t

— TZCtZ

- 1+C?

MSEmin (ts )

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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Appendix B

Table B1. Some members of the proposed two exponential estimator (t®)

Ratio-cum-Ratio estimator Product -cum-product estimator a b
a=1p4=1 a=-1p=-1
e — Vie(z) EXP )E ~ X exp Z:ls ~Zs 2z _ Ve EXD X ~ )E(s exp Zs» 72::5 2 2
@ Xy + Xsty s T Zis2) @ Xy + Xy Ty +Zs
err o >z57715 2577 ¢ 7( 7)?5 75 725 1 1
£ = Ve exp( ! % ® Jexp[ ' 7 st J ™ = Vo exp( )th . jexp( ‘ (Z)ZS :
— - X 7Y(51 zt577 thl 77(5 Z, a b
o = ex ¢ exp| = oo = ex| & exp| =
~ s p[x +(a- 1)x[s<l)J p[z,er b-1)z, Yoo p[x +(a— 1)x,sm] p[zw
Product -cum-ratio estimator Ratio-cum-product estimator a b
a=-1,=1 a=1p0=-
e — Vt EXF{ %ts - 715(1) Jexp[zts(a B Zts] teem — yts . exp[ X( s(1) )E ]exp[ t5(2) ~ 2 2
Kis + Xs(ay Z+ 7y @ Xsy + Xy Zsp) + Z
X, —X, Zow —Z, Xy 1 1
tQ—Epr _ Vls(z) exp( ts X th(1) Jexp[ Zts(l)z ts J tloferp _ yts(z) exp( X(s(l) Jexp( (5(2
ts ts !S
X, %, Ty -7, R — X, a
e _ Vee) ©X0| ts th(ll exp| — Zs2) 3 2o _ Veo) ©XP| — Xis) 3 exp b
X +(@—1)Xq Z,+(b-1)7,, X +(@—1D)Xy Zo+
- - - G
Table B2. Some members of the generalized shrinkage estimator (t;”).
Ratio-cum-product estimator Product -cum-product estimator A b
a=1p=1 a=-1p=-
£ = 2y, exp )E —Xs ]exp[z‘s ~Zs) 2 = 2y, exp[x‘ — X ]exp Tf(z) -7, A 2
X + Xs s + Zis(2) Xy + Xs@ Zo+ Zs2)
_ X — % Z. -1 Rty — X Zoo — Z, A 1
t&err =/1 e ts _ (1) e ts _ ts(2) t4 epp —ﬂ e ) ts e 15(2L ts
° yls Xp( X(S Xp Zts y Xp X(S Xp Zts
ts erp _ j’yls ex| p[ _th(n ]exp le 715(2) tSGAepp }"yls exp th(l) - 7!5 exp| = 7{5(2) —27 l b
th + (a l)xts (b l) th + (a 1)th(1) Zts + (b _l) Zts(Z)
Product -cum-ratio estimator Ratio-cum-product estimator A b
a:—l,ﬂzl a=1p=-1
t7—epr ﬂy exp| — Yts(l) exp ZS(Z) Z!s ta—erp /Wls(z) exp Y{ - >Ets exp 715(2) - Z:ts i 2
xls + Xs(l) Z + le(Z) Y15(1) + th 715(2) + le
—epr o X _Yls Z _Zs —er i[s _Xs Zy -7 j" 1
£ =AY, exp( - % @ jexp[ B(DZS k j 1 =AY, exp[ < ‘ Jexp[ : (Z)ZE ‘S]
X — X A

t11 epr __ /Wls(z) exp[

_ X =Xy Xp 5(2) ~
X +(@=1)Xq Z,+(b-1)7,

X&s + (a _1)th(1)

Z o —Z,
ts(2)
p[ =

Z +(b-1)7,,
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Appendix C

Table C1. Data Statistics for Population-I.

Population-1 (unequal fsu’s)

Cluster 1 2 3 4
18 14 12 20
M i
9 7 6 10
m;
7 25.77722 22.79286 28.43500 23.0905
i
< 51.06389 46.49700 67.00217 57.11855
i
C 2 0.58025 0.39297 0.34783 0.31545
Yi
C? 0.43322 0.29984 0.41947 0.40689
X
0 0.88373 0.83895 0.82425 0.82113
i1

Table C2. MSEs and PREs of the adapted and suggested class of estimators.

Estimators MSE PRE With new fraction
y 24.44649 100
S

et 11.66857 209.51
(a-err 20.27969 120.5467
(o-err 11.46787 213.1738
(Loerr 11.58499 211.0229

S

3 err 18.92219 129.1974
tS

& err 11.25906 217.1317
tS
tG,opt 11.25906 217.1317

S

T © 2021 the Author(s), licensee AIMS Press. This is an open access
AIMS AIMS Press  article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics

Volume 6, Issue 1, 737—753.



