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estimating population mean of study variable. Some properties of the proposed two-exponential 
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1. Introduction 

In large scale surveys, it is a usual practice to prefer multi-stage sampling to estimate the 

population characteristics over single-stage sampling. The main purpose to use multi-stage sampling 

is the clear reduction in the cost of survey operations even if estimates derived from multi-stage 

sampling are likely to be less efficient than those of the single-stage sampling. Sukhatme et al. [1] 

advised some ratio and regression type estimators in two-stage sampling using single auxiliary 

variable when first stage units are of unequal or equal sizes. The suitable use of auxiliary information 

in estimation stage results as a considerable reduction in the mean square error of the estimator. By 

making use of auxiliary information, Srivastava and Garg [2] proposed separate-type estimator for 

the estimation of population mean in two-stage sampling design. Taking inspiration from Srivastava 

and Garg [2], Koyuncu and Kadilar [3] and Jabeen et al. [4] proposed separate type estimator under 
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two-stage sampling. In the literature, the use of two-phase sampling under two-stage sampling design 

is not well documented. Saini and Bahl [5] proposed estimator under two-stage sampling design 

using double sampling for stratification and multi-auxiliary information. A generalized ratio cum 

product estimator for population mean in simple random sampling was developed by Singh et al. [6]. 

Shabbir [7] produces the estimators of population mean under stratified two phase sampling. 

In the literature ([8–11]), the use of two phase sampling under two stage sampling design is not 

well documented. Also the shrinkage estimators have been discussed several times in literature by 

considering the unbiasedness of the estimators but no one has discussed the situation when the 

property of unbiasedness is not fulfill that is very common in real life applications. In order to fill 

this gap, we are motivated to produce two-exponential estimators under two stage two phase 

sampling that is discussed in section 2. Also we will discuss general shrinkage estimator in section 3. 

We will compare both estimators mathematically and by using real population data in section 4 and 5. 

Finally the conclusion will be discussed in section 6. 

Let a population consists of N first stage units, each containing 
i

M second-stage units where 

i=1, 2,…,N. Let a first-stage sample of size n (N) is selected and subsequently a second-stage 

sample of (1)im (
i

M ) units is selected and information on some auxiliary variables say (1)ijx  is 

taken. Here it is assumed that each first stage unit/cluster is of different size so each cluster is 

assigned a weight i
i

M

M
   to it. Let a sub-sample (second-phase sample) of (2)im units is selected 

from 
(1)im (first-phase sample) such that 

(2)i im M . Let 
(2)im  units are observed so as to collect 

information regarding study variable 
(2)ijy  and auxiliary variables

(2)ijx . Let 
.

1

1 1N

ts i i

i

X M X
N M

   
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1

1 iM

i ij
ji

X x
M 

  be the mean of i
th

 first stage unit in the population. 

Let 
ts(1) (1)

1
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i i

i
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   and 
( 2)

(2) (2)

1(2)

1 im

i ij

ji

x x
m 

  respectively are the means of first-phase and 

second-phase sample in two-stage sampling where 
(1)ix  and 

(2)ix be the sample means of first phase 

and second phase in ith stage. Let 2 2

1

1
( )

1xb

N

i i ts

i

S X X
N




 

  be the population variance between 

fsu’s and 2 2

.

1

1
( )

1xwi

n

ij i

ii

S x X
M 

 

  be the population variance within first stage units. Similarly these 

notations can be defined for other variables. Further we consider that the selection of units at each 

stage (or phase) has been made by simple random sampling without replacement. 

2. Materials and method 

2.1. Proposed generalized estimator 

We propose a generalized estimator by considering the exponential relationship as: 

   
ts(1) (2)

ts(1) (2)

exp 1 exp 1 ,
( 1) ( 1)

tsG

ts

ts

a x b z
t y

X a x Z b z
 
      
        

         
                

(1) 
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Where ( a ,b ) are constants to be determined such that the mean square error is minimum, ( ,  ) are 

known constants takes the value (0, 1, -1) to produce  different ratio-type and product-type 

estimators as presented in Table B1 (Appendix B). 

2.2. Bias and mean square error of generalized estimator 

To derive the bias and mean square error, we proceed as follows: 

(2) (1) (2) (2) (1)

0(2) 1(1) 2(2) 1(2) 2(1), , , ,
ts ts ts ts ts ts ts ts ts ts

ts ts ts ts ts

y Y x X z Z x X z Z
e e e e e

Y X Z X Z

    
      

Further we assume that          0(2) 1(2) 2(2) 2(1) 1(1) 0E e E e E e E e E e     , and some expectations 

under two-stage sampling design are obtained in order to obtain the bias and mean square error as, 

2 2( ) , ( ) ,
0(2) 020(2) 1(2) 200(2)

2 2( ) , ( ) ,
2(2) 002(2) 1(1) 200(1)

2( ) , ( )
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( ) , ( ) ,
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Using (2) we can express (1) to derive the bias and mean square error as, 

 
1 1
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1 exp 1 exp 1 ,
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If 1(1) 1e  , we expand the series,

1

1(1)

( 1)
1

a
e
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
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 
 
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up to the order n
-1

, we get, 

 
2

2
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2

2

2
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G
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e e
b

e





  
   
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

 

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If the contribution of terms involving powers in 0(2)
e , 1(1)e and 2(2)e higher than two is negligible, we 

have; 
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2

2 2 2 2

0(2) 1(1) 1(1) 1(1) 2(2) 2(2) 2(2
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
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In order to get the bias, we take expectation on (6) and get, 

2 2

200(1) 200(1) 002(2) 002(2) 011(2) 110(1) 101(1)2 2 2 2

( 1) ( 1)

2 2
( ) ,G
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a b

a a b
Bias t Y C

b b a
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        
    




 




     (7) 

To get the mean square error of the estimator, we take square and retain terms up to first order of e’s 

then we take expectation of (6) and we obtain, 

  200(1) 002(2) 011

2 2

2
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For the following optimal value of the constants a  and b , we achieve the minimum Variance 

among the class of proposed generalized estimator,
 

 2
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a

C C C C
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
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We obtain minimum mean square error as, 
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We observe from (10) that proposed generalized estimator gives us more precise results under 

the optimal conditions, as compare to its class of the estimators. 

From (7)–(10), we get expressions of  the bias, mean square error, optimal values and 

minimum mean square error for the exponential-type estimators presented in Table B1 as class of 

estimators. Some of the results are discussed as, 

i). For 1, 1   , we get a class of exponential-type ratio-cum-ratio estimators given in Table B1 

and expressions of the mean square error and bias for these estimators are given as, 

002(2)
2
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Substitution of the different values of a and b yield the mean square error and bias for the estimators 

belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values which lead to 

minimum mean square error for the class of exponential ratio-cum-ratio estimators is obtained as,
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ii). For 1, 1     , we get exponential-type product-cum-product estimators given in Table 

B1.The mean square error of Gt are expressed using as,  
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Substitution of the different values of “a” and “b” yield the Mean Square Error and bias for the 

estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values 

which lead to minimum mean square error for the class of exponential product-cum-product 

estimators is obtained as, 
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iii). For 1, 1    , we get exponential-type product-cum-ratio estimators given in Table B1.The 

mean square error of Gt is expressed as, 
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MSE ( ) 2 2 2 , ( ) 7,9,11

and

1 1 1 1 1 1
Bias ( ) ,

2 2

j erp
ts

j erp
ts

t Y C C C C C C j G
a b a b ab

a b
t Y C C C C C j

ba a
C

a b b





  
       

  

  
     

 

 

  ( ) 7,9,11G








  
  

   (13) 

Substitution of the different values of “a” and “b” yield the mean square error and bias for the 

estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values 

which lead to minimum mean square error for the class of exponential product-cum-ratio estimators 

are obtained as, 

2

101(2) 200(1) 002(2) 200(1) 011(1) 110(1) 101(2)

2

110(1) 002(2) 011(1) 101(2) 200(1) 002(2) 101(2)

and .
C C C C C C C

a b
C C C C C C C

 
 

 
 

iv). For 1, 1    , we get exponential-type ratio-cum-product estimators given in Table A1. The 

mean square error of 
Gt is expressed as, 

002(2) 011(2) 101(1)

200(

2
020(2) 200(1) 110(1)

200(1) 002(2) 002(21) 101(2) 110(1))2 2 2 2

1 1 1 1 1 1
MSE ( ) 2 2 2 , ( ) 8,10,12

and

1 1 1 1 1
Bias ( )

2 2

1

j epr
ts

j epr
ts

t Y C C C C C C j G
a b a b a b

a b
t Y C C C C C C

ba a b ab





  
       

 
 

 



  
     

 

, ( ) 8,10,12j G








  
  

   (14) 

Substitution of the different values of “a” and “b” yield the mean square error and bias for the 

estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values 

which lead to minimum mean square error for the class of exponential ratio-cum-product estimators, 

are obtained as, 

2 2

200(1) 002(2) 101(2) 101 200(1) 002(2)

110(1) 002(2) 011(1) 101(2) 200(1) 011(1) 110(1) 101(2)

and .
C C C C C C

a b
C C C C C C C C

 
 

 
 

It is to mention that minimum mean square error of 
j epr

t


, j epr
t
 , j epr

t
 , and j epr

t
 in (11)–(14) 

will be same but the conditions under which these attain minimum value are not unique. 

3. Proposed two-exponential general Shrinkage estimator 

In literature, the shrinkage estimators have been discussed several times considering the 

property that the estimators are unbiased. In many practical situations the property of unbiasedness is 

not met so consequently the existing literature will not be helpful. Such deviations from the said 

property have motivated us to consider the shrinkage estimators following the property of biasedness. 

Important results are presented in theorem and subsequently proof is provided in Appendix A. 
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3.1. Theorem for estimating any population characteristic 

For any general estimator t , let 
s

t be a general shrinkage estimator for estimating any population 

characteristic T (e.g., population mean) which is unknown to us, 

st t
           

(15) 

A general form for the bias and mean square error of a general shrinkage estimator up to the first 

order of approximation may be given as, 

     1sBias t T Bias t               (16) 

and 

     
22 21 2 ( 1) ( )sMSE t T MSE t T Bias t                (17) 

And form of the optimal shrinkage estimator in (15) along with minimum bias and minimum mean 

square error will be as, 

 2 ( ) 2 ( )

( ( )
s

T MSE t TBias t
t t

T T Bias t

 



            (18) 

 
 

 
2 ( ) 2 ( )

1
( ( )

opt

s

T MSE t TBias t
Bias t T Bias t

T T Bias t

  
   
 
 

     (19) 

and 

 
2

2

2

( ( )
min -

( ) 2 ( )
s

T T Bias t
MSE t T

T MSE t TBias t




         

(20) 

Proof: For details see Appendix A. 

By using (15), generalized form of a shrinkage class of estimator is, 

G

s Gt t  

where  

   
(1) (2)

(1) (2)

exp 1 exp 1
( 1) ( 1)

ts ts

G ts

ts ts ts ts

a x b z
t y

X a x Z b z
 
      
        

         
      

   (21) 

For different choices of the values of the constants , , ,a b  , we get different family of shrinkage 

estimators as given in Table B2 (See Appendix). 

Following the Theorem, we can directly write the mean square error and bias expressions of G

st  

using (7) and (8) respectively as, 
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2

200(1) 200(1) 002(2) 002(2)

2

2 101(2) 110(122 2 )

( 1) ( 1)

2
( ) ( 1),

2

G

s ts ts

a b
C C C C CBias t

a b ba a
Y

b
C Y


 

     
        

 

  or 

( ) ( ) ( 1),G G e

s tsBias t Bias t Y             (22) 

and 

   

 

200(1) 002(2) 011(2) 10

2 2
22 2 2

020(2) 110(1)

2

200(1) 200(1) 002(2) 002(2) 101(

1(1)

2

2) 110(1)22 2 2

2 2 2

( 1) ( 1

1

2
2

1
2

)

G

s ts ts

ts

a b
C C C C C

MSE t Y C C C C C C Y

a b b b a

a b a b a b

Y C
a

 

     
 


 

  

    
                

 
       









 

or 

         
22 21 2 1G G e G e

s ts tsMSE t MSE t Y Y MSE t              (23) 

The optimal value of , which minimize the expression (23) is obtained as, 

 2 ( ) 2 ( )

( ( )

G e G e

G e

T MSE t T Bias t

T T Bias t


 



 



       (24) 

Using (23), the optimal estimator for the shrinkage family of estimator ( G

st ) is written as 

 
   

2

(1) (2)

(1) (2)

( ) 2 ( )
exp 1 exp 1

( ( ) ( 1) ( 1)

G e G e

ts ts ts tsG

s ts G e

ts ts ts ts ts ts

Y MSE t Y Bias t a x b z
t y

Y Y Bias t X a x Z b z
 

 



                 
                   

(25) 

The expression for minimum value of min  G

sMSE t is obtained as, 

 
  

   

 

 

   

2
2

2

2

2

2

2

min
2

1

min 1

1 2

G e

ts tsG

s ts G e G e

ts ts

a

tsG

s ts

a a

ts ts

Y Y Bias t
MSE t Y

Y MSE t Y Bias t

Bias t

Y
MSE t Y

MSE t Bias t

Y Y



 

 
  

     

  
  
     
   
   

         (26) 

From (22)–(26), we get expressions of the bias, mean square error, optimal values and minimum 

mean square error for the exponential-type estimators presented in Table B2 (See Appendix B) as 

class of estimators. Some of the results are discussed as, 

i). For 1, 1   , we get a class of exponential-type ratio-cum-ratio estimators given in Table B2 

(See Appendix) and expressions of the mean square error and bias for these estimators are given as, 
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 

   

2

2

2 2

1

MSE ( ) 1 ( ) 1,3,5

1 2

and

Bias ( )
Bias ( ) ( 1) ( )

i err

ts
j err

s ts
i err i err

ts ts

j err
j err

s ts

ts

Bias t

Y

t Y j G
MSE t Bias t

Y Y

t
t Y j G

Y
 





 




   
           

     
   
    
   
     

  
     

  
  

1,3,5
 
 

 
  

    (27) 

Substitution of the different values of a and b produce the mean square error and bias for the 

estimators belongs to the class of exponential-type ratio-cum-ratio estimators. The optimal values 

which lead to minimum mean square error for the class of exponential product-cum-ratio estimators 

are obtained as, 

 

 

22 2

200(1) 002(2) 101(2) 200(1) 002(2) 101(2)

110(1) 002(2) 011(1) 101(2) 200(1) 011(1) 110(1) 101(2)

2

02 200(10(2 ) 002() 2 2 2)

( ) 2 ( )
, ,

( ( )

1 1
2

G e G e

G e

G

ts

T MSE t T Bias tC C C C C C
a and b

C C C C C C C C T T Bias t

where MSE t Y C C C
a b



 



  
  

  

    110(1)
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011(2) 101(1)

200(1) 101(2)002(2) 002(2)2 2 2 2 110(1)

1 1 1 1
2 2 .

1 1 1 1 1
Bias(

2

1
)

2

G

ts

C C C
a b a b

a b
t Y C C

a
C C C C

a a b b b
 

 
  

 

  
    

 

 

ii). For 1, 1     , we get exponential-type product-cum-product estimators given in Table B2 

(See Appendix B).The mean square error of G

st is expressed using as, 

 

   

2

2

2 2

1

MSE ( ) 1 ( ) 2,4,6

1 2

and

Bias ( )
Bias ( ) ( 1) ( ) 2,4,6

i err

ts
j epp

s ts
i err i err

ts ts

j epp
j epp s

s ts

ts

Bias t

Y

t Y j G
MSE t Bias t

Y Y

t
t Y j G

Y
 





 




   
           

     
   
    
   
     

  
     

 
 

 
 
  

               (28) 

Substitution of the different values of a and b yield the mean square error and bias for the estimators 

belongs to the class of exponential-type product-cum-product estimators. The optimal values which 

lead to minimum mean square error for the class of exponential product-cum-ratio estimators are 

obtained as, 
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 

 
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2

02 200(10(2 ) 002() 2 2 2)
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, ,
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C C C C C C C C T T Bias t
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a b



 
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  
  

  

    110(1)

200(1)

011(2) 101(1)

200(1) 101(2) 110(1)002(2) 002(2)2 2 2 2

1 1 1 1
2 2 .

1 1 1 1 1
Bias )

2 2

1G

ts

C C C
a b a b

a b
t Y C C C C C C

a a b b b a

 
  

 

  
   


 



 

iii). For 1, 1    , we get exponential-type product-cum-ratio estimators given in Table B2. The 

mean square error of G

st is expressed as, 

 

   

2

2

2 2

1

MSE ( ) 1 ( ) 7,9,11

1 2

and

Bias ( )
Bias ( ) ( 1) ( ) 7,9,1

i err
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s ts
i err i err

ts ts
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Y Y

t
t Y j G

Y
 





 




   
           

     
   
    
   
     

 
     

 
 

1
  
 
  

    (29) 

Substitution of the different values of a and b produce the mean square error and bias for the 

estimators belongs to the class of exponential-type ratio-cum-product estimators. The optimal values 

which lead to minimum mean square error for the class of exponential ratio-cum-product estimators, 

are obtained as, 

 

 
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0 200(1) 002(2)20(2) 2 2

( ) 2 ( )
, ,
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iv). For 1, 1    , we get exponential-type ratio-cum-product estimators given in Table B2. The 

mean square error of 
G

st is expressed as, 
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 
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 
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     (30) 
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Substitution of the different values of a and b yield the mean square error and bias for the estimators 

belongs to the class of exponential-type product-cum-ratio estimators. The optimal values which lead 

to minimum mean square error for the class of exponential product-cum-ratio estimators, are 

obtained as, 
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2 2 .

1 1 1 1 1
Bias (

2

1
)

2

G

ts

C C C
a b a b

a b
t Y C C

a
C C C C

a a b b b
 

 
  

 

  
    

 

 

It is to mention that minimum mean square error of j epr
st
 , j epr

st
 , j epr

st
 , and j epr

st
 in (27)–(30) will 

be same but the conditions under which these attain minimum value are not unique. 

4. Efficiency comparison 

In this section, some efficiency conditions have been derived in terms of mean square error and 

bias. The efficiency comparison of proposed two-exponential general shrinkage estimator (see 

section 3) and two-exponential estimator (see section 2) with unbiased estimator in two-stage 

sampling. In order to derive the efficiency conditions, consider the following notations, 
2 2

1 020(2) 200(1) 002(2) 110(1) 011(2) 101(1)2 2 2A C C C C C C
a b a b a b

               
               

            

2

2 200(1) 200(1) 002

2

2 2 (2) 002(2) 101(2) 110(1)2 2

(

2

1) ( 1)

2

a b
C C C C C

b aa b b
A C

a

     
      








 

3 020(2) 200(1) 002(2) 110(1) 011(2) 101(1)2 2 2A C C C C C C     
 

2 2

110(1) 002(2) 011(1) 200(1) 110(1) 101(2) 011(1)

4 020(2) 2

200(1) 002(2) 101(2)

2C C C C C C C
A C

C C C

  
      

2

5 200(1) 200(1)

1 1
2 ( 1)

2
A C C  



  
     

    

 2

6 110(1) 101(!) 200(1) 110(1)( 1)A C C C C
b


  
  

      
    

2 2

2 2

7 002(2) 011(2) 002(2) 002(2) 101(1)2

( 1)
2 ( 1) 2 ( 1)

b
A C C C C C

b b b bb

    
   
       

                           

4.1. When ,a b is known and  is unknown 

The efficiency conditions may be written as: 

i. ( ) ( ) 0G

s tsMSE t MSE y         if 
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       
 

       
 

2 2

2 2 1 2 020(2) 2 2 1 2 020(2)

2 2

1 1 1 2 1 1 1 2
min max ,

1 1

A A A A C A A A A C

A A


   
              

    
    

   

  (31)  

ii. ( ) ( ) 0G

s rMSE t MSE t   

       
 

       
 

2 2

2 2 1 2 3 2 2 1 2 3

2 2

1 1 1 2 1 1 1 2
min max

1 1

A A A A A A A A A A

A A


   
              

    
    

   

  (32) 

iii. ( ) ( ) 0G G

sMSE t MSE t   

       
 

       
 

2 2

2 2 1 2 1 2 2 1 2 1

2 2

1 1 1 2 1 1 1 2
min max

1 1

A A A A A A A A A A

A A


   
              

    
    

   

 (33) 

iv. ( ) min ( ) 0G G

sMSE t MSE t   

       
 

       
 

2 2

2 2 1 2 4 2 2 1 2 4

2 2

1 1 1 2 1 1 1 2
min max

1 1

A A A A A A A A A A

A A


   
              

    
    

   

    (34) 

4.2. If a is unknown ,b  is known 

i. ( ) ( ) 0G

s tsMSE t MSE y         if 

   2 2

6 6 5 7 020(2) 6 6 5 7 020(2)

5 5

1
min max

A A A A C A A A A C

A a A 

        
    
      
   

     (35)  

ii. 
( ) ( ) 0G

s rMSE t MSE t 
 

   2 2

6 6 5 7 3 6 6 5 7 3

5 5

1
min max

A A A A A A A A A A

A a A 

        
    
   
   

      (36) 

Substituting different values of ( , , ,a b  ) in above equations, we get different mathematical 

comparisons for the estimators given in Table B2 (See Appendix B). Also similar comparison is 

obtained if we assume b  as unknown and ,a  is known. 

5. Numerical study 

For the demonstration of the performance of proposed two-exponential general shrinkage 

estimator, we take real population consists of four clusters with unequal first stage units. The 
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description about the populations is given in Table B1 in Appendix B. The mean square error and 

percentage relative efficiency values for each of the estimators are given in Table C2.For this 

population, correlations within the clusters are positive (see Table C1). It is therefore the population 

is applicable only for ratio/ratio-type estimators. 

The performance of the proposed two-exponential general shrinkage estimator and 

two-exponential estimator under two stage two phase sampling has been expressed in form of their 

mean square error and percentage relative efficiency values in Table C2. From Table C2 we see that 

the minimum mean square error of two-exponential general shrinkage estimator G

st  that is equal to 

the mean square error of 5

st . The percentage relative efficiency demonstrate the same result as the 

percentage relative efficiency of the proposed two-exponential general shrinkage is high among the 

family of proposed two-exponential general shrinkage  and 5

st is the same efficient as G

st . 

We also see that the two-exponential general shrinkage estimator (section 3) is better to be used 

as compare to two-exponential estimator (section 2). The performance of 
1

st  is better than
1t , 

similarly 
3

st performs better than
3t . So it is concluded that for this particular population the use of 

two-exponential general shrinkage estimator in two stage two phase sampling produce better results. 

6. Conclusion 

Finally from the above empirical results, it is concluded that the performance of the 

two-exponential general shrinkage estimator (section 3) is higher as compare to proposed 

two-exponential estimator in two stage two phase sampling. So the two-exponential general 

shrinkage estimator (section 3) is acceptable for the real life application in two stage two phase 

sampling design. 
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Appendix A 

Proof of Theorem. Let t  be any general estimator of some population parameter T in two stage 

sampling for which a general shrinkage estimator 
s

t  is defined as, 

            st t ,                (37) 

By definition the bias of 
s

t  is 

 sBias t =  E t T   

or         =    1E t T T     

or      =    1Bias t T                        (38) 

By definition the MSE of st  may be defined as, 

   
2

s sMSE t E t T   

or            =  
2

E t T   

consider (1 )
T

t T e  , with ( ) 0
T

E e   and 
 2

2 2

( )
( )

T

MSE tVar t
E e

T T
  . 

   
2

T 1 TE e T    
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or             22 2T 1 1 2 1T TE e e       

or       
 2 2

2
T 1 1 2

T
s

MSE t
MSE t  

   
     

   

                   (39) 

 We may also write (B-3) as 

     
22 21 TsMSE t MSE t   

 

or 

   
22 2 2 2T 1 Ts tMSE t C       Where   2

2t

MSE t
C

T
               (40) 

Where tC is a coefficient of variation of an estimator t. 

Partially differentiating (40) w.r.t  and simplifying, we get: 

 2

1

1 T MSE t






,          (41) 

or 

2

1

1 tC
 


,             (42) 

Now using (41) in (15), (16) and (17) respectively, we may get, 

 21
s

t
t

T MSE t



             (43) 

   
 

   2

2

1
T

1
sB i a s t B i a s t T M S E t

T M S E t




   

          (44) 

 
 

 
min 21

s

MSE t
MSE t

T MSE t



            (45) 

Alternatively we may also produce the expressions in (44) to (46) as, 

21
s

t

t
t

C



                    (46) 

    2

2

1
T

1
s t

t

Bias t Bias t C
C

 


             (47) 

                       
2 2

min 21

t
s

t

T C
MSE t

C



              (48) 
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Appendix B 

Table B1. Some members of the proposed two exponential estimator (
Gt ). 

Table B2. Some members of the generalized shrinkage estimator (
G

st ).
 

 

Ratio-cum-Ratio estimator 

1, 1    

Product -cum-product estimator 

1, 1      

a  b  

(1) (2)1

(2)

(1) (2)

exp exp
ts ts ts tserr

ts

ts ts ts ts

X x Z z
t y

X x Z z


    

    
       

 (1) (2)2

(2)

(1) (2)

exp exp
ts ts ts tsepp

ts

ts ts ts ts

x X z Z
t y

x X z Z


    

    
       

 
2 2 

(1) (2)3

(2) exp exp
ts ts ts tserr

ts

ts ts

X x Z z
t y

X Z


     

       
   

 (1) (2)4

(2) exp exp
ts ts ts tsepp

ts

ts ts

x X z Z
t y

X Z


     

       
   

 
1 1 

 
(1) (2)5

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tserr

ts

ts ts ts ts

X x Z z
t y

X a x Z b z


    

    
         

 
 

(1) (2)6

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tsepp

ts

ts ts ts ts

x X z Z
t y

X a x Z b z


    

    
         

 
a  b  

Product -cum-ratio estimator 

1, 1     

Ratio-cum-product estimator 

1, 1     

a  b  

(1) (2)7

(1) (2)

exp exp
ts ts ts tsepr

ts

ts ts ts ts

X x z Z
t y

X x Z z


    

    
       

 (1) (2)8

(2)

(1) (2)

exp exp
ts ts ts tserp

ts

ts ts ts ts

x X z Z
t y

x X z Z


    

    
       

 
2 2 

(1) (1)9

(2) exp exp
ts ts ts tsepr

ts

ts ts

X x z Z
t y

X Z


     

       
   

 (1) (2)10

(2) exp exp
ts ts ts tserp

ts

ts ts

x X z Z
t y

X Z


     

       
   

 
1 1 

 
(1) (2)11

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tsepr

ts

ts ts ts ts

X x z Z
t y

X a x Z b z


    

    
         

 
 

(1) (2)12

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tserp

ts

ts ts ts ts

x X z Z
t y

X a x Z b z


    

    
         

 
a  b  

Ratio-cum-product estimator 

1, 1    

Product -cum-product estimator 

1, 1      

a    b  

(1) (2)1

(1) (2)

exp exp
ts ts ts tserr

s ts

ts ts ts ts

X x Z z
t y

X x Z z


    
    

       

 (1) (2)2

(1) (2)

exp exp
ts ts ts tsepp

s ts

ts ts ts ts

x X z Z
t y

X x Z z


    
    

       

 
2   2 

(1) (2)3 exp exp
ts ts ts tserr

s ts

ts ts

X x Z z
t y

X Z


     
       

   
 (1) (2)4 exp exp

ts ts ts tsepp

s ts

ts ts

x X z Z
t y

X Z


     
       

   
 

1   1 

 
(1) (2)5

(2)

exp exp
( 1) 1

ts ts ts tserp

s ts

ts ts ts ts

X x Z z
t y

X a x Z b z


    
            

 
 

(1) (2)6

(1) (2)

exp exp
( 1) 1

ts ts ts tsepp

s ts

ts ts ts ts

x X z Z
t y

X a x Z b z


    
    

         

 

a    b  

Product -cum-ratio estimator 

1, 1     

Ratio-cum-product estimator 

1, 1     

a    b  

(1) (2)7

(1) (2)

exp exp
ts ts ts tsepr

s ts

ts ts ts ts

X x z Z
t y

X x Z z


    
    

       

 (1) (2)8

(2)

(1) (2)

exp exp
ts ts ts tserp

s ts

ts ts ts ts

x X z Z
t y

x X z Z


    
    

       

 
2   2 

(1) (1)9

(2) exp exp
ts ts ts tsepr

s ts

ts ts

X x z Z
t y

X Z


     
       

   
 (1) (2)10

(2) exp exp
ts ts ts tserp

s ts

ts ts

x X z Z
t y

X Z


     
       

   
 

1   1 

 
(1) (2)11

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tsepr

s ts

ts ts ts ts

X x z Z
t y

X a x Z b z


    
    

         

 

 
(1) (2)12

(2)

(1) (2)

exp exp
( 1) 1

ts ts ts tserp

s ts

ts ts ts ts

x X z Z
t y

X a x Z b z


    
    

         

 

a    b  



753 

AIMS Mathematics  Volume 6, Issue 1, 737–753. 

Appendix C 

Table C1. Data Statistics for Population-I. 

 Population-I (unequal fsu’s) 

Cluster 1 2 3 4 

iM  
18 14 12 20 

im  
9 7 6 10 

iY  
25.77722 22.79286 28.43500 23.0905 

iX  
51.06389 46.49700 67.00217 57.11855 

2

iyC  
0.58025 0.39297 0.34783 0.31545 

2

ixC  
0.43322 0.29984 0.41947 0.40689 

1i  
0.88373 0.83895 0.82425 0.82113 

Table C2. MSEs and PREs of the adapted and suggested class of estimators. 

Estimators MSE

 

PRE With new fraction

 

 

24.44649 100 

1 errt 
 

11.66857 209.51 

3 errt 
 

20.27969 120.5467 

5 errt 
 

11.46787 213.1738 

1 err

st


 
11.58499 211.0229 

3 err

st


 
18.92219 129.1974 

5 err

st


 
11.25906 217.1317 

G opt

st


 
11.25906 217.1317 
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