Research article

Developing and evaluating efficient estimators for finite population mean in two-phase sampling

  • Received: 05 March 2025 Revised: 05 April 2025 Accepted: 09 April 2025 Published: 18 April 2025
  • MSC : 62DXX

  • The estimator development process is more efficient when additional information is used. However, occasionally, it is necessary to use information regarding unknown population parameters. In these cases, we chose two-phase sampling by substituting the population mean of the supplemental variable with the sample mean from first-phase sampling. The goal of this project was to develop effective estimators of the finite population mean in a two-phase sampling scenario with a single auxiliary variable. Under certain conditions, the recommended estimators outperform the current estimators, producing biased and Mean Square Error (MSE) expressions. Empirical and theoretical comparisons of the proposed families were conducted using real and simulated data. We found that the proposed families were more effective in the two-phase sampling situation than in all-population mean estimators.

    Citation: Khazan Sher, Muhammad Ameeq, Sidra Naz, Basem A. Alkhaleel, Muhammad Muneeb Hassan, Olayan Albalawi. Developing and evaluating efficient estimators for finite population mean in two-phase sampling[J]. AIMS Mathematics, 2025, 10(4): 8907-8925. doi: 10.3934/math.2025408

    Related Papers:

  • The estimator development process is more efficient when additional information is used. However, occasionally, it is necessary to use information regarding unknown population parameters. In these cases, we chose two-phase sampling by substituting the population mean of the supplemental variable with the sample mean from first-phase sampling. The goal of this project was to develop effective estimators of the finite population mean in a two-phase sampling scenario with a single auxiliary variable. Under certain conditions, the recommended estimators outperform the current estimators, producing biased and Mean Square Error (MSE) expressions. Empirical and theoretical comparisons of the proposed families were conducted using real and simulated data. We found that the proposed families were more effective in the two-phase sampling situation than in all-population mean estimators.



    加载中


    [1] H. P. Singh, G. K. Vishwakarma, Modified exponential ratio and product estimators for finite population mean in double sampling, Aust. J. Stat., 36 (2007), 217–225. https://doi.org/10.17713/ajs.v36i3.333 doi: 10.17713/ajs.v36i3.333
    [2] L. K. Grover, P. Kaur, G. K. Vishawkarma, Product type exponential estimators of population mean under linear transformation of auxiliary variable in simple random sampling, Appl. Math. Comput., 219 (2012), 1937–1946. https://doi.org/10.1016/j.amc.2012.08.036 doi: 10.1016/j.amc.2012.08.036
    [3] M. Noor-ul-Amin, M. Hanif, Some exponential estimators in survey sampling, Pak. J. Stat., 28 (2012).
    [4] K. Sher, M. Ameeq, M. M. Hassan, O. Albalawi, A. Afzal, Development of improved estimators of finite population mean in simple random sampling with dual auxiliaries and its application to real world problems, Heliyon, 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e30991 doi: 10.1016/j.heliyon.2024.e30991
    [5] S. Muneer, J. Shabbir, A. Khalil, Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables, Commun. Stat.-Theor. M., 46 (2017), 2181–2192. https://doi.org/10.1080/03610926.2015.1035394 doi: 10.1080/03610926.2015.1035394
    [6] S. Choudhury, B. K. Singh, A class of product-cum-dual to product estimators of the population mean in survey sampling using auxiliary information, Asian J. Math. Stat., 6 (2012). https://doi.org/10.3923/ajms.2012 doi: 10.3923/ajms.2012
    [7] A. K. Sabat, R. K. Sahoo, L. N. Sahoo, Composite ratio estimators in a two-phase sampling using multiple additional supplementary variables, Far East J. Appl. Math., 117 (2024), 49–66. https://doi.org/10.17654/0972096024003 doi: 10.17654/0972096024003
    [8] C. Di Gravio, J. S. Schildcrout, R. Tao, Efficient designs and analysis of two-phase studies with longitudinal binary data, Biometrics, 80 (2024). https://doi.org/10.1093/biomtc/ujad010 doi: 10.1093/biomtc/ujad010
    [9] T. Zaman, C. Kadilar, New class of exponential estimators for finite population mean in two-phase sampling, Commun. Stat.-Theor. M., 50 (2021), 874–889. https://doi.org/10.1080/03610926.2019.1643480 doi: 10.1080/03610926.2019.1643480
    [10] Y. Tato, B. K. Singh, Exponential chain dual to ratio cum dual to product estimator for finite population mean in double sampling scheme, Appl. Appl. Math., 12 (2017), 4.
    [11] P. Misra, Regression type double sampling estimator of population mean using auxiliary information, J. Reliab. Stat. Stud., 2018, 21–28.
    [12] M. Kumar, S. Bahl, Class of dual to ratio estimators for double sampling, Stat. Pap., 47 (2006), 319. https://doi.org/10.1007/s00362-005-0291-6 doi: 10.1007/s00362-005-0291-6
    [13] S. K. Yadav, S. Gupta, S. S. Mishra, A. K. Shukla, Modified ratio and product estimators for estimating population mean in two-phase sampling, Am. J. Oper. Res., 6 (2016), 61–68. https://doi.org/10.5923/j.ajor.20160603.02 doi: 10.5923/j.ajor.20160603.02
    [14] N. Ozgul, H. Cingi, A new class of exponential regression cum ratio estimator in two phase sampling, Hacet. J. Math. Stat., 43 (2014), 131–140.
    [15] J. Shabbir, S. Gupta, R. Onyango, On using the conventional and nonconventional measures of the auxiliary variable for mean estimation, Math. Probl. Eng., 2021 (2021), 3741620. https://doi.org/10.1155/2021/3741620 doi: 10.1155/2021/3741620
    [16] S. Gupta, J. Shabbir, On improvement in estimating the population mean in simple random sampling, J. Appl. Stat., 35 (2008), 559–566. https://doi.org/10.1080/02664760701835839 doi: 10.1080/02664760701835839
    [17] J. Shabbir, S. Gupta, On estimating finite population mean in simple and stratified random sampling, Commun. Stat.-Theor. M., 40 (2010), 199–212. https://doi.org/10.1080/03610920903411259 doi: 10.1080/03610920903411259
    [18] W. G. Cochran, Sampling techniques, 3Eds., New York: John Wiley & Sons, 1977.
    [19] D. Singh, F. S. Chaudhary, Theory and analysis of sample survey design, New Delhi: New Age International Publishers, 1986.
    [20] R. Singh, N. S. Mangat, Elements of survey sampling, Springer Science & Business Media, 15 (2013).
    [21] A. K. Das, Contributions to the theory of sampling strategies based on auxiliary information, Ph.D. Thesis, Bidhan Chandra Krishi Vishwavidyalaya, 1988.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1004) PDF downloads(55) Cited by(1)

Article outline

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog