Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

The existence of a compact global attractor for a class of competition model

  • Received: 10 July 2020 Accepted: 24 September 2020 Published: 09 October 2020
  • MSC : 35A01, 35B41, 35K57, 92D40

  • This paper is concerned with the existence of a compact global attractor for a class of competition model in n?dimensional (n ≥ 1) domains. Using mathematical induction and more detailed interpolation estimates, especially Gagliardo-Nirenberg inequality, we obtain the existence of a compact global attractor, which implies the uniform boundedness of the global solutions. In particular, we get that the Shigesada-Kawasaki-Teramoto competition model has a compact global attractor for n < 10. The result of the S-K-T model extends the existence results of compact global attractor in [21] from n < 8 to n < 10, and extends the uniform boundedness results of the global solutions in [17] to the non-convex domain.

    Citation: Yanxia Wu. The existence of a compact global attractor for a class of competition model[J]. AIMS Mathematics, 2021, 6(1): 210-222. doi: 10.3934/math.2021014

    Related Papers:

    [1] Kaihong Zhao . Attractor of a nonlinear hybrid reaction–diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags. AIMS Mathematics, 2023, 8(6): 14426-14448. doi: 10.3934/math.2023737
    [2] Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095
    [3] Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202
    [4] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [5] Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi . A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740
    [6] Yongchang Wei, Zongbin Yin . Long-time dynamics of a stochastic multimolecule oscillatory reaction model with Poisson jumps. AIMS Mathematics, 2022, 7(2): 2956-2972. doi: 10.3934/math.2022163
    [7] Tingting Liu, Tasneem Mustafa Hussain Sharfi, Qiaozhen Ma . Time-dependent asymptotic behavior of the solution for evolution equation with linear memory. AIMS Mathematics, 2023, 8(7): 16208-16227. doi: 10.3934/math.2023829
    [8] Jiangwei Zhang, Yongqin Xie . Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping. AIMS Mathematics, 2021, 6(9): 9491-9509. doi: 10.3934/math.2021552
    [9] Xiaoming Peng, Yadong Shang . Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory. AIMS Mathematics, 2021, 6(1): 543-563. doi: 10.3934/math.2021033
    [10] Jie Wu, Zheng Yang . Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model. AIMS Mathematics, 2023, 8(8): 17914-17942. doi: 10.3934/math.2023912
  • This paper is concerned with the existence of a compact global attractor for a class of competition model in n?dimensional (n ≥ 1) domains. Using mathematical induction and more detailed interpolation estimates, especially Gagliardo-Nirenberg inequality, we obtain the existence of a compact global attractor, which implies the uniform boundedness of the global solutions. In particular, we get that the Shigesada-Kawasaki-Teramoto competition model has a compact global attractor for n < 10. The result of the S-K-T model extends the existence results of compact global attractor in [21] from n < 8 to n < 10, and extends the uniform boundedness results of the global solutions in [17] to the non-convex domain.


    In population dynamics, N. Shegesada, K. Kawasaki and E. Teromoto [15] proposed the following quasilinear competition model with cross-diffusion,

    {ut=Δ[(d1+ρ11u+ρ12v)u]+u(a1b1uc1v),xΩ,t>0,vt=Δ[(d2+ρ21u+ρ22v)v]+v(a2b2uc2v),xΩ,t>0,uν=vν=0,xΩ,t>0,u(x,0)=u0(x)0,v(x,0)=v0(x)0,xΩ, (1.1)

    where the functions u,v are the population densities of the two competing species and the initial values u0,v0 are nonnegative functions, which are not identically zero. Ω is a bounded smooth region in Rn with ν as its unit outward normal vector to Ω. The constants aj,bj,cj, dj(j=1,2) are all positive, and the constants ρij(i,j=1,2) are nonnegative, where d1 and d2 are the random diffusion rates, ρ11, ρ22 are the self-diffusion rates which represent intraspecific population pressures, and ρ12, ρ21 are the so-called cross-diffusion rates which represent the interspecific population pressures.

    When ρij=0(i,j=1,2), (1.1) is reduces to the well-known Lotka-Volterra competition-diffusion system, which has been researched intensively. When ρ12 or ρ21 is positive, (1.1) is a strongly coupled parabolic system, which has received much attention, since it occurs frequently in biological and chemical models. H. Amann considered a general class of strongly coupled parabolic systems and established the local existence (in time) and uniqueness results in a series of papers [1,2,3]. Roughly speaking, H. Amann showed that if u0,v0 in W1,p(Ω) with p>n, then (1.1) has a unique solution u,v defined in (0,t0) with t0>0 small.

    The global existence of nonnegative solutions to (1.1) is considered under some restrictive hypotheses on the smallness of cross-diffusion pressures or on the space dimension. For the case ρ12>0,ρ21>0, if ρ11=ρ22=0, J. Kim [8] proved the global existence of classical solutions by energy method when n=1 and d1=d2. Later, S. Shim [16] improved J. Kim's results and obtained the uniform boundedness of the global solutions in time by interpolated estimates. P. Deuring [6] proved the global existence of classical solutions when n1 and ρ12,ρ21 are small enough depending on the C2,α norm of initial values u0,v0. If the self-diffusion rates ρ11 and ρ22 are not zero, A. Yagi [22] proved the global existence of solutions when n=2 and 0<ρ12<8ρ11,0<ρ21<8ρ22, he also proved the same results for ρ22=ρ21=0 and ρ11>0. In addition, Y. Li and C. Zhao [13] obtained the global existence of classical solutions when n1,d1=d2 and ρ12ρ22+ρ21ρ11=2.

    For the case of ρ21=0, (1.1) becomes the following system

    {ut=Δ[(d1+ρ11u+ρ12v)u]+u(a1b1uc1v),xΩ,t>0,vt=Δ[(d2+ρ22v)v]+v(a2b2uc2v),xΩ,t>0,uν=vν=0,xΩ,t>0,u(x,0)=u0(x)0,v(x,0)=v0(x)0,xΩ. (1.2)

    Y. Lou, W. Ni and Y. Wu [14] established a global existence of classical solutions to (1.2) for n2 and ρ11 is merely assumed nonnegative but ρ12 and ρ22 are allowed to be positive, which is the only available result for smooth solutions with ρ11=0. When ρ11 is positive, Y. Choi, R. Lui and Y. Yamada [4,5] obtained some results on the global existence of the solutions to (1.2) with the restrictions n<6 and ρ22>0. P. Tuoc [20] showed the global existence of solutions for n<10. The global existence of solutions for arbitrary n under some restrictions on coefficients are investigated (see [7,9,11,19]). For the uniform boundedness of the global solutions, D. Le, L. Nguyen and T. Nguyen [12] using the semi-group techniques obtained the global attractor for n<6, which implies the uniform boundedness of the global solutions. Q. Xu and Y. Zhao [21] obtained the global attractor for n<8. And Y. Tao and M. Winkler [17] showed the boundedness of the solutions for n<10 when ΩRn is a bounded convex domain with smooth boundary.

    In this paper, we considered the following more general strongly coupled parabolic system

    {ut=(P(u,v)u+Q(u,v)v)+uf(u,v),xΩ,t>0,vt=(R(v)v)+vg(u,v),xΩ,t>0,uν=vν=0,xΩ,t>0,u(x,0)=u0(x)0,v(x,0)=v0(x)0,xΩ. (1.3)

    Due to the absence of the cross-diffusion term in the vequation, the diffusion matrix of (1.3) is triangular. H. Amann [3] showed that if one can obtain uL,vL, then the solution of (1.3) exists globally in time. D. Le [10] proved that if uLn,vL, then the system (1.3) has a global attractor with finite Hausdorff dimension, which attracts all the solutions of (1.3). D. Le, L. Nguyen and T. Nguyen [12] improved the results of that in [10]. In order to state their results, we first introduce the following definition.

    Definition 1.1. (see [10], Definition 2.1) Assume that there exists a solution (u,v) of system (1.3) defined on a subinterval I of R+. Let P be the set of function ω on I such that there exists a positive constant C0, which may generally depend on the parameters of the system and the W1,p0 norm of the initial value (u0,v0), such that

    ω(t)C0,tI.

    Furthermore, if I=(0,), then there exists a positive constant C that depends only on the parameters of the system, but does not depend on the initial value of (u0,v0), such that

    limtsupω(t)C.

    If ωP and I=(0,), one says ω is ultimately uniformly bounded.

    In [12], D. Le, L. Nguyen and T. Nguyen suppose that

    (H1) There exist a continuous function Φ and positive constant d such that the differentiable functions P,Q,R satisfying

    P(u,v)d(1+u)>0,|Q(u,v)|Φ(v)u,R(v)d>0,u,v0.

    (H2) There exists a nonnegative continuous function C(v) such that

    |f(u,v)|C(v)(1+u),g(u,v)upC(v)(1+up+1),u,v0,p>0.

    Under the above hypotheses (H1) and (H2), the authors proved the following results.

    Lemma 1.2. (see [12], Theorem 2.4) Assume (H1) and (H2) hold. Let (u,v) be a nonnegative solution to (1.3) with its maximal existence interval I. If (as a function in t ) is in \mathcal{P} for some q, r satisfying

    \begin{equation} \begin{array}{c} \frac{1}{r}+\frac{n}{2 q} = 1-\chi, \quad q \in[\frac{n}{2(1-\chi)}, \infty], \quad r \in[\frac{1}{1-\chi}, \infty] \;\;\mathit{\text{with some}}\;\chi \in(0, 1), \end{array} \end{equation} (1.4)

    then there exists an absorbing ball where all solutions will enter eventually. Thus, if the system {\rm(1.3)} is autonomous then there is a compact global attractor with finite Hausdorff dimension in \mathscr{B} , which attracts all solutions, with

    \mathscr{B} = \left\{(u, v) \in W^{1, p_{0}}(\Omega) \times W^{1, p_{0}}(\Omega):\right. \\ u(x) \geqslant 0, v(x) \geqslant 0, \forall x \in \Omega\}.

    In this paper, we impose some conditions on the functions P, \, Q, \, R, \, f, \, g in system (1.3) as follows.

    (A1) The functions P, \, Q, \, R are differentiable in there variables, and there exist constants \beta > 0, \; b > 0 and continuous function \phi(v)\geqslant 0 for v\geqslant 0 , such that

    \begin{equation} \begin{array}{l} P(u, v) \geqslant d u^{\beta}, \;\; |Q(u, v)| \leqslant \phi(v) u, \;\; R(v) \geqslant d, \;\; R^{\prime}(v) \geqslant 0. \end{array} \end{equation} (1.5)

    (A2) For the reaction terms (f, \, g) , we assume that there exist positive constants a, \, b, \, c, \, \alpha and nonnegative continuous functions f_1(u, v), \, \varphi(v) , such that

    \begin{equation} \begin{array}{l} f(u, v) = a-b u^{\alpha}-f_{1}(u, v), \quad g(u, v) \leqslant \varphi(v)(1-cu)^\frac{\alpha+1}{2}. \end{array} \end{equation} (1.6)

    Remark 1. Our assumptions {\rm(A1)–(A2)} on (P, \, Q, \, R, \, f, \, g) in this paper satisfy {\rm(H1)–(H2)} in [12].

    Now, we state our main results.

    Theorem 1.3. Suppose {\rm(A1)–(A2)} hold and (u_0, \, v_0)\in \mathscr{B} with some p_{0} > n . Then {\rm(1.3)} has a compact global attractor with finite Hausdorff dimension in the space \mathscr{B} , which attracts all the solutions, for any given \alpha > 0, \, \beta > 0 and n\leqslant2 , but we need the following corresponding assumptions in {\rm(B1)–(B2)} for n > 2 ,

    \rm(B1) For 0 < \beta\leqslant \frac{n-2}{6} ,

    \rm(i) if 0 < \alpha\leqslant \frac{n+4}{n-2}\beta , then n^2-2(1+4\beta)n+4\beta < 0 ;

    \rm(ii) if \frac{n+4}{n-2}\beta < \alpha < \beta+1 , then n < 2(\alpha+3\beta) ;

    \rm(iii) if \alpha\geqslant\beta+1 , then n < 2(2\alpha+2\beta-1) .

    \rm(B2) For \beta > \frac{n-2}{6} , then

    \rm(i) if 0 < \alpha\leqslant \beta+1 , then n^2-2(1+4\beta)n+4\beta < 0 ;

    \rm(ii) if \beta+1 < \alpha < \frac{n+4}{n-2}\beta , then n^2-2(\alpha+3\beta)n+4(\alpha-1) < 0 ;

    \rm(iii) if \alpha\geqslant \frac{n+4}{n-2}\beta , then n < 2(2\alpha+2\beta-1) .

    Theorem 1.4. Assume n < 10 and (u_0, \, v_0)\in \mathscr{B} with some p_{0} > n, then {\rm(1.2)} has a compact global attractor with finite Hausdorff dimension in the space \mathscr{B} , which attracts all the solutions.

    Remark 2. Theorem {\rm1.3} and Theorem {\rm1.4} imply the uniform boundedness of the global solutions to the systems {\rm(1.3)} and {\rm(1.2)}, respectively.

    This paper is organized as follows. In section 2, we shall prove the existence of a compact global attractor with finite Hausdorff dimension to system (1.3). As an application, we consider the Shegesada-Kawasaki-Teromoto competition model (1.2), and get the existence of a global attractor for n < 10 in section 3.

    We shall first give the uniform Gronwall inequality, which will be frequently used in our proof.

    Lemma 2.1. (the uniform Gronwall inequality) (see[18] Chapt. 3, Lemma 1.1). Suppose positive Lipschitz functions y(t), \; r(t), \; h(t) defined on \left[t_{0}, +\infty\right] satisfy

    y^{\prime}(t) \leqslant r(t) y(t)+h(t),

    and

    \int_{t}^{t+\tau} r(s) d s \leqslant r_0, \quad \int_{t}^{t+\tau} h(s) d s \leqslant h_0, \quad\int_{t}^{t+\tau} y(s) d s \leqslant c_0, \;\;\forall t\geqslant t_0,

    with \tau, \, r_0, \, h_0 and c_0 some positive constants. Then it holds that

    y(t+\tau) \leqslant \left(\frac{c_0}{\tau}+h_0\right) e^{r_0}, \quad \forall t \geqslant t_{0}.

    For given initial data u_0(x), v_0(x)\in\mathscr{B} , it is standard to show that the solutions of (1.3) are still nonnegative. Then using comparison principle for parabolic equation on the v- equation of (1.3), it is easy to see

    \begin{equation} \|v(\cdot, \, t)\|_{L^{\infty}(\Omega)} \in \mathcal{P}. \end{equation} (2.1)

    For the solution u , it is easy to get the following properties.

    Lemma 2.2. The solution u of {\rm(1.3)} satisfies

    \begin{equation} \|u(\cdot, t)\|_{L^{1}(\Omega)} \in \mathcal{P}, \end{equation} (2.2)

    and

    \begin{equation} \int_{t}^{t+1} \int_{\Omega} u^{\alpha+1} d x d s \in \mathcal{P}. \end{equation} (2.3)

    Proof. Integrating the u- equation of (1.3) by parts and noting the condition of f(u, v) in (A2), we get

    \begin{equation} \begin{array}{l} \frac{d}{d t} \int_{\Omega} udx\leqslant a \int_{\Omega} udx-b \int_{\Omega} u^{\alpha+1}dx, \end{array} \end{equation} (2.4)

    which together with H \ddot{o} lder inequality \|u\|_{L^{1}(\Omega)}\leqslant \|u\|_{L^{\alpha+1}(\Omega)}\|1\|_{L^{\frac{\alpha+1}{\alpha}}(\Omega)} gives

    \begin{equation} \begin{array}{l} \frac{d}{d t} \int_{\Omega} udx\leqslant a\int_{\Omega} udx-\frac{b}{|\Omega|^\alpha} \left(\int_{\Omega} udx\right)^{\alpha+1}. \end{array} \end{equation} (2.5)

    Then the comparison principle of ordinary differential equation implies (2.2) holds. Integrate (2.4) from t to t+1 and use (2.2) to yield (2.3).

    For the solution v , we will prove the following result, which plays an important role in the following estimates of u in Theorem 2.4. In the rest of our paper, C_i\, (i = 1, 2, \cdots) are some positive constants, and we will not point out them one by one.

    Lemma 2.3. For n\geqslant 1 , the solution v of {\rm(1.3)} satisfies

    \begin{equation} \int_{t}^{t+1} \int_{\Omega} |\nabla v|^4 d x d s \in \mathcal{P}. \end{equation} (2.6)

    Proof. In order to prove (2.6), we first show

    \begin{equation} \begin{array}{l} \int_{t}^{t+1} \int_{\Omega} |\nabla\cdot(R(v)\nabla v)|^2 d x d s \in \mathcal{P}, \end{array} \end{equation} (2.7)

    then we prove

    \begin{equation} \begin{array}{l} \int_{t}^{t+1} \int_{\Omega} |R(v)\nabla v|^4 d x d s \in \mathcal{P}. \end{array} \end{equation} (2.8)

    Recalling the condition of R(v)\geqslant d in (A1), (2.8) ensures (2.6) holds.

    Now, we first deal with the proof of (2.7). For this purpose, multiplying the second equation of (1.3) by v and integrating by parts, we have

    \begin{array}{l} \frac{1}{2} \frac{d}{d t}\int_{\Omega} v^{2} dx +\int_\Omega R(v)|\nabla v|^{2} d x = \int_\Omega v^{2} g(u, v)dx. \end{array}

    Integrating the above equation over [t, t+1] , we obtain

    \begin{array}{l} d\int_t^{t+1}\int_{\Omega}|\nabla v|^{2} d xds\leqslant\frac{1}{2}\|v(t)\|_{L^{2}(\Omega)}^2 +C_1 \int_{t}^{t+1}\int_{\Omega}(1-cu )^\frac{\alpha+1}{2}d x d s, \end{array}

    by R(v) \geqslant d in (A1), g(u, v) \leqslant \varphi(v)(1-cu)^{\frac{\alpha+1}{2}} in (A2) and the fact (2.1). Therefore, it is known by (2.1) and (2.2) that

    \begin{equation} \begin{array}{l} \int_{t}^{t+1} \int_{\Omega} |\nabla v|^{2} d x d s \in \mathcal{P}. \end{array} \end{equation} (2.9)

    Next, we multiply the v- equation of (1.3) by R(v)v_t and integrate by parts to get

    \begin{array}{ll} \int_{\Omega} R(v) v_{t}^{2}dx & = \int_{\Omega} R(v) v_{t} \nabla \cdot(R(v) \nabla v) d x+\int_{\Omega} R(v) v_{t} v g(u, v) d x \\ {} & = -\int_{\Omega} \nabla\left(R(v) v_{t}\right) \cdot(R(v) \nabla v) d x+\int_{\Omega} R(v) v_{t} v g(u, v) d x \\ {} & = -\frac{1}{2} \frac{d}{d t} \int_{\Omega} R^{2}(v) | \nabla v|^{2} d x+\int_{\Omega} R(v) v_{t} v g(u, v) d x \\ {} &\leqslant-\frac{1}{2} \frac{d}{d t} \int_{\Omega} R^{2}(v) | \nabla v|^{2} d x+\frac{d}{2}\int_{\Omega} v_{t}^{2}dx +\frac{C_2}{2}\int_{\Omega} (1+u)^{\alpha+1}dx, \end{array}

    here, we use H \ddot{o} lder inequality, the condition of g(u, v) in (A2) and (2.1).

    Due to R(v)\geqslant d , thus

    \begin{equation} \frac{d}{d t} \int_{\Omega} R^{2}(v) | \nabla v|^{2} d x+d\int_{\Omega} v_{t}^{2}dx\leqslant C_2\int_{\Omega} (1+u)^{\alpha+1}dx. \end{equation} (2.10)

    In view of (2.1), (2.3), (2.9) and using the uniform Gronwall inequality on

    \frac{d}{d t} \int_{\Omega} R^{2}(v) | \nabla v|^{2} d x\leqslant C_2\int_{\Omega} (1+u)^{\alpha+1}dx,

    we obtain

    \begin{equation} \int_{\Omega} R^{2}(v) | \nabla v|^{2} d x\in \mathcal{P}. \end{equation} (2.11)

    Moreover, integrate (2.10) over [t, \, t+1] to know

    \begin{equation} \int_{t}^{t+1} \int_{\Omega} v_t^{2}(x, s) d x d s \in \mathcal{P}. \end{equation} (2.12)

    By the v- equation of (1.3) and noting (2.1), we have

    \begin{array}{lll} \int_{\Omega} |\nabla\cdot(R(v)\nabla v)|^2dx & = &\int_{\Omega}\left[{{ v_{t}- v g(u, v)}}\right]^2 d x \\ {} &\leqslant& 2\int_{\Omega}v_{t}^2dx+C_3+C_4\int_{\Omega}u^{\alpha+1}dx, \\ \end{array}

    this together with (2.12) and (2.3) gives (2.7).

    Next, we will prove (2.8). Denote \xi = R(v)\nabla v and note R^\prime(v)\geqslant 0 in (A1) to get

    \begin{array}{ll} \int_\Omega|\xi|^4dx& = \int_\Omega R(v)|\xi|^2\xi\cdot \nabla v dx \\ {} & = -\int_\Omega v\nabla\cdot \left({{R(v)|\xi|^2\xi}}\right) dx \\ {} & = -\int_{\Omega} v\frac{R^{\prime}(v)}{R(v)} |\xi|^{4} d x-\int_{\Omega} { v}R (v)|\xi|^{2} \nabla \cdot\xi d x-2 \int_{\Omega}v R(v)\xi \cdot\left({{\nabla\xi\cdot \xi}}\right) d x \\ {} &\leqslant -\int_{\Omega}v R(v)|\xi|^{2} \nabla \cdot\xi d x-2 \int_{\Omega} vR(v)\xi \cdot\left({{\nabla\xi\cdot \xi}}\right) d x. \end{array}

    By H \ddot{o} lder inequality, we can get

    -\int_{\Omega}v R(v)|\xi|^{2} \nabla \cdot\xi d x\leqslant\|vR(v)\|_{L^{\infty}(\Omega)}\|\xi\|_{L^{4}(\Omega)}^{2}\|\nabla \cdot\xi\|_{L^{2}(\Omega)},

    and

    -2 \int_{\Omega}v R(v)\xi \cdot\left({{\nabla\xi\cdot \xi}}\right) d x\leqslant\|vR(v)\|_{L^{\infty}(\Omega)}\|\xi\|_{L^{4}(\Omega)}^{2}\|\nabla \xi\|_{L^{2}(\Omega)},

    thus

    \begin{equation} \begin{array}{lll} \|\xi\|_{L^{4}(\Omega)}^{2} \leqslant\|vR(v)\|_{L^{\infty}(\Omega)}\left(\|\nabla \cdot\xi\|_{L^{2}(\Omega)}+2\|\nabla\xi\|_{L^{2}(\Omega)}\right). \end{array} \end{equation} (2.13)

    Now, we will prove

    \begin{equation} \begin{array}{lll} \|\nabla\xi\|_{L^{2}(\Omega)}\leqslant C_6\|\nabla\cdot\xi\|_{L^{2}(\Omega)}. \end{array} \end{equation} (2.14)

    Noting \xi = R(v)\nabla v , then we have

    \begin{equation} \begin{array}{lll} \nabla \cdot\xi = \nabla \cdot(R(v)\nabla v) = R^\prime(v)|\nabla v|^2+R(v)\triangle v, \\ {} \nabla \xi = \nabla(R(v)\nabla v) = R^\prime(v)(\nabla v)^T\nabla v+R(v){\nabla}^2 v, \end{array} \end{equation} (2.15)

    where we see \nabla v as a row vector, (\nabla v)^T is the transpose of \nabla v , and {\nabla}^2 v is a matrix.

    By (2.15) and the standard elliptic regularity \|{\nabla}^2v\|_ {L^{2}(\Omega)}\leqslant C_5\|\triangle v\|_ {L^{2}(\Omega)} , we can prove (2.14) holds.

    Therefore, in virtue of (2.13) and (2.14), we obtain

    \begin{array}{lll} \|\xi\|_{L^{4}(\Omega)}^{2} \leqslant(1+2C_6)\|vR (v)\|_{L^{\infty}(\Omega)}\|\nabla \cdot\xi\|_{L^{2}(\Omega)}. \end{array}

    This together with (2.7) and (2.1) indicates that (2.8) holds. This completes the proof of Lemma 2.3.

    Next, we shall give the critical estimates in our paper.

    Theorem 2.4. The solution u of {\rm(1.3)} satisfies

    \begin{equation} \|u\|_{L^{\bar{p}}(\Omega) }\in \mathcal{P}, \end{equation} (2.16)
    \begin{equation} \begin{array}{lll} \int_{t}^{t+1} \int_{\Omega} u^{\bar{p}+\alpha}d x d s \in \mathcal{P}, \end{array} \end{equation} (2.17)

    and

    \begin{equation} \begin{array}{lll} \int_{t}^{t+1} \int_{\Omega} u^{\bar{p}+\beta-2}|\nabla u|^2 d x d s \in \mathcal{P}, \end{array} \end{equation} (2.18)

    for \bar{p} satisfying {\rm(i)} \bar{p} = \alpha+2\beta or {\rm(ii)} \bar{p} > \alpha+2\beta and (n-2)\bar{p}\leqslant3n\beta .

    Proof. Multiplying the first equation in (1.3) by u^{p-1} with p > 1 , and integrating on \Omega by parts, we have

    \begin{array}{ll} \frac{1}{p} \frac{d}{d t} \int_{\Omega} u^p d x & = -\int_{\Omega} \nabla u^{p-1} \cdot \left[{{P(u, v)\nabla u +Q(u, v)\nabla v}}\right]dx+\int_{\Omega} u^{p}f(u, v)dx \\ {} & = -(p-1)\int_{\Omega} u^{p-2}P(u, v)|\nabla u|^2dx -(p-1)\int_{\Omega}u^{p-2}Q(u, v)\nabla u\cdot\nabla vdx \\ {} &\;\;\;\;+\int_{\Omega} u^{p}f(u, v)dx. \end{array}

    Recalling the condition of f(u, v) in (A2) and |Q(u, v)| \leqslant \phi(v) u in (A1), we have

    \begin{array}{lll} \int_{\Omega} u^{p}f(u, v)dx\leqslant a \int_{\Omega} u^{p}dx-b \int_{\Omega} u^{p+\alpha}dx, \end{array}

    and

    \begin{array}{lll} \left|-\int_{\Omega} u^{p-2}Q(u, v) \nabla u \cdot \nabla v dx\right| &\leqslant \int_{\Omega} u^{p-2}|Q(u, v)||\nabla u\cdot \nabla v|dx \\ {} &\leqslant \|\phi(v)\|_\infty\int_{\Omega} |u^{p-1}\nabla u\cdot \nabla v|dx \\ {} & = \|\phi(v)\|_\infty\int_{\Omega} |u^{\frac{p+\beta-2}{2}}\nabla u\cdot u^{\frac{p-\beta}{2}}\nabla v|dx \\ {} &\leqslant \frac{d}{2}\int_{\Omega} u^{p+\beta-2}|\nabla u|^2dx+\frac{C_7}{p-1} \int_{\Omega} u^{p-\beta}|\nabla v|^2dx, \end{array}

    by Hölder inequality.

    Combining these estimates and P(u, v) \geqslant d u^{\beta} in (A1), then

    \begin{equation} \begin{array}{lll} &&\frac{1}{p}\frac{d}{d t} \int_{\Omega} u^p d x+\frac{d(p-1)}{2} \int_{\Omega} u^{p+\beta-2}| \nabla u|^{2}dx+b \int_{\Omega} u^{p+\alpha}dx \\ {} &&\leqslant a \int_{\Omega} u^{p}dx+C_7\int_{\Omega}u^{p-\beta}|\nabla v|^2dx. \end{array} \end{equation} (2.19)

    Case I: p\leqslant \alpha+2\beta. In this case, we have 2(p-\beta)\leqslant p+\alpha.

    Applying Hölder inequality and Young's inequality to the last term of (2.19), we have

    \begin{array}{lll} C_7\int_{\Omega}u^{p-\beta}|\nabla v|^2dx&\leqslant& \frac{b}{2}\int_{\Omega} u^{2p-2\beta}dx+C_8\int_{\Omega}|\nabla v|^4dx \\ {} &\leqslant& \frac{b}{2}\int_{\Omega} u^{p+\alpha}dx+C_8\int_{\Omega}|\nabla v|^4dx+C_{9}. \end{array}

    Consequently, (2.19) becomes

    \begin{equation} \begin{array}{lll} &&\frac{1}{p}\frac{d}{d t} \int_{\Omega} u^p d x+\frac{d(p-1)}{2} \int_{\Omega} u^{p+\beta-2}| \nabla u|^{2}dx+\frac{b}{2}\int_{\Omega} u^{p+\alpha}dx \\ {} &&\leqslant a \int_{\Omega} u^{p}dx+ C_8\int_{\Omega}|\nabla v|^4dx+C_{9}. \end{array} \end{equation} (2.20)

    Obviously, (2.20) entails

    \begin{equation} \begin{array}{lll} \frac{1}{p}\frac{d}{d t} \int_{\Omega} u^p d x\leqslant a \int_{\Omega} u^{p}dx+C_8\int_{\Omega}|\nabla v|^4dx+C_9. \end{array} \end{equation} (2.21)

    For the above inequality (2.21), if we can show

    \begin{equation} \begin{array}{lll} \int_{t}^{t+1} \int_{\Omega} u^{p} d x d s \in \mathcal{P}, \end{array} \end{equation} (2.22)

    then (2.6) and the uniform Gronwall inequality yield

    \begin{equation} \|u\|_{L^{p}(\Omega)} \in \mathcal{P}. \end{equation} (2.23)

    Furthermore, integrating (2.20) from t to t+1 , we can obtain

    \begin{equation} \begin{array}{lll} \int_{t}^{t+1} \int_{\Omega} u^{p+\alpha} d x d s \in \mathcal{P}, \end{array} \end{equation} (2.24)

    and

    \begin{equation} \begin{array}{lll} \int_{t}^{t+1} \int_{\Omega} u^{p+\beta-2}|\nabla u|^2 d x d s \in \mathcal{P}. \end{array} \end{equation} (2.25)

    Now, we will use mathematical induction to prove that (2.22) holds for p = \alpha+2\beta . There exists some k\in N_+ such that 1\leqslant \alpha+2\beta-k\alpha\leqslant \alpha+1 . Denote p_0 = \alpha+2\beta-k\alpha, \; p_{m} = p_{m-1}+\alpha\, (m = 1, \, 2, \, \cdot\cdot\cdot, \, k) . On one hand, using (2.3) and Hölder inequality, it is easy to see that (2.22) holds for p = p_0 . On the other hand, we suppose (2.22) holds for p = p_{m-1} , then (2.24) means that (2.22) holds for p = p_{m-1}+\alpha = p_m . Hence the mathematical induction ensures that (2.22) holds for p = p_k = \alpha+2\beta .

    Therefore, (2.23)–(2.25) hold for p = \alpha+2\beta , which implies (2.16)–(2.18) hold for \bar{p} = \alpha+2\beta.

    Case II: p > \alpha+2\beta. In this case, we assume (n-4)p\leqslant (3n-4)\beta .

    Let w_p = u^{\frac{p+\beta}{2}} and denote w_p as w sometimes for simplicity, then (2.19) can be written as

    \begin{equation} \begin{array}{lll} &&\frac{1}{p} \frac{d}{d t} \int_{\Omega} w^\frac{2 p}{p+{\beta}} d x+\frac{{ 2} d(p-1)}{(p+\beta)^{2}} \int_{\Omega}|\nabla w|^{2} d x+b\int_{\Omega} w^{\frac{2(p+\alpha)}{p+\beta}} d x \\ {} &&\quad\leqslant a\int_{\Omega} w^{\frac{2p}{p+\beta}} d x+ C_7\int_{\Omega} w^{\frac{2(p-\beta)}{p+\beta}} |\nabla v|^{2}d x \\ {} &&\quad\leqslant a\int_{\Omega} w^{\frac{2p}{p+\beta}} d x+ C_7\|w^{\frac{2(p-\beta)}{p+\beta}}\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{4}(\Omega)}^2 \\ {} &&\quad = a\|w\|^{\frac{2p}{p+\beta}}_{L^{\frac{2p}{p+\beta}}(\Omega)}+ C_7\|w\|^{\frac{2(p-\beta)}{p+\beta}}_{ {L^{\frac{4(p-\beta)}{p+\beta}}(\Omega)}}\|\nabla v\|_{L^{4}(\Omega)}^2, \end{array} \end{equation} (2.26)

    by the Hölder inequality.

    The conditions p > \alpha+2\beta and (n-4)p\leqslant (3n-4)\beta implies

    \begin{array}{lll} \frac{2(p+\alpha)}{p+\beta} \lt \frac{4(p-\beta)}{p+\beta}\leqslant \frac{2n}{n-2}, \end{array}

    here \frac{2n}{n-2} can be replaced by +\infty for n = 2 .

    It is known by Gagliardo-Nirenberg inequality that

    \begin{equation} \begin{array}{lll} \|w\|_{L^\frac{4(p-\beta)}{p+\beta}(\Omega)}\leqslant C_{10}\|w\|_{L^\frac{2p}{p+\beta}(\Omega)}^{1-\theta}\|\nabla w\|_{L^{2}(\Omega)}^\theta+C_{10}\|w\|_{L^{1}(\Omega)}, \end{array} \end{equation} (2.27)

    with

    \begin{array}{lll} \theta = \frac{n(p+\beta)(p-2\beta)}{2(p-\beta)(2p+n\beta)}. \end{array}

    Using (2.27) and Young's inequality, we have

    \begin{array}{ll} &C_7\|w\|^{\frac{2(p-\beta)}{p+\beta}}_{L^\frac{4(p-\beta)}{p+\beta}(\Omega)}\|\nabla v\|_{L^{4}(\Omega)}^2 \\ {} &\leqslant C_{11}\|w\|^{\frac{2(p-\beta)(1-\theta)}{(p+\beta)}}_{L^\frac{2p}{p+\beta}(\Omega)}\|\nabla w\|_{L^{2}(\Omega)}^{\frac{2\theta(p-\beta)}{p+\beta}}\|\nabla v\|_{L^{4}(\Omega)}^2 + C_{11}\|w\|^{\frac{2(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}\|\nabla v\|_{L^{4}(\Omega)}^2 \\ {} &\leqslant \varepsilon\|\nabla w\|_{L^{2}(\Omega)}^2+C_ \varepsilon\|w\|_{L^\frac{2p}{p+\beta}(\Omega)}^{m_1}\|\nabla v\|_{L^{4}(\Omega)}^{m_2} +C_{11}\|w\|^{\frac{4(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}+C_{11}\|\nabla v\|_{L^{4}(\Omega)}^4, \end{array}

    with

    \begin{array}{lll} m_1 = \frac{2(p-\beta)(1-\theta)}{p+\beta-\theta(p-\beta)}, \;\;\;m_2 = \frac{2(p+\beta)}{p+\beta-\theta(p-\beta)}. \end{array}

    Let \varepsilon = { \frac{d(p-1)}{(p+\beta)^{2}}} , then (2.26) becomes

    \begin{equation} \begin{array}{ll} &\frac{1}{p} \frac{d}{d t} \int_{\Omega} w^\frac{2 p}{p+{\beta}} d x+{ \frac{ d(p-1)}{(p+\beta)^{2}} }\int_{\Omega}|\nabla w|^{2} d x+b\int_{\Omega} w^{\frac{2(p+\alpha)}{p+\beta}} d x \\ {} &\leqslant a\|w\|^{\frac{2p}{p+\beta}}_{L^\frac{2p}{p+\beta}(\Omega)}+ C_ \varepsilon\|w\|_{L^\frac{2p}{p+\beta}(\Omega)}^{m_1}\|\nabla v\|_{L^{4}(\Omega)}^{m_2}+C_{11}\|w\|^{\frac{4(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}+C_{11}\|\nabla v\|_{L^{4}(\Omega)}^4. \end{array} \end{equation} (2.28)

    Let y(t) = \|w\|^{\frac{2p}{p+\beta}}_{L^\frac{2p}{p+\beta}(\Omega)}, \; h(t) = C_{11}\|w\|^{\frac{4(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}+C_{11}\|\nabla v\|_{L^{4}(\Omega)}^4 , then we have

    \begin{equation} \begin{array}{lll} \frac{1}{p} \frac{d}{d t} y(t)&\leqslant &ay(t)+ C_ \varepsilon y(t)^{\frac{(p+\beta)m_1}{2p}}\|\nabla v\|_{L^{4}(\Omega)}^{m_2}+h(t). \end{array} \end{equation} (2.29)

    For the case of y(t)\leqslant1, obviously we have

    \begin{equation} \begin{array}{ll} y(t) = \int_{\Omega} w^\frac{2 p}{p+{\beta}} d x \in \mathcal{P}. \end{array} \end{equation} (2.30)

    Since p > \alpha+2\beta , (2.30) implies \|w\|_{L^{1}(\Omega)}\in \mathcal{P} by Hölder inequality. Let

    (n-2)p\leqslant 3n\beta,

    then a direct calculation shows that m_2\leqslant 4 . Consequently, (2.6) and Hölder inequality give

    \begin{equation} \begin{array}{ll} \|\nabla v\|_{L^{4}(\Omega)}^{m_2} \in \mathcal{P}. \end{array} \end{equation} (2.31)

    Furthermore, integrating (2.28) from t to t+1 yields

    \begin{equation} \begin{array}{ll} \int_{t}^{t+1} \int_{\Omega} w^{\frac{2(p+\alpha)}{p+\beta}} d x d s \in \mathcal{P}, \end{array} \end{equation} (2.32)

    and

    \begin{equation} \begin{array}{ll} \int_{t}^{t+1} \int_{\Omega}|\nabla w|^{2} d x d s \in \mathcal{P}. \end{array} \end{equation} (2.33)

    For the case of y(t) > 1, denote r(t) = a+C_ \varepsilon\|\nabla v\|_{L^{4}(\Omega)}^{m_2}, then

    \begin{equation} \begin{array}{lll} \frac{1}{p} \frac{d}{d t} y(t)\leqslant r(t)y(t)+h(t), \end{array} \end{equation} (2.34)

    here, we used the fact

    \begin{array}{lll} \frac{(p+\beta)m_1}{2p} = \frac{(3n-4)\beta-(n-4)p}{(4p-np+4n\beta)} \lt 1. \end{array}

    It is easy to see that (2.31) implies \int_{t}^{t+1}r(s)d s \in \mathcal{P} for (n-2)p\leqslant 3n\beta , thus if we can show

    \begin{equation} \begin{array}{ll} \int_{t}^{t+1}y(s)d s \in \mathcal{P}, \;\;\;\int_{t}^{t+1}h(s)d s \in \mathcal{P}, \end{array} \end{equation} (2.35)

    then using the uniform Gronwall inequality to the inequality (2.34), we obtain (2.30). Similarly, integrate (2.28) over [t, t+1] to obtain (2.32) and (2.33).

    Now, we prove (2.35) for (n-2)p = 3n\beta . In order to get \int_{t}^{t+1}h(s)d s \in \mathcal{P} , recalling (2.6), the key step is to deal with

    \begin{equation} \begin{array}{ll} \int_{t}^{t+1}\|w\|^{\frac{4(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}ds\in \mathcal{P}, \end{array} \end{equation} (2.36)

    since the Minkowski's inequality ensures

    \begin{array}{ll} \int_{t}^{t+1}h(s)d s\leqslant C_{11}\int_{t}^{t+1}\|w\|^{\frac{4(p-\beta)}{p+\beta}}_{L^{1}(\Omega)}ds+C_{11}\int_{t}^{t+1}\|\nabla v\|_{L^{4}(\Omega)}^4ds. \end{array}

    Now, we will prove \int_{t}^{t+1}y(s)d s \in \mathcal{P} and (2.36) by mathematical induction, simultaneously. For the case of n > 2 , there exists some \bar{k}\in N_+ such that \alpha+2\beta < \frac{3n\beta}{n-2}-\bar{k}\alpha\leqslant 2\alpha+2\beta . Denote q_0 = \frac{3n\beta}{n-2}-\bar{k}\alpha, \; q_{m} = q_{m-1}+\alpha\, (m = 1, \, 2, \, \cdot\cdot\cdot, \, \bar{k}) . Since we have proved (2.17) for \bar{p} = \alpha+2\beta , it is easy to get \int_{t}^{t+1}y(s)d s \in \mathcal{P} for p = q_0 by Hölder inequality. In addition, noting that \frac{q_0+\beta}{2}\leqslant \frac{2\alpha+3\beta}{2} < \alpha+2\beta and (2.16) holds for \bar{p} = \alpha+2\beta , using Hölder inequality we obtain \|w_{q_0}\|_{L^{1}(\Omega)}\in \mathcal{P}, which indicates that the result (2.36) is true for p = q_0 . On the other hand, assume \int_{t}^{t+1}y(s)d s \in \mathcal{P} and (2.36) hold for p = q_{m-1} , then (2.32) holds for p = q_{m-1} . According to the definition w_p = u^{\frac{p+\beta}{2}} , it is easy to see

    \begin{array}{ll} (w_{q_{m-1}})^{\frac{2(q_{m-1}+\alpha)}{q_{m-1}+\beta}} = (w_{q_{m}})^{\frac{2q_m}{q_{m}+\beta}}, \end{array}

    thus \int_{t}^{t+1}y(s)d s \in \mathcal{P} for p = q_{m} . Moreover, the assumption implies (2.30) holds for p = q_{m-1} and hence

    \begin{array}{ll} \|w_{q_m}\|_{L^{1}(\Omega)}\leqslant C\|w_{q_{m-1}}\|_{L^\frac{2q_{m-1}}{q_{m-1}+\beta}(\Omega)}^{\frac{2q_{m-1}}{q_{m-1}+\beta}}, \end{array} \label{wone2}

    by q_{m-1} > \alpha+2\beta and Hölder inequality with some C > 0 . And thus (2.36) holds for p = q_m .

    Above all, for the case of n > 2 , we have proved (2.35) with p = \frac{3n\beta}{n-2} . Therefore, (2.30), (2.32) and (2.33) hold for p = \frac{3n\beta}{n-2} , which implies (2.16)–(2.18) hold for \bar{p}\leqslant\frac{3n\beta}{n-2} . Similarly, we can prove (2.16)–(2.18) hold for any positive constant \bar{p} > \alpha+2\beta if n\leqslant2 .

    This complete the proof of Theorem 2.4.

    Next, we will use Lemma 1.2 and Theorem 2.4 to give the proof of Theorem 1.3.

    proof of Theorem 1.3. Let s = \bar{p}+\alpha , then by (2.17),

    \begin{array}{ll} \int_{t}^{t+1}\|u\|_{L^{s}(\Omega)}^{s} d s = \int_{t}^{t+1}\int_{\Omega} u^{\bar{p}+\alpha} d x d s \in \mathcal{P}. \end{array}

    Define

    \begin{array}{ll} 1-\chi = \frac{1}{s}+\frac{n}{2 s} = \frac{n+2}{2s} = \frac{n+2}{2(\bar{p}+\alpha)}, \end{array} \label{omkio}
    \begin{array}{l} A = s-\frac{n}{2(1-\chi)} = \frac{2s}{n+2} \gt 0, \quad B = s-\frac{1}{1-\chi} = \frac{ns}{n+2} \gt 0. \end{array}

    By Lemma 1.2, we also need \chi \in(0, 1), which is equivalent to

    \begin{equation} \begin{array}{ll} n \lt 2(\bar{p}+\alpha-1). \end{array} \end{equation} (2.37)

    It is known by Gagliardo-Nirenberg inequality that

    \|w\|_{L^{2^*}(\Omega)} \leqslant C_{12}\left(\|\nabla w\|_{L^{2}(\Omega)}+\|w\|_{L^{1}(\Omega)}\right),

    with 2^{*} = 2 n /(n-2) .

    Let l = \frac{\bar{p}+\beta}{2} and r = 2 l, q = 2^{*} l , then w = u^l and

    \begin{array}{ll} \int_{t}^{t+1}\|u\|_{L^{q}(\Omega)}^{r} d s = \int_{t}^{t+1}\|w\|_{L^{2^{*}}(\Omega)}^{2} d s \leqslant 2C_{12}[\int_{t}^{t+1}\|\nabla w\|_{L^{2}(\Omega)}^{2} d s+\sup \limits_{[t, t+1]}\|w\|_{L^{1}(\Omega)}^{2}]. \end{array}

    The estimate \|w\|_{L^{1}(\Omega)}\in \mathcal{P} comes from (2.16) by Hölder inequality, which together with (2.18) indicates

    \begin{array}{ll} \int_{t}^{t+1}\|u\|_{L^{q}(\Omega)}^r d s \in \mathcal{P}. \end{array}

    Let

    \begin{array}{l} 1-\chi = \frac{1}{r}+\frac{n}{2 q} = \frac{1}{l}\left(\frac{1}{2}+\frac{n}{2 \cdot 2^{*}}\right) = \frac{n}{4 l} = \frac{n}{2({ \bar{p}}+\beta)}, \end{array} \label{omkit}
    \begin{array}{l} A = q-\frac{n}{2(1-\chi)} = \frac{2({ \bar{p}}+\beta)}{n-2} \gt 0, \quad B = r-\frac{1}{1-\chi} = \frac{n-2}{n}({ \bar{p}}+\beta) \gt 0. \end{array}

    By Lemma 1.2, we also need \chi \in(0, 1), which means

    \begin{equation} \begin{array}{ll} n \lt 2(\bar{p}+\beta). \end{array} \end{equation} (2.38)

    Comparing (2.37) and (2.38), we choose n < 2(\bar{p}+\alpha-1) if \alpha > \beta+1 , otherwise, we choose n < 2(\bar{p}+\beta) . In addition, recall \bar{p} satisfies {\rm(i)} \bar{p} = \alpha+2\beta or {\rm(ii)} \bar{p} > \alpha+2\beta and (n-2)\bar{p}\leqslant3n\beta in Theorem 2.4, hence we can assign any positive number to \bar{p} for n\leqslant2 , but we choose \bar{p} = \frac{3n\beta}{n-2} if 0 < \alpha\leqslant\frac{n+4}{n-2}\beta , otherwise, we choose \bar{p} = \alpha+2\beta for n > 2 . Consequently, combining these analysis we can obtain Theorem 1.3.

    In this part, we will consider the boundedness of the global solutions to the following S-K-T model

    \begin{equation} \left\{\begin{array}{ll} u_{t} = \Delta\left[\left(d_{1}+\rho_{11} u+\rho_{12} v\right) u\right]+u\left(a_{1}-b_{1} u-c_{1} v\right), & x\in\Omega, \;t \gt 0 , \\ v_{t} = \Delta\left[\left(d_{2}+\rho_{22} v\right) v\right]+v\left(a_{2}-b_{2} u-c_{2} v\right), & x\in\Omega, \;t \gt 0, \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, & x\in\partial\Omega, t \gt 0, \\ u(x, 0) = u_0(x)\geqslant 0, v(x, 0) = v_0(x)\geqslant 0, & x\in\Omega. \end{array}\right. \end{equation} (3.1)

    Proof of Theorem 1.4. Comparing with the divergence form of system (1.3), we have

    \begin{array}{ll} P(u, v) = d_{1}+2\rho_{11} u+\rho_{12} v, \;Q(u, v) = \rho_{12} u, \;R(v) = d_{2}+2\rho_{22} v, \end{array}
    \begin{array}{ll} f(u, v) = a_{1}-b_{1} u-c_{1} v, \;g(u, v) = a_{2}-b_{2} u-c_{2} v. \end{array}

    It is easy to see that P, \, Q, \, R and f, \, g satisfy the conditions in (A1) and (A2), respectively, with \alpha = \beta = 1 .

    Theorem 1.3 gives Theorem 1.4 for n\leqslant2 directly. Moreover, a simple computation shows (B2) (i) in Theorem 1.3 holds for 2 < n < 8 and (B1) (i) holds for 8\leqslant n < 10 . This completes the proof of Theorem 1.4.

    Remark 3. Our result implies the uniform boundedness of the global solutions to the system (3.1). This result extends the existence results of global attractor in [21] from n < 8 to n < 10 , and extends the uniform boundedness results of the global solutions in [17] to the non-convex domain.

    The author is greatly indebted to Professor Yaping Wu for her valuable suggestions and helpful discussions. And the author is very grateful for the anonymous referees for their valuable comments and many useful suggestions which helped to improve the exposition of the current paper. The work is supported by NSFC (No. 11801314).

    The author declares no conflicts of interest in this paper.



    [1] H. Amann, Dynamic theory of quasilinear parabolic equations I. Abstract evolution equations, Nonlinear Anal. Theor., 12 (1988), 895-919. doi: 10.1016/0362-546X(88)90073-9
    [2] H. Amann, Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems, Differ. Integral Equ., 3 (1990), 13-75.
    [3] H. Amann, Dynamic theory of quasilinear parabolic systems III. Global existence, Math. Z., 202 (1989), 219-250. doi: 10.1007/BF01215256
    [4] Y. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak crossdiffusion, Discrete Contin. Dyn. Syst., 9 (2003), 1193-1200. doi: 10.3934/dcds.2003.9.1193
    [5] Y. Choi, R. Lui, Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730. doi: 10.3934/dcds.2004.10.719
    [6] P. Deuring, An initial-boundary-value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396. doi: 10.1007/BF01162244
    [7] L. Hoang, T. Nguyen, P. Tuoc, Gradient estimates and global existence of smooth solutions for a system of cross-diffusion equations, SIAM J. Math. Anal., 47 (2015), 2122-2177. doi: 10.1137/140981447
    [8] J. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model, Nonlinear Anal. Theor., 8 (1984), 1121-1144. doi: 10.1016/0362-546X(84)90115-9
    [9] H. Kuiper, L. Dung, Global attractors for cross diffusion systems on domains of arbitrary dimension, Rocky Mt. J. Math., 37 (2007), 1645-1668. doi: 10.1216/rmjm/1194275939
    [10] D. Le, Cross diffusion systems on n spatial dimensional domains, Indiana Univ. Math. J., 51 (2002), 625-643.
    [11] D. Le, T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, P. Am. Math. Soc., 133 (2005), 1985-1992. doi: 10.1090/S0002-9939-05-07867-6
    [12] D. Le, L. Nguyen, T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains, Electron. J. Differ. Eq., 2003 (2003), 1-12.
    [13] Y. Li, C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12 (2005), 185-192. doi: 10.3934/dcds.2005.12.185
    [14] Y. Lou, W. Ni, Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203. doi: 10.3934/dcds.1998.4.193
    [15] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theret. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [16] S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differ. Equations, 185 (2002), 281-305. doi: 10.1006/jdeq.2002.4169
    [17] Y. Tao, M. Winker, Boundedness and stabilization in a population model with cross-diffusion for one species, P. London Math. Soc., 119 (2019), 1598-1632. doi: 10.1112/plms.12276
    [18] R. Temam, Infinite dimensional dynamical systems on mechanics and physics, New York: Springer Verlag, 1998.
    [19] P. Tuoc, Global existence of solutions to shigesada-kawasaki-teramoto cross-diffusion systems on domains of arbitrary dimensions, P. Am. Math. Soc., 135 (2007), 3933-3941. doi: 10.1090/S0002-9939-07-08978-2
    [20] P. Tuoc, On global existence of solutions to a cross-diffusion system, J. Math. Anal. Appl., 343 (2008), 826-834. doi: 10.1016/j.jmaa.2008.01.089
    [21] Q. Xu, Y. Zhao, The existence of a global attractor for the S-K-T competition model with selfdiffusion, Abstr. Appl. Anal., 2014 (2014), 1-6.
    [22] A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Anal. Theor., 21 (1993), 603-630. doi: 10.1016/0362-546X(93)90004-C
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3416) PDF downloads(124) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog