Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model

  • We consider a novel fractional model to investigates the (tuberculosis) TB model dynamics with two age groups of human, that is, the children and the adults. First, we formulate the model and present the basic results associated to the model. Then, using the fractional operators, Caputo and the Atangana-Baleanu and obtain a generalized model. Further, we give a novel numerical approach for the solution of the fractional model and obtain their approximate solution. We show graphical results with various values of the fractional order. A comparison of the two operators are shown graphically. The results obtained through Atangana-Baleanu operator is flexible than that of Caputo derivative. The infection in tuberculosis (TB) infected people decreases fast when decreasing the fractional order.

    Citation: Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful. A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model[J]. AIMS Mathematics, 2020, 5(4): 2813-2842. doi: 10.3934/math.2020181

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [3] Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646
    [4] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [5] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [6] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [7] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [8] Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228
    [9] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [10] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
  • We consider a novel fractional model to investigates the (tuberculosis) TB model dynamics with two age groups of human, that is, the children and the adults. First, we formulate the model and present the basic results associated to the model. Then, using the fractional operators, Caputo and the Atangana-Baleanu and obtain a generalized model. Further, we give a novel numerical approach for the solution of the fractional model and obtain their approximate solution. We show graphical results with various values of the fractional order. A comparison of the two operators are shown graphically. The results obtained through Atangana-Baleanu operator is flexible than that of Caputo derivative. The infection in tuberculosis (TB) infected people decreases fast when decreasing the fractional order.


    The key to solving the general quadratic congruence equation is to solve the equation of the form x2amodp, where a and p are integers, p>0 and p is not divisible by a. For relatively large p, it is impractical to use the Euler criterion to distinguish whether the integer a with (a,p)=1 is quadratic residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre's symbol.

    Let p be an odd prime, the quadratic character modulo p is called the Legendre's symbol, which is defined as follows:

    (ap)={1, if a is a quadratic residue modulo p;1, if a is a quadratic non-residue modulo p;0, if pa.

    The Legendre's symbol makes it easy for us to calculate the level of quadratic residues. The basic properties of Legendre's symbol can be found in any book on elementary number theory, such as [1,2,3].

    The properties of Legendre's symbol and quadratic residues play an important role in number theory. Many scholars have studied them and achieved some important results. For examples, see the [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    One of the most representative properties of the Legendre's symbol is the quadratic reciprocal law:

    Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])

    (pq)(qp)=(1)(p1)(q1)4.

    For any odd prime p with p1mod4 there exist two non-zero integers α(p) and β(p) such that

    p=α2(p)+β2(p). (1)

    In fact, the integers α(p) and β(p) in the (1) can be expressed in terms of Legendre's symbol modulo p (see Theorems 4–11 in [3])

    α(p)=12p1a=1(a3+ap)andβ(p)=12p1a=1(a3+rap),

    where r is any integer, and (r,p)=1, (rp)=1, (p)=χ2 denote the Legendre's symbol modulo p.

    Noting that Legendre's symbol is a special kind of character. For research on character, Han [7] studied the sum of a special character χ(ma+ˉa), for any integer m with (m,p)=1, then

    |p1a=1χ(ma+ˉa)|2=2p+(mp)p1a=1χ(a)p1b=1(b(b1)(a2b1)p),

    which is a special case of a general polynomial character sums N+Ma=N+1χ(f(a)), where M and N are any positive integers, and f(x) is a polynomial.

    In [8], Du and Li introduced a special character sums C(χ,m,n,c;p) in the following form:

    C(χ,m,n,c;p)=p1a=0p1b=0χ(a2+nab2nb+c)e(mb2ma2p),

    and studied the asymptotic properties of it. They obtained

    p1c=1|C(χ,m,n,c;p)|2k={p2k+1+k23k22p2k+O(p2k1),ifχ is the Legendre symbol modulo p;p2k+1+k23k22p2k+O(p2k1/2),ifχ is a complex character modulo p.

    Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of high-powers for a special character sum modulo a prime, let p be an odd prime with p1mod6, then for any integer k0, they have the identity

    Sk(p)=13[dk+(d+9b2)k+(d9b2)k],

    where

    Sk(p)=1p1p1r=1Ak(r),
    A(r)=1+p1a=1(a2+rˉap),

    and for any integer r with (r,p)=1.

    More relevant research on special character sums will not be repeated. Inspired by these papers, we have the question: If we replace the special character sums with Legendre's symbol, can we get good results on p1mod4?

    We will convert β(p) to another form based on the properties of complete residues

    β(p)=12p1a=1(a+nˉap),

    where ˉa is the inverse of a modulo p. That is, ˉa satisfy the equation xa1modp for any integer a with (a,p)=1.

    For any integer k0, G(n) and Kk(p) are defined as follows:

    G(n)=1+p1a=1(a2+nˉa2p)andKk(p)=1p1p1n=1Gk(n).

    In this paper, we will use the analytic methods and properties of the classical Gauss sums and Dirichlet character sums to study the computational problem of Kk(p) for any positive integer k, and give a linear recurrence formulas for Kk(p). That is, we will prove the following result.

    Theorem 1. Let p be an odd prime with p1mod4, then we have

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p),

    for all integer k4 with

    K0(p)=1,K1(p)=0,K2(p)=2p+1,K3(p)=3(4α22p),

    where

    α=α(p)=p12a=1(a+ˉap).

    Applying the properties of the linear recurrence sequence, we may immediately deduce the following corollaries.

    Corollary 1. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=111+p1a=1(a2+nˉa2p)=16α2p28α28p2+14p16α416α2p+4p1.

    Corollary 2. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0(1+p1a=1(a2+nˉa2p))e(nm2p)=p.

    Corollary 3. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0[1+p1a=1(a2+nˉa2p)]2e(nm2p)=(4α22p)p.

    Corollary 4. Let p be an odd prime with p1mod8. Then we have

    p1n=1(1+p1a=1(a2+nˉa2p))p1m=0e(nm4p)=p(1+B(1))p,

    where

    B(1)=p1m=0e(m4p).

    If we consider such a sequence Fk(p) as follows: Let p be a prime with p1mod8, χ4 be any fourth-order character modulo p. For any integer k0, we define the Fk(p) as

    Fk(p)=p1n=11Gk(n),

    we have

    Fk(p)=116α416α2p+4p1Fk4(p)(4p+2)16α416α2p+4p1Fk2(p)+4(4α22p)16α416α2p+4p1Fk1(p).

    Lemma 1. Let p be an odd prime with p1mod4. Then for any fourth-order character χ4modp, we have the identity

    τ2(χ4)+τ2(¯χ4)=2pα,

    where

    τ(χ4)=p1a=1χ4(a)e(ap)

    denotes the classical Gauss sums, e(y)=e2πiy,i2=1, and α is the same as in the Theorem 1.

    Proof. See Lemma 2.2 in [9].

    Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the identity

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2),

    where χ2=(p) denotes the Legendre's symbol modulo p.

    Proof. See Lemma 2 in [12].

    Lemma 3. Let p be a prime with p1mod4, then for any integer n with (n,p)=1 and fourth-order character χ4modp, we have the identity

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    Proof. For any integer a with (a,p)=1, we have the identity

    1+χ4(a)+χ2(a)+¯χ4(a)=4,

    if a satisfies ab4modp for some integer b with (b,p)=1 and

    1+χ4(a)+χ2(a)+¯χ4(a)=0,

    otherwise. So from these and the properties of Gauss sums we have

    p1a=1(a2+nˉa2p)=p1a=1(a2p)(a4+np)=p1a=1χ2(a4)χ2(a4+n)=p1a=1(1+χ4(a)+χ2(a)+¯χ4(a))χ2(a)χ2(a+n)=p1a=1(1+χ4(na)+χ2(na)+¯χ4(na))χ2(na)χ2(na+n)=p1a=1χ2(a)χ2(a+1)+p1a=1χ4(na)χ2(a)χ2(a+1) (2)
    +p1a=1χ2(na)χ2(a)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1)=p1a=1χ2(1+ˉa)+p1a=1χ4(na)χ2(a)χ2(a+1)+p1a=1χ2(n)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1).

    Noting that for any non-principal character χ,

    p1a=1χ(a)=0

    and

    p1a=1χ(a)χ(a+1)=1τ(ˉχ)p1b=1p1a=1ˉχ(b)χ(a)e(b(a+1)p).

    Then we have

    p1a=1χ2(1+ˉa)=1,p1a=1χ2(a+1)=1,
    p1a=1χ4(a)χ2(a)χ2(a+1)=1τ(χ2)p1b=1p1a=1χ2(b)χ4(a)χ2(a)e(b(a+1)p)=1τ(χ2)p1b=1¯χ4(b)e(bp)p1a=1χ4(ab)χ2(ab)e(abp) (3)
    =1τ(χ2)τ(¯χ4)τ(χ4χ2).

    For any non-principal character ψ, from Lemma 2 we have

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2). (4)

    Taking ψ=χ4, note that

    τ(χ2)=p,  τ(χ4)τ(¯χ4)=χ4(1)p,

    from (3) and (4), we have

    p1a=1χ4(a)χ2(a)χ2(a+1)=¯χ42(2)τ(χ24)τ(χ2)τ(¯χ4)τ(χ2)τ(χ4)=χ2(2)τ(χ2)τ2(¯χ4)τ(χ4)τ(¯χ4)=χ2(2)pτ2(¯χ4)χ4(1)p (5)
    =χ2(2)τ2(¯χ4)χ4(1)p.

    Similarly, we also have

    p1a=1¯χ4(a)χ2(a)χ2(a+1)=χ2(2)τ2(χ4)χ4(1)p. (6)

    Consider the quadratic character modulo p, we have

    (2p)=χ2(2)={1,if p±1mod8;1,if p±3mod8. (7)

    And when p1mod8, we have χ4(1)=1; when p5mod8, we have χ4(1)=1. Combining (2) and (5)–(7) we can deduce that

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    This prove Lemma 3.

    Lemma 4. Let p be an odd prime with p1mod4. Then for any integer k4 and n with (n,p)=1, we have the fourth-order linear recurrence formula

    Gk(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n),

    where

    α=α(p)=12p1a=1(a3+ap)=p12a=1(a+ˉap),

    (p)=χ2 denotes the Legendre's symbol.

    Proof. For p1mod4, any integer n with (n,p)=1, and fourth-order character χ4 modulo p, we have the identity

    χ44(n)=¯χ44(n)=χ0(n),  χ24(n)=χ2(n),

    where χ0 denotes the principal character modulo p.

    According to Lemma 3,

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)),
    G(n)=1+p1a=1(a2+nˉa2p).  

    We have

    G(n)=χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)), (8)
    G2(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]2=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)τ4(¯χ4)+χ2(n)τ4(χ4)+2p2)=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2).

    According to Lemma 1, we have

    (τ2(χ4)+τ2(¯χ4))2=τ4(¯χ4)+τ4(χ4)+2p2=4pα2.

    Therefore, we may immediately deduce

    G2(n)=12(χ2(n)(G(n)+χ2(n))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2)=12χ2(n)(G(n)+χ2(n)) (9)
    +1p[χ2(n)((τ2(¯χ4)+τ2(χ4))22p2)+2p2]=2p12χ2(n)G(n)+(4α22p)χ2(n),
    G3(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]3=(2p12χ2(n)G(n)+(4α22p)χ2(n))G(n) (10)
    =(4α22p)χ2(n)G(n)+(2p+3)G(n)(4p2)χ2(n)2(4α22p)

    and

    [G2(n)(2p1)]2=[χ2(n)(4α22p)2χ2(n)G(n)]2,

    which implies that

    G4(n)=(4p+2)G2(n)+8(p2α2)G(n)+[(4α22p)2(2p1)2]. (11)

    So for any integer k4, from (8)–(11), we have the fourth-order linear recurrence formula

    Gk(n)=Gk4(n)G4(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n).

    This proves Lemma 4.

    In this section, we will complete the proof of our theorem.

    Let p be any prime with p1mod4, then we have

    K0(p)=1p1p1n=1G0(n)=p1p1=1. (12)
    K1(p)=1p1p1n=1G1(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))=0, (13)
    K2(p)=1p1p1n=1G2(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))2=2p+1, (14)
    K3(p)=1p1p1n=1G3(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))3=3(4α22p). (15)

    It is clear that from Lemma 4, if k4, we have

    Kk(p)=1p1p1n=1Gk(n)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p). (16)

    Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that lead to Corollary 1.

    This completes the proofs of our all results.

    Some notes:

    Note 1: In our theorem, know n is an integer, and (n,p)=1. According to the properties of quadratic residual, χ2(n)=±1, χ4(n)=±1.

    Note 2: In our theorem, we only discussed the case p1mod8. If p3mod4, then the result is trivial. In fact, in this case, for any integer n with (n,p)=1, we have the identity

    G(n)=1+p1a=1(a2+nˉa2p)=1+p1a=1(a4p)(a4+np)=1+p1a=1(ap)(a+np)=1+p1a=1(a2+nap)=1+p1a=1(1+nˉap)=p1a=0(1+nap)=0.

    Thus, for all prime p with p3mod4 and k1, we have Kk(p)=0.

    The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p) with p1mod4. That is, for any integer k, we have the identity

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p).

    Thus, the problems of calculating a linear recurrence formula of one kind special character sums modulo a prime are given.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the anonymous referee for very helpful and detailed comments.

    This work is supported by the N.S.F. (11971381, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY007).

    The authors declare no conflicts of interest.



    [1] World Health Organization, Anti-tuberculosis Drug Resistance in the World: Third Global Report, No. WHO / HTM / TB / 2004. 343, World Health Organization, 2004.
    [2] J. Cohen, Extensively drug-resistant TB gets foothold in South Africa, Science 313 (2006), 1554.
    [3] L. B. Reichman, J. H. Tanne, Timebomb: The Global Epidemic of Multi-Drug Resistant Tuberculosis, 2002.
    [4] Y. Zhou, K. Khan, Z. Feng, et al. Projection of tuberculosis incidence with increasing immigration trends, J. Theor. Biol., 254 (2008), 215–228.
    [5] P. Rodrigues, M. G. M. Gomes, C. Rebelo, Drug resistance in tuberculosis: a reinfection model, Theor. Popul. Biol., 71 (2007), 196–212.
    [6] N. Blaser, C. Zahnd, S. Hermans, et al. Tuberculosis in Cape Town: an age-structured transmission model, Epidemics, 14 (2016), 54–61.
    [7] C. P. Bhunu, W. Garira, Z. Mukandavire, et al. Tuberculosis transmission model with chemoprophylaxis and treatment, B. Math. Biol., 70 (2008), 1163–1191.
    [8] Centers for Disease Control and Prevention, TB in Children in the United States, CDC, 2014. Available from: https://www.cdc.gov/tb/topic/populations/tbinchildren/default.htm.
    [9] S. M. Blower, P. M. Small, P. C. Hopewell, Control strategies for tuberculosis epidemics: new models for old problems, Science, 273 (1996), 497–500.
    [10] Fatmawati, H. Tasman, An optimal treatment control of TB-HIV coinfection, International Journal of Mathematics and Mathematical Sciences, 2016 (2016).
    [11] R. I. Hickson, G. N. Mercer, K. M. Lokuge, A metapopulation model of tuberculosis transmission with a case study from high to low burden areas, PLoS One, 7 (2012).
    [12] R. M. G. J. Houben, T. Sumner, A. D. Grant, et al. Ability of preventive therapy to cure latent Mycobacterium tuberculosis infection in HIV-infected individuals in high-burden settings, P. Natl. A. Sci., 111 (2014), 5325–5330.
    [13] R. Kaplan, J. Caldwell, K. Middelkoop, et al. Impact of ART on TB case fatality stratified by CD4 count for HIV-positive TB patients in Cape Town, South Africa (2009-2011), J. Acq. Imm. Def., 66 (2014), 487–494.
    [14] Fatmawati, U. D. Purwati, F. Riyudha, et al. Optimal control of a discrete age-structured model for tuberculosis transmission, Heliyon, 6 (2020).
    [15] S. G, Samko, A. A, Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
    [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California, USA, 1999.
    [17] T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci., 22 (2015), 511–525.
    [18] J. Huo, H. Zhao, L. Zhu, The effect on backward bifurcation in a fractional orde HIV model, Nonlinear Analysis: Real World Applications, 26 (2015), 289–305.
    [19] M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, et al. Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model, Phys. Rev. E., 95 (2017).
    [20] C. M. A. Pinto, A. R. M. Carvalho, The HIV/TB coinfection severity in the presence of TB multidrug resistant strains, Ecol. Complex., 32 (2017), 1–20.
    [21] Fatmawati, E. M. Shaiful, M. I. Utoyo, A fractional order model for HIV dynamics in a two-sex population, International Journal of Mathematics and Mathematical Sciences, 2018 (2018).
    [22] G. C. Wu, Z. G. Deng, D. Baleanu, et al. New variable-order fractional chaotic systems for fast image encryption, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019).
    [23] G. C. Wu, T. Abdeljawad, J. Liu, et al. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Analysis: Modelling and Control, 24 (2019), 919–936.
    [24] G. C. Wu, D. Q. Zeng, D. Baleanu, Fractional impulisve differential equations: Exact solutions, integral equations and short memory case, Frac. Calc. Appl. Anal., 22 (2019), 180–192.
    [25] M. Itik, S. P. Banks, Chaos in a three-dimensional cancer model, Int. J. Bifurcat. Chaos, 20 (2010), 71–79.
    [26] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13.
    [27] M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043–3052.
    [28] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072.
    [29] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016).
    [30] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447–454.
    [31] A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Pheno., 13 (2018).
    [32] A. Atangana, J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018).
    [33] M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), 227–238.
    [34] E. Bonyah, Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular fractional derivatives, Chaos, Solitons & Fractals, 116 (2018), 316–331.
    [35] K. Muhammad Altaf, A. Atangana, Dynamics of Ebola disease in the framework of different fractional derivatives, Entropy, 21 (2019).
    [36] R. Jan, M. A. Khan, P. Kumam, et al, Modeling the transmission of dengue infection through fractional derivatives, Chaos, Solitons & Fractals, 127 (2019), 189–216.
    [37] W. Wang, M. A. Khan, P. Kumam, et al. A comparison study of bank data in fractional calculus, Chaos, Solitons & Fractals, 126 (2019), 369–384.
    [38] M. A. Khan, The dynamics of a new chaotic system through the Caputo-Fabrizio and AtanaganBaleanu fractional operators, Adv. Mech. Eng., 11 (2019).
    [39] Fatmawati, M. A. Khan, M. Azizah, et al. A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos, Solitons & Fractals, 122 (2019), 32–46.
    [40] S. Ullah, M. A. Khan, M. Farooq, et al. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative, Discrete Cont. Dyn. S, 13 (2019).
    [41] A. A. Velayati, Tuberculosis in children, International Journal of Mycobacteriology, 5 (2016).
    [42] C. Castillo-Chaves, B. Song, Dynamic models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404.
    [43] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286–293.
    [44] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726.
    [45] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
    [46] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29 (2002), 3–22.
    [47] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36 (2004), 31–52.
    [48] C. P. Bhunu, Mathematical analysis of a three-strain tuberculosis transmission model, Appl. Math. Model., 35 (2011), 4647–4660.
    [49] S. Athithan, M. Ghosh, Optimal control of tuberculosis with case detection and treatment, World Journal of Modelling and Simulation, 11 (2015), 111–122.
    [50] Word Health Organization, Factsheet on the World Tuberculosis Report 2017, WHO, 2017. Available from: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.
    [51] J. J. Tewa, S. Bowong, B. Mewoli, Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis, Appl. Math. Model., 36 (2012), 2466–2485.
    [52] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, The European Physical Journal Plus, 132 (2017), 444.
    [53] L. Xu, H. Hub, F. Qinc, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117.
    [54] L. Xu, J. Li, S. S. Ge, Impuls ivestabilization of fractional differential systems, ISA T., 70 (2017), 125–131.
    [55] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000.
  • This article has been cited by:

    1. Mounia Mouy, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, Wael W. Mohammed, On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation, 2022, 7, 2504-3110, 31, 10.3390/fractalfract7010031
    2. Sabbavarapu Nageswara Rao, Manoj Singh, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini, Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP, 2023, 7, 2504-3110, 499, 10.3390/fractalfract7070499
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8157) PDF downloads(965) Cited by(56)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog