Citation: Bashir Ahmad, Ahmed Alsaedi, Mona Alsulami, Sotiris K. Ntouyas. Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain[J]. AIMS Mathematics, 2019, 4(6): 1634-1663. doi: 10.3934/math.2019.6.1634
[1] | L. Zheng, X. Zhang, Modeling and Analysis of Modern Fluid Problems, London: Academic Press, 2017. |
[2] | F. T. Akyildiz, H. Bellout, K. Vajravelu, et al. Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces, Nonlinear Anal. Real., 12 (2011), 2919-2930. doi: 10.1016/j.nonrwa.2011.02.017 |
[3] | A. Abid, P. Eloe, Positive solutions of boundary value problems for ordinary differential equations with dependence on higher order derivatives, Comm. Appl. Nonlinear Anal., 24 (2017), 101-108. |
[4] | M. Ashordia, On boundary value problems for systems of nonlinear generalized ordinary differential equations, Czechoslovak Math. J., 67 (2017), 579-608. |
[5] | R. Liu, Z. Wu, Well-posedness of a class of two-point boundary value problems associated with ordinary differential equations, Adv. Differ. Equ., 2018 (2018), 54. |
[6] | V. A. Il'in, E. I. Moiseev, Nonlocal boundary-value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Diff. Equat., 23 (1987), 803-810. |
[7] | P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521-527. doi: 10.1016/j.aml.2004.05.009 |
[8] | J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673-693. doi: 10.1112/S0024610706023179 |
[9] | S. Clark, J. Henderson, Uniqueness implies existence and uniqueness criterion for non local boundary value problems for third-order differential equations, Proc. Amer. Math. Soc., 134 (2006), 3363-3372. doi: 10.1090/S0002-9939-06-08368-7 |
[10] | J. R. Graef, J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. Theor., 71 (2009), 1542-1551. doi: 10.1016/j.na.2008.12.047 |
[11] | M. Feng, X. Zhang, W. Ge, Existence theorems for a second order nonlinear differential equation with nonlocal boundary conditions and their applications, J. Appl. Math. Comput., 33 (2010), 137-153. doi: 10.1007/s12190-009-0278-x |
[12] | B. Ahmad, S. K. Ntouyas, H. H. Alsulami, Existence results for n-th order multipoint integral boundary-value problems of differential inclusions, Electron. J. Differ. Eq., 203 (2013), 1-13. |
[13] | B. Ahmad, A. Alsaedi, N. Al-Malki, On higher-order nonlinear boundary value problems with nonlocal multipoint integral boundary conditions, Lith. Math. J., 56 (2016), 143-163. doi: 10.1007/s10986-016-9311-6 |
[14] | M. Boukrouche, D. A. Tarzia, A family of singular ordinary differential equations of the third order with an integral boundary condition, Bound. Value Probl., 1 (2018), 32. |
[15] | A. Alsaedi, M. Alsulami, R. P. Agarwal, et al. Some new nonlinear second-order boundary value problems on an arbitrary domain, Adv. Differ. Equ., 1 (2018), 227. |
[16] | B. Ahmad, A. Alsaedi, M. Alsulami, et al. Second-order ordinary differential equations and inclusions with a new kind of integral and multi-strip boundary conditions, Differ. Equ. Appl., 11 (2019), 183-202. |
[17] | T. Hayat, A. Aziz, T. Muhammad, et al. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet, J. Magn. Magn. Mater., 408, (2016), 99-106. |
[18] | T. Hayat, M. Z. Kiyani, I. Ahmad, et al. On analysis of magneto Maxwell nano-material by surface with variable thickness, Int. J. Mech. Sci., 131 (2017), 1016-1025. |
[19] | G. S. Wang, A. F. Blom, A strip model for fatigue crack growth predictions under general load conditions, Eng. Fract. Mech., 40 (1991), 507-533. doi: 10.1016/0013-7944(91)90148-T |
[20] | E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst., 349 (2012), 2750-2769. doi: 10.1016/j.jfranklin.2012.09.001 |
[21] | T. V. Renterghem, D. Botteldooren, K. Verheyen, Road traffic noise shielding by vegetation belts of limited depth, J. Sound Vib., 331 (2012), 2404-2425. doi: 10.1016/j.jsv.2012.01.006 |
[22] | A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2005. |