Research article Special Issues

Magnetic properties of Sm5Fe17 melt-spun ribbons and their borides

  • Received: 24 August 2015 Accepted: 20 October 2015 Published: 22 October 2015
  • Sm5Fe17 melt-spun ribbons exhibited low coercivity and partly or mostly consisted of the amorphous phase. Annealing of Sm5Fe17 melt-spun ribbon resulted in the formation of the Sm5Fe17 phase. The annealed Sm5Fe17 melt-spun ribbon exhibited a high coercivity. It was found that the addition of B to the Sm5Fe17 alloy resulted in the promotion of the Sm2Fe14B phase. Annealed Sm5Fe17Bx (x = 0.5) melt-spun ribbons consisted of the Sm5Fe17 phase together with the Sm2Fe14B and SmFe2 phases. On the other hand, annealed Sm5Fe17Bx (x = 1.0-1.5) melt-spun ribbons consisted of the Sm2Fe14B and SmFe2 phases without the Sm5Fe17 phase. The resultant Sm5Fe17Bx (x = 1.0-1.5) melt-spun ribbons still showed a coercivity of around 2 kOe. The annealed Sm5Fe17 melt-spun ribbon exhibited a high coercivity over 25 kOe and a remanence of 40 emu/g, whereas the annealed Sm5Fe17B1.0 melt-spun ribbon exhibited a high remanence of 65 emu/g and a coercivity of 2.0 kOe.

    Citation: Tetsuji Saito, Daisuke Nishio-Hamane. Magnetic properties of Sm5Fe17 melt-spun ribbons and their borides[J]. AIMS Materials Science, 2015, 2(4): 392-400. doi: 10.3934/matersci.2015.4.392

    Related Papers:

    [1] Yanjun Liu, Chin-Chen Chang, Peng-Cheng Huang . Security protection using two different image shadows with authentication. Mathematical Biosciences and Engineering, 2019, 16(4): 1914-1932. doi: 10.3934/mbe.2019093
    [2] Xuehu Yan, Xuan Zhou, Yuliang Lu, Jingju Liu, Guozheng Yang . Image inpainting-based behavior image secret sharing. Mathematical Biosciences and Engineering, 2020, 17(4): 2950-2966. doi: 10.3934/mbe.2020166
    [3] Qi Wang, John Blesswin A, T Manoranjitham, P Akilandeswari, Selva Mary G, Shubhangi Suryawanshi, Catherine Esther Karunya A . Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols. Mathematical Biosciences and Engineering, 2023, 20(11): 19983-20001. doi: 10.3934/mbe.2023885
    [4] Guozheng Yang, Lintao Liu, Xuehu Yan . A compressed secret image sharing method with shadow image verification capability. Mathematical Biosciences and Engineering, 2020, 17(4): 4295-4316. doi: 10.3934/mbe.2020237
    [5] Bo Wang, Yabin Li, Jianxiang Zhao, Xue Sui, Xiangwei Kong . JPEG compression history detection based on detail deviation. Mathematical Biosciences and Engineering, 2019, 16(5): 5584-5594. doi: 10.3934/mbe.2019277
    [6] Xuehu Yan, Longlong Li, Lintao Liu, Yuliang Lu, Xianhua Song . Ramp secret image sharing. Mathematical Biosciences and Engineering, 2019, 16(5): 4433-4455. doi: 10.3934/mbe.2019221
    [7] Feng Liu, Xuehu Yan, Lintao Liu, Yuliang Lu, Longdan Tan . Weighted visual secret sharing with multiple decryptions and lossless recovery. Mathematical Biosciences and Engineering, 2019, 16(5): 5750-5764. doi: 10.3934/mbe.2019287
    [8] Jingju Liu, Lei Sun, Jinrui Liu, Xuehu Yan . Fake and dishonest participant location scheme in secret image sharing. Mathematical Biosciences and Engineering, 2021, 18(3): 2473-2495. doi: 10.3934/mbe.2021126
    [9] Shudong Wang, Yuliang Lu, Xuehu Yan, Longlong Li, Yongqiang Yu . AMBTC-based visual secret sharing with different meaningful shadows. Mathematical Biosciences and Engineering, 2021, 18(5): 5236-5251. doi: 10.3934/mbe.2021266
    [10] Lina Zhang, Jing Zhang, Jiaqi Sun, Qingpeng Chen . A global progressive image secret sharing scheme under multi-group joint management. Mathematical Biosciences and Engineering, 2024, 21(1): 1286-1304. doi: 10.3934/mbe.2024055
  • Sm5Fe17 melt-spun ribbons exhibited low coercivity and partly or mostly consisted of the amorphous phase. Annealing of Sm5Fe17 melt-spun ribbon resulted in the formation of the Sm5Fe17 phase. The annealed Sm5Fe17 melt-spun ribbon exhibited a high coercivity. It was found that the addition of B to the Sm5Fe17 alloy resulted in the promotion of the Sm2Fe14B phase. Annealed Sm5Fe17Bx (x = 0.5) melt-spun ribbons consisted of the Sm5Fe17 phase together with the Sm2Fe14B and SmFe2 phases. On the other hand, annealed Sm5Fe17Bx (x = 1.0-1.5) melt-spun ribbons consisted of the Sm2Fe14B and SmFe2 phases without the Sm5Fe17 phase. The resultant Sm5Fe17Bx (x = 1.0-1.5) melt-spun ribbons still showed a coercivity of around 2 kOe. The annealed Sm5Fe17 melt-spun ribbon exhibited a high coercivity over 25 kOe and a remanence of 40 emu/g, whereas the annealed Sm5Fe17B1.0 melt-spun ribbon exhibited a high remanence of 65 emu/g and a coercivity of 2.0 kOe.


    In mathematical analysis and its applications, the hypergeometric function plays a vital role. Various special functions which are used in different branches of science are special cases of hypergeometric functions. Numerous extensions of special functions have introduced by many authors (see [1,2,3,4]). The generalized Gamma $ k $-function and its properties are broadly discussed in [5,6,7,8]. Later on, the researchers [9] motivated by the above idea and presented the $ k $-fractional integral and its applications. The integral representation of generalized confluent hypergeometric and hypergeometric $ k $-functions is presented by Mubeen and Habibullah [10]. The series solution of $ k $-hypergeometric differential equation is proposed by Mubeen et al. [11,12,13]. Li and Dong [14] established the hypergeometric series solutions for the second-order non-homogeneous $ k $-hypergeometric differential equation. The Generalized Wright $ k $-function and its different indispensable properties are briefly discussed in [15,16]. A class of Whittaker integral transforms involving confluent hypergeometric function and Fox H-function as kernels are discussed in [17,18]. An extension of some variant of Meijer type integrals in the class of Bohemians is elaborated in [19].

    Generalization of Gr$ \ddot{u} $ss-type and Hermite-Hadamard type inequalities concerning with $ k $-fractional integrals are explored in [20,21]. Many researchers have derived the generalized forms of the Riemann-Liouville $ k $-fractional integrals and established several inequalities by considering various generalized fractional integrals. The readers may confer with [22,23,24,25,26] for details.

    The Hadamard $ k $-fractional integrals and Hadamard-type inequalities for $ k $-fractional Riemann-Liouville integrals are presented by Farid et al. [27,28]. In [29,30], the authors have established inequalities by employing Hadamard-type inequalities for $ k $-fractional integrals. Nisar et al. [31] discussed Gronwall type inequalities by considering Riemann-Liouville $ k $ and Hadamard $ k $-fractional derivatives. Hadamard $ k $-fractional derivative and its properties are disscussed in [32]. Rahman et al. [33] described generalized $ k $-fractional derivative operator.

    The Mittag-Leffler function naturally occurs in the solutions of fractional integrodifferential equations having an arbitrary order that is similar to that of the exponential function. The Mittag-Leffler functions have acquired significant recognition due to their wide applications in assorted fields. The Mittag-Leffler stability of fractional-order nonlinear dynamic systems is studied in [34]. Dos Santos discussed the Mittag-Leffler function in the diffusion process in [35]. The noteworthy role of the Mittag-Leffler function and its generalizations in fractional modelling is explored by Rogosin [36]. We suggest the readers to study the literature [37,38,39] for more details.

    Now, we present some basic definitions and results.

    The normalized Wright function is defined as

    $ Wγ,δ(z)=Γ(δ)n=0znΓ(δ+nγ)n!,γ>1,δC.
    $
    (1.1)

    Fox [40] and Wright [41] defined the Fox-Wright hypergeometric function $ _{u}\psi_{v} $ as:

    $ uψv[(γ1,C1),.....,(γu,Cu)(δ1,D1)),.....,(δv,Dv)|z]=n=0ui=1Γ(γi+nCi)znvi=1Γ(δi+nDi)n!,
    $
    (1.2)

    where $ C_{i}\geq 0, i = 1, ..., u; D_{i}\geq 0, i = 1, ..., v. $ The function $ _{u}\psi_{v} $ is the generalized form of the well-known hypergeometric function $ _{u}F_{v} $ with u and v number of parameters in numerator and denominator respectively. It is given in [42] as:

    $ uFv[γ1,.....,γuδ1,.....,δv|z]=n=0ui=1   (γi)nznvi=1   (δi)nn!,
    $
    (1.3)

    where $ (\kappa)_n $ is called the Pochhammer symbol and is defined by Petojevic [43] as:

    $ (\kappa)_0 = 1, \; and\; (\kappa)_n = \kappa (\kappa +1).....(\kappa +n-1) = \frac{\Gamma (\kappa +n)}{\Gamma (\kappa)}, n\in \mathbb{N}. $

    From definitions (1.2) and (1.3), we have the following relation

    $ uψv[(γ1,1),.....,(γu,1)(δ1,1),.....,(δv,1)|z]=Γ(γ1).....Γ(γu)Γ(δ1).....Γ(δv)uFv[γ1,.....,γuδ1,.....,δv|z].
    $
    (1.4)

    The Mittag-Leffler function with $ 2m $ parameters [44] is defined as follows:

    $ E(δ,D)m(z)=n=0znmi=1Γ(δi+nDi),zC
    $
    (1.5)

    and in the form of Fox-Wright function it can be expressed as:

    $ E(δ,D)m(z)=1ψm[(1,1)(δ1,D1),.....,(δv,Dv)|z],zC.
    $
    (1.6)

    The function $ \phi_{(\gamma_1, \delta_2)}^{(\delta_1, D_1)} : (0, \infty)\rightarrow \mathbb{R} $ is defined in [45] as

    $ ϕ(δ1,D1)(γ1,δ2)(z)=Γ(δ1)Γ(δ2)Γ(γ1)1ψ2[(γ1,1)(δ1,D1),(δ2,D2)|z],zC,
    $
    (1.7)

    where $ \gamma_1, \delta_1, \delta_2 $ and $ D_1 > 0 $.

    Diaz and Pariguan [46] proposed the following Pochhammer's $ k $-symbol $ (z)_{n, k} $ and the generalized Gamma $ k $-function by

    $ (u)n,k=u(u+k)(u+2k)....(u+(n1)k);uC,kR,nN+
    $
    $ Γk(u)=limn=n!kn(nk)uk1u)n,k,k>0,uCkZ,
    $

    respectively. They also introduced the generalized hypergeometric $ k $-function in [46] as follows:

    $ uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=n=0ui=1    (γi)n,k z nvi=1    (δi)n,k n!.
    $
    (1.8)

    Now, we define the normalized Wright $ k $-function as follows:

    $ W_{\gamma, \delta, k}(z) = \Gamma_k(\delta) \sum\limits ^\infty_{n = 0}\frac{z^n}{\Gamma_k(\delta+ kn\gamma)n!}, \gamma > -1, \; \delta \in \mathbb{C} $

    and the Fox -Wright type $ k $-function is as follows:

    $ uψv[(γ1,kC1),.....,(γu,kCu)(δ1,kD1)),.....,(δv,kDv)|z]=n=0ui=1    Γk    (γi+nkCi)znvi=1    Γk    (δi+nkDi)n!,
    $
    (1.9)

    So from Eqs (1.9) and (1.8), we have

    $ uψv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]=Γk(γ1).....Γk(γu)Γk(δ1).....Γk(δv)uFv,k[(γ1,k),.....,(γu,k)(δ1,k),.....,(δv,k)|z]
    $
    (1.10)

    and (1.5) takes the form

    $ E(δ,D)m,k(z)=n=0znmi=1Γk(δi+nkDi),zC.
    $
    (1.11)

    The function $ E_{(\delta, D)_{m, k}}(z) $ in terms of the function $ _{u}\psi_{v, k} $ is expressed as

    $ E(δ,D)m,k(z)=1ψm,k[(1,k)(δ1,kD1),.....,(δv,kDv)|z]zC.
    $
    (1.12)

    So the function (1.7) is given by

    $ ϕ(δ1,D1)γ1,δ2,k(z)=Γk(δ1)Γk(δ2)Γk(γ1)1ψ2,k[(γ1,k)(δ1,kD1),(δ2,k)|z]zC.
    $
    (1.13)

    Redheffer [47] presented the following inequality in 1969,

    $ π2x2π2+x2sinxx.
    $
    (1.14)

    In the same year, Redheffer and Williams [48] proved the above inequality. Zhu and Sun [49] used the hyperbolic functions $ \sinh x $ and $ \cosh x $ and proved the following Redheffer-type inequalities

    $ (r2+x2r2x2)γsinhxx(r2+x2r2x2)δ
    $
    (1.15)

    and

    $ (r2+x2r2x2)γcoshx(r2+x2r2x2)δ1,
    $
    (1.16)

    where $ 0 < x < r, \; \gamma \leq 0, \; \delta\geq\frac{r^{2}}{12} $ and $ \delta_{1}\geq \frac{r^{2}}{4} $. By using the inequalities (1.15) and (1.16), Mehrez proved the following Theorem (see[50]).

    Theorem 1.1. The following inequalities

    $ (s+zsz)σγ,δWγ,δ(z)(s+zsz)ργ,δ
    $
    (1.17)

    holds true for all $ s > 0 $, $ \gamma, \delta > 0 $, $ 0 < z < s $, where $ \sigma_{\gamma, \delta} = 0 $ and $ \rho_{\gamma, \delta} = \frac{s\Gamma(\delta)}{2\Gamma(\delta+\gamma)} $ are the best possible constants and $ W_{\gamma, \delta} $ is the normalized Wright function defined by (1.1).

    Recently, the same author has proved the following inequality (see[45]).

    Theorem 1.2. Suppose that $ r, \gamma_1, \delta_1, \delta_2, D_1 > 0 $. Then the subsequent inequalities

    $ (r+zrz)λ(δ1  ,D1)γ1,δ2ϕ(δ1,D1)γ1,δ2(z)(r+zrz)μ(δ1  ,D1)γ1,δ2
    $
    (1.18)

    are true for all $ z \in (0, r) $, where $ \lambda ^{(\delta_1, D_1)}_{\gamma_1, \delta_2} = 0 $ and $ \mu ^{(\delta_1, D_1)}_{\gamma_1, \delta_2} = \frac{r \gamma_1\Gamma(\delta_1)}{2\delta_2\Gamma(\delta_1+D_1)} $ are the best possible constants. Where $ \phi_{\gamma_1, \delta_2}^{(\delta_1, D_1)}(z) $ is defined in (1.7).

    In this article, we extend the Redheffer-type inequality (1.18) for the normalized Fox-Wright $ k $-functions $ \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z) $ and establish new Redheffertype inequalities for the hypergeometric $ k $-function $ _{1}F_{2, k} $ and for the four parametric Mittag-Leffler $ k $-function $ \tilde{E}_{\delta_1, D_1;\delta_2, 1, k}(z) = \Gamma_k(\delta_1)\Gamma_k(\delta_2)E_{\delta_1, D_1;\delta_2, 1, k}(z) $.

    In this section, we first state the two lemmas which are helpful for proving the main results. The first lemma from [51] describes the monotonicity of two power series, and the second lemma is the monotone form of the L'Hospitals' rule [52]. The two lemmas are stated below.

    Lemma 2.1. Suppose that the two sequences $ \{u_n\}_{n\geq 0} $ and $ \{v_n\}_{n\geq 0} $ of real numbers, and let the power series $ f(x) = \sum_{n\geq0}u_n x^n $ and $ g(x) = \sum_{n\geq0}v_n x^n $ be convergent for $ |x| < r $. If $ v_n > 0 $ for $ n\geq 0 $ and if the sequence $ \{\frac{u_n}{v_n}\}_{n\geq 0} $ is (strictly) increasing (decreasing), then the function $ x\rightarrow \frac{f(x)}{g(x)} $ is (strictly) increasing (decreasing) on $ (0, r) $.

    Lemma 2.2. Suppose that the two functions $ f_1, g_1 : [a, b]\rightarrow R $ be continuous and differentiable on $ (a, b) $. Assume that $ g_1^\prime\neq 0 $ on $ (a, b) $. If $ \frac{f_1^\prime}{g_1^\prime} $ is increasing (decreasing) on $ (a, b) $, then the functions

    $ x\mapsto \frac{f_1(x)-f_1(a)}{g_1(x)-g_1(a)}\; and \; x\mapsto \frac{f_1(x)-f_1(b)}{g_1(x)-g_1(b)} $

    are also increasing (decreasing) on $ (a, b) $.

    Theorem 2.3. Let$ r > 0 \gamma_1, \delta_1, \delta_2, D_1 > 0 $. Then the following inequalities holds

    $ (r+zrz)λ(δ1  ,D1)γ1,δ2ϕ(δ1  ,D1)γ1,δ2,k(z)(r+zrz)μ(δ1  ,D1)γ1,δ2,
    $
    (2.1)

    where $ z \in (0, r) $, $ \lambda ^{(\delta_1, D_1)}_{\gamma_1, \delta_2} = 0 $ and $ \mu ^{(\delta_1, D_1)}_{\gamma_1, \delta_2} = \frac{r \gamma_1\Gamma_k(\delta_1)}{2\delta_2\Gamma_k(\delta_1+kD_1)} $ are the appropriate constants.

    Proof. From definition of the function $ \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z) $ from Eq (1.13), we have

    $ ddz(ϕ(δ1  ,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)×n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!.
    $
    (2.2)

    Let

    $ M(z) = \frac{\log \phi_{\gamma_{\ \ 1} \ \ , \delta_{\ \ 2} \ \ , k}^{(\delta_{\ \ 1}\;, \ \ D_{\ \ 1}\;)} \ \ (z)}{\log (\frac{r+z}{r-z}\;)} = \frac{g(z)}{h(z)}, $

    where $ g(z) = \log (\phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z)) $ and $ h(z) = \log (\frac{r+z}{r-z}) $. Now we will find $ \frac{g'(z)}{h'(z)} $ as given below

    $ \frac{g'(z)}{h'(z)} = \frac{(r^{2}-z^{2})\frac{d}{dz}(\phi_{\gamma_{\ \ 1} \ \ , \delta_{\ \ 2} \ \ , k}^{(\delta_{\ \ 1}, \ \ D_{\ \ 1})} \ \ (z))}{2r \phi_{\gamma_{\ \ 1} \ \ , \delta_{\ \ 2} \ \ , k}^{(\delta_{\ \ 1} \ \ , D_{\ \ 1})} \ \ (z)} = \frac{G(z)}{2rH(z)}, $

    where $ G(z) = (r^{2}-z^{2})\frac{d}{dz}(\phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}) $ and $ H(z) = \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z) $

    Using 2.2, we have

    $ G(z)=Γk(δ1)Γk(δ2)Γk(γ1)(r2z2)×n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!=Γk(δ1)Γk(δ2)Γk(γ1)(r2z2)(n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!n=2Γk(γ1+(n1)k)znΓk(δ1+D1(n1)k)Γk(δ2+(n1)k)(n2)!)=r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)+r2Γk(δ1)Γk(δ2)Γk(γ1+2k)Γk(γ1)Γk(δ1+2D1k)Γk(δ2+2k)+Γk(δ1)Γk(δ2)Γk(γ1)n=2(r2Γk(γ1+(n+1)k)znΓk(δ1+D1(n+)k)Γk(δ2+(n+1)k)n!Γk(γ1+(n1)k)znΓk(δ1+D1(n1)k)Γk(δ2+(n1)k)(n2)!)zn=n=0vnzn,
    $

    where $ b_0 $, $ b_1 $ and $ v_n $ are as follows:

    $ b_0 = \frac{r^2\Gamma_k(\delta_1)\Gamma_k(\delta_2)\Gamma_k(\gamma_1+ k)}{\Gamma_k(\gamma_1)\Gamma_k(\delta_1+ D_1k)\Gamma_k(\delta_2+ k)}, \; \; b_1 = \frac{r^2\Gamma_k(\delta_1)\Gamma_k(\delta_2)\Gamma_k(\gamma_1+ 2k)}{\Gamma_k(\gamma_1)\Gamma_k(\delta_1+ 2D_1k)\Gamma_k(\delta_2+ 2k)} $

    and for $ n\geq 2 $, we have

    $ v_n = \frac{\Gamma_k(\delta_1)\Gamma_k(\delta_2)}{\Gamma_k(\gamma_1)}\sum\limits ^\infty_{n = 2}\Bigl(\frac{r^2\Gamma_k(\gamma_1+(n+1)k)} {\Gamma_k(\delta_1 +D_1 (n-+)k)\Gamma_k(\delta_2+(n+1)k)n!} $
    $ -\frac{\Gamma_k(\gamma_1+(n-1)k)z^{n}}{\Gamma_k(\delta_1 +D_1 (n-1)k)\Gamma_k(\delta_2+(n-1)k)(n-2)!}\Bigr). $

    Similarly, we can write $ H(z) $ as

    $ H(z) = \sum\limits ^\infty_{n = 0}d_n z^n, $

    where

    $ d_n = \frac{\Gamma_k(\delta_1)\Gamma_k(\delta_2)\Gamma_k(\gamma_1+ nk)}{\Gamma_k(\gamma_1)\Gamma_k(\delta_1+ nkD_1)\Gamma_k(\delta_2+ nk)}. $

    Next, we consider the sequence $ w_n = \frac{v_n}{d_n} $ such that $ w_0 = a_0 $ and $ w_1 = \frac{b_1}{d_1} $ and so on.

    Now, we have

    $ w1w0=r2Γk(δ2+k)Γk(γ1+2k)Γk(δ1+kD1)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)r2Γk(δ1)Γk(δ2)Γk(γ1+k)Γk(γ1)Γk(δ1+D1k)Γk(δ2+k)=r2(γ1+k)Γk(δ1+kD1)(δ2+k)Γk(δ1+2D1k)r2Γk(δ1)δ2)Γk(δ1+D1k)γ1δ2[Γk(δ1+kD1))Γk(δ1+2kD1)Γk(δ1)Γk(δ1+kD1)]0.
    $
    (2.3)

    Since $ \gamma_1\geq \delta_2 $ and employing the log-convexity property of $ \Gamma_k $ function, the ratio $ z \mapsto \frac{\Gamma_k(z+c)}{\Gamma_k(z)} $ is increasing on $ (0, \infty) $ for $ c > 0 $. This shows that the inequality stated below

    $ Γk(z+c)Γk(z)Γk(z+c+d)Γk(z+d)
    $
    (2.4)

    holds for all $ z, c, d > 0 $. Using (2.4) in (2.3) by letting $ z = \delta_1 $ and $ c = d = kD_1 $, we observed that $ w_1\leq w_0 $. Likely, we have

    $ w2w1=r2Γk(γ1+3k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(δ2+3k)Γk(δ1+3kD1)Γk(γ1+2k)r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)=r2(γ1+2k)Γk(γ1+2k)(δ2+k)Γk(δ2+k)Γk(δ1+2kD1)(δ2+2k)Γk(δ2+2k)Γk(δ1+3kD1)(γ1+k)Γk(γ1+k)r2Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)
    $
    $ =r2Γk(γ1+2k)Γk(δ2+k)Γk(δ2+2k)Γk(γ1+k)[(γ1+2k)(δ2+k)Γk(δ1+2kD1)(γ1+k)(δ2+2k)Γk(δ1+3kD1)Γk(δ1+kD1)Γk(δ1+2kD1)]2Γk(δ2+2k)Γk(δ1+2kD1)Γk(γ1+k)Γk(δ2+k)Γk(δ1+kD1)Γk(γ1+2k)0.
    $
    (2.5)

    Since by using Eq (2.4), when $ z = \delta_1+kD_1 $ and $ c = d = kD_1 $, we have $ w_2\leq w_1. $

    Now, for $ n\geq 2 $, we have

    $ wn+1wn=r2Γk(γ1+(n+2)k)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)Γk(γ1+(n+1)k)Γk(δ2+(n+1)k)Γk(δ1+(n+2)kD1)(n+1)!Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)(n1)!Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)r2Γk(γ1+(n+1)k)Γk(δ2+nk)Γk(δ1+nkD1)Γk(γ1+nk)Γk(δ2+(n+1)k)Γk(δ1+(n+1)kD1)+n!Γk(γ1+(n1)k)Γk(δ2+nk)Γk(δ1+nkD1)(n2)!Γk(γ1+nk)Γk(δ2+(n11)k)Γk(δ1+(n1)kD1)=r2[(γ1+(n+1)k)Γk(δ1+(n+1)kD1)(δ2+(n+1)k)Γk(δ1+(n+2)kD1)(γ1+n)k)Γk(δ1+nkD1)(δ2+nk)Γk(δ1+(n+1)kD1)]+n!(n2)![(δ2+(n1)k)Γk(δ1+nkD1)(γ1+(n1)k)Γk(δ1+(n2)kD1)(n+1)(δ2+n)k)Γk(δ1+(n+1)kD1)(n1)(γ1+nk)Γk(δ1+nkD1)]r2(γ1+nk)(δ2+nk)[Γk(δ1+(n+1)kD1)Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γk(δ1+(n+1)kD1)]+n!(δ2+(n1)k)(n2)!(γ+(n1)k)[Γk(δ1+nkD1)Γk(δ1+(n1)kD1)Γk(δ1+(n+1)kD1)Γk(δ1+nkD1)]
    $
    (2.6)

    Using $ z = \delta_1 +nkD_1 $ and $ c = d = kD_1 $, we have the inequality (2.4) in the following form

    $ Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γ2k(δ1+(n+1)kD1)0
    $
    (2.7)

    and similarly for using $ z = \delta_1 +(n-1)kD_1 $ and $ c = d = kD_1 $, we have from (2.4)

    $ Γk(δ1+(n+2)kD1)Γk(δ1+nkD1)Γ2k(δ1+(n+1)kD1)0
    $
    (2.8)

    so by using (2.7) and (2.8) in (2.6), we have

    $ wn+1wn.
    $
    (2.9)

    Now from Eqs (2.3), (2.10) and (2.9), we conclude that the sequence $ \{w_n\}_{n\geq0} $ is a decreasing sequence.

    From Lemma (2.1), we deduce that $ \frac{g'}{h'} $ is decreasing on $ (0, r) $ and accordingly the function $ M(z) $ is also decreasing on $ (0, r) $. Alternatively, using the Bernoulli-L'Hospital's rule we get

    $ \lim\limits_{z\rightarrow0}M(z) = \frac{r\gamma_1\Gamma_k(\delta_1)}{2\delta_2\Gamma_k(\delta_1+kD_1)} \; and\; \lim\limits_{z\rightarrow0}M(z) = 0. $

    It is essential to reveal that there is another proof of this theorem which is described as following.

    For this, we define a function $ \Upsilon : (0, r)\rightarrow \mathbb {R} $ by

    $ \Upsilon(z) = \frac{r\gamma_1\Gamma_k(\delta_1)}{2\delta_2\Gamma_k(\delta_1+D_1)}\log(\frac{r+z}{r-z})-\log (\phi_{\gamma_1, \delta_2, k}^{(\delta_1, kD_1)}(z)). $

    Consequently,

    $ ϕ(δ1,kD1)γ1,δ2,k(z)Υ(z)=r2γ1Γk(δ1)δ2Γk(δ1+D1)(r2z2)ϕ(δ1,D1)γ1,δ2,k(z)ddz(ϕ(δ1,D1)γ1,δ2,k(z))=Γk(δ1)Γk(δ2)Γk(γ1)[r2γ1Γk(δ1)δ2Γk(δ1+kD1)(r2z2)n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]Γk(δ1)Γk(δ2)Γk(γ1)[γ1Γk(δ1)δ2Γk(δ1+kD1)n=0Γk(γ1+nk)znΓk(δ1+D1nk)Γk(δ2+nk)n!n=0Γk(γ1+(n+1)k)znΓk(δ1+D1(n+1)k)Γk(δ2+(n+1)k)n!]=Γk(δ1)Γk(δ2)Γk(γ1)n=0Γk(γ1+nk)znΓk(δ2+nk)n![γ1Γk(δ1)δ2Γk(δ1+kD1)(γ1+nk)(δ2+nk)Γk(δ1+D1(n+1)k)].
    $
    (2.10)

    Since $ \gamma_1\geq\delta_2 $, therefore $ \frac{\gamma_1}{\delta_2}\geq \frac{\gamma_1+nk}{\delta_2+nk} $ for every $ n\geq 0 $ and resultantly

    $ ϕ(δ1,D1)γ1,δ2,k(z)Υ(z)Γk(δ1)Γk(δ2)Γk(γ1)n=0Γk(γ1+nk)znΓk(δ2+nk)n![Γk(δ1)Γk(δ1+kD1)1Γk(δ1+kD1(n+1))].
    $

    Now, using the values $ z = \delta_1, \; c = kD_1 $ and $ d = nkD_1 $ in (2.4), function $ \Upsilon(z) $ is increasing on $ (0, r) $ and consequently $ \Upsilon(z)\geq\Upsilon(0) = 0 $. This completes the proof of right hand side of the inequality 2.1. For proving the left hand side of (2.1), we conclude from Eq (2.2) that the function $ \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z) $ is increasing on $ (0, \infty) $ and finally

    $ \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(z)\geq \phi_{\gamma_1, \delta_2, k}^{(\delta_1, D_1)}(0) = 1. $

    This ends the proof process of theorem $ 2.3. $

    Corollary 2.4. Let $ r, \gamma_1, \delta_1, \delta_2 > 0 $. Then inequalities

    $ (r+zrz)λ(δ1,1)γ1,δ21F2,k(γ1;δ1,δ2;z)(r+zrz)μ(δ1,1)γ1,δ2,
    $

    are true for all $ z \in (0, r) $, where $ \lambda ^{(\delta_1, 1)}_{\gamma_1, \delta_2} = 0 $ and $ \mu ^{(\delta_1, 1)}_{\gamma_1, \delta_2} = \frac{r \gamma_1}{2\delta_2\delta_1} $ are the suitable values of constants.

    Proof. This inequality can be proved by using $ D_1 = 1 $ in (2.1).

    Corollary 2.5. Let $ r, \delta_1, D_1 > 0 $. If $ 0 < \delta_2\leq 1, $ then the following inequalities

    $ (\frac{r+z}{r-z})^{\lambda ^{(\delta_1, D_1)}_{1, \delta_2}}\leq \tilde{E}_{\delta_1, D_1;\delta_2, 1, k}(z) \leq (\frac{r+z}{r-z})^{\mu ^{(\delta_1, D_1)}_{1, \delta_2}}, $

    hold for all $ z \in (0, r) $, where $ \lambda ^{(\delta_1, D_1)}_{1, \delta_2} = 0 $ and $ \mu ^{(\delta_1, D_1)}_{1, \delta_2} = \frac{r \Gamma_k(\delta_1)}{2\delta_2\Gamma_k(\delta_1+kD_1)} $ are the suitable values of constants.

    Proof. This inequality can be proved by using $ \gamma_1 = 1 $ in (2.1).

    Remark 2.6. The particular cases of the inequalities in Corollaries 2.4 and 2.5 for $ k = 1 $ are reduce to the results in [45,Corollaries 1.2 and 1.3] respectively.

    This article deals with the Redheffer-type inequalities by using the more general Fox-Wright function. Moreover, from the newly established inequalities, the results for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also obtained by using the appropriate values of exponents in generalized inequalities. The obtained results are more general, as shown by relating the special cases with the existing literature. The idea we used in this article attracts scientists' attention, and they may stimulate further research in this direction.

    Taif University Researchers Supporting Project number (TURSP-2020/275), Taif University, Taif, Saudi Arabia.

    The authors declares that there is no conflict of interests regarding the publication of this paper.

    [1] Kamprath H, Liu NC, Hedge H, et al. (1990) Magnetic properties of Sm-Fe-Ti-Al sputtered films with i H c greater than 30 kOe. J Appl Phys 67: 4948-4950. doi: 10.1063/1.344743
    [2] Stadelmaier HH, Schneider G, Henig ETh, et al. (1991) Magnetic Fe17R5 in the Fe-Nd and Fe(-Ti)-Sm systems, and other phases in Fe-Nd. Mater Lett 10: 303-309. doi: 10.1016/0167-577X(91)90142-S
    [3] Katter M, Wecker J, Schultz L, et al. (1990) Preparation of highly coercive Sm-Fe-Ti by rapid quenching. Appl Phys Lett 56: 1377-1379. doi: 10.1063/1.102518
    [4] Cadieu FJ, Hegde H, Rani R, et al. (1991) Cell volume expansion in Sm5(Fe, T)17, T = Ti, V, magnetic phases. Mater Lett 11: 284-285. doi: 10.1016/0167-577X(91)90203-I
    [5] Saito T, Ichihara M (2007) Synthesis and magnetic properties of Sm5Fe17 hard magnetic phase. Scripta Mater 57:457-460. doi: 10.1016/j.scriptamat.2007.05.037
    [6] Saito T (2007) Synthesis and magnetic properties of (Nd1-xSmx)5Fe17 (x = 0-1) phase. Appl Phys Lett 91: 072503-1-072503-3. doi: 10.1063/1.2770771
    [7] Saito T (2007) High coercivity in Sm5Fe17 melt-spun ribbon. J Alloys Compd 440: 315-318. doi: 10.1016/j.jallcom.2006.09.011
    [8] Saito T, Miyoshi H, Hamane DN (2012) Structures and magnetic properties of Sm5Fe17 melt-spun ribbon. J Appl Phys 111: -.
    [9] Kim DH, Zhang Y, Hadjipanayis GC (1998) Magnetic properties of Sm-Co-B-based nanocomposite magnets. J Magn Magn Mater 190: 302-306. doi: 10.1016/S0304-8853(98)00322-9
    [10] You C, Zhang ZD, Sun XK, et al. (2001) Phase transformation and magnetic properties of SmCo7-xBx alloys prepared by mechanical alloying. J Magn Magn Mater 234: 395-400. doi: 10.1016/S0304-8853(01)00435-8
    [11] Gapalan R, Xiong XY, Ohkubo T, et al. (2005) Nanoscale microstructure and magnetic properties of melt-spun Sm(Co0.725Fe0.1Cu0.12Zr0.04B0.015)7.4 ribbons. J Magn Magn Mater 295: 7-20. doi: 10.1016/j.jmmm.2004.12.033
    [12] Herbst JF (1991) R2Fe14B materials: Intrinsic properties and technological aspects. Rev Mod Phys 63: 819-898. doi: 10.1103/RevModPhys.63.819
    [13] Buschow KHJ (1971) The samarium-iron system. J Less-Common Metals 25: 131-134. doi: 10.1016/0022-5088(71)90124-X
    [14] Kim HT, Xiao QF, Zhang ZD, et al. (1997) Phases of melt-spun Sm1-xFe7+x alloys and magnetic properties of their nitrides. J Magn Magn Mater 173: 295-301. doi: 10.1016/S0304-8853(97)00169-8
  • This article has been cited by:

    1. Juncai Yao, Jing Shen, Congying Yao, Image quality assessment based on the perceived structural similarity index of an image, 2023, 20, 1551-0018, 9385, 10.3934/mbe.2023412
    2. Yue Jiang, Kejiang Chen, Wei Yan, Xuehu Yan, Guozheng Yang, Kai Zeng, Robust Secret Image Sharing Resistant to JPEG Recompression Based on Stable Block Condition, 2024, 26, 1520-9210, 10446, 10.1109/TMM.2024.3407694
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5886) PDF downloads(1131) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog