Research article

A Modified Lyrebird Optimization for Single, Double, and Triple Diode Parameters PV Cell Extraction

  • Published: 18 December 2025
  • Primary: 90B99; Secondary: 90C59

  • Accurate modeling of photovoltaic (PV) cells is essential for performance assessment, control, and optimization of solar energy systems. The diode circuit models, particularly the single-diode (SD), double-diode (DD), and triple-diode (TD) structures, are widely adopted for characterizing PV behavior; however, extracting their unknown parameters is a challenging nonlinear, multimodal optimization problem. To address these challenges, this study proposes a modified lyrebird optimization (MLO) algorithm, an enhanced variant of the recently developed LO. It integrates a memory-based learn search strategy (MBLSS) to reinforce exploration and a diversity maintenance learn search strategy (DMLSS) to refine exploitation. The algorithm was employed to extract parameters of both the RTC France solar cell and the Solarex MSX-60 PV module under SD, DD, and TD models. Extensive simulations and statistical analyses demonstrated that the proposed MLO significantly outperforms the conventional LO and a wide range of metaheuristic and analytical methods in terms of root mean square error (RMSE), convergence speed, stability, and robustness across multiple runs. In the MSX-60 module tests, the proposed MLO reduced the RMSE by more than 55% compared to the conventional LO and achieved a stable mean RMSE of 1.75 × 10-3 over 50 independent runs. Similarly, for the RTC France solar cell, MLO achieved a minimum RMSE of 9.82 × 10-4, outperforming several recently reported metaheuristics. Moreover, the proposed MLO was extended and validated on the Shell S75 monocrystalline module under different irradiance and temperature conditions. The results demonstrated consistently lower RMSE values and near-zero variance across operating ranges, confirming the robustness and stability of MLO in practical PV environments. The strong agreement between simulated and experimental I–V and P–V characteristics confirms the reliability of the extracted parameters. These findings highlight the potential of MLO as a robust and accurate tool for PV modeling, with promising applications in solar system design, performance evaluation, and predictive energy management.

    Citation: Sultan Hakmi, Hashim Alnami, Ghareeb Moustafa, Badr M Al Faiya, Ahmed Ginidi. A Modified Lyrebird Optimization for Single, Double, and Triple Diode Parameters PV Cell Extraction[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 642-690. doi: 10.3934/jimo.2026024

    Related Papers:

  • Accurate modeling of photovoltaic (PV) cells is essential for performance assessment, control, and optimization of solar energy systems. The diode circuit models, particularly the single-diode (SD), double-diode (DD), and triple-diode (TD) structures, are widely adopted for characterizing PV behavior; however, extracting their unknown parameters is a challenging nonlinear, multimodal optimization problem. To address these challenges, this study proposes a modified lyrebird optimization (MLO) algorithm, an enhanced variant of the recently developed LO. It integrates a memory-based learn search strategy (MBLSS) to reinforce exploration and a diversity maintenance learn search strategy (DMLSS) to refine exploitation. The algorithm was employed to extract parameters of both the RTC France solar cell and the Solarex MSX-60 PV module under SD, DD, and TD models. Extensive simulations and statistical analyses demonstrated that the proposed MLO significantly outperforms the conventional LO and a wide range of metaheuristic and analytical methods in terms of root mean square error (RMSE), convergence speed, stability, and robustness across multiple runs. In the MSX-60 module tests, the proposed MLO reduced the RMSE by more than 55% compared to the conventional LO and achieved a stable mean RMSE of 1.75 × 10-3 over 50 independent runs. Similarly, for the RTC France solar cell, MLO achieved a minimum RMSE of 9.82 × 10-4, outperforming several recently reported metaheuristics. Moreover, the proposed MLO was extended and validated on the Shell S75 monocrystalline module under different irradiance and temperature conditions. The results demonstrated consistently lower RMSE values and near-zero variance across operating ranges, confirming the robustness and stability of MLO in practical PV environments. The strong agreement between simulated and experimental I–V and P–V characteristics confirms the reliability of the extracted parameters. These findings highlight the potential of MLO as a robust and accurate tool for PV modeling, with promising applications in solar system design, performance evaluation, and predictive energy management.



    加载中


    [1] H. Abdulla, A. Sleptchenko, A. Nayfeh, Photovoltaic systems operation and maintenance: A review and future directions, Renewable Sustainable Energy Rev., 195 (2024), 114342. https://doi.org/10.1016/j.rser.2024.114342 doi: 10.1016/j.rser.2024.114342
    [2] M. H. Alqahtani, A. M. Shaheen, M. A. Atiea, A meteorology-free wind power forecasting using a hybrid physics-aware, SCADA-only ensemble residual learning, Results Eng., 28 (2025), 107285. https://doi.org/10.1016/j.rineng.2025.107285 doi: 10.1016/j.rineng.2025.107285
    [3] A. Aslam, N. Ahmed, S. A. Qureshi, M. Assadi, N. Ahmed, Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques, Energies, 15 (2022), 75952022. https://doi.org/10.3390/en15207595 doi: 10.3390/en15207595
    [4] A. Massi Pavan, S. Vergura, A. Mellit, V. Lughi, Explicit empirical model for photovoltaic devices. Experimental validation, Sol. Energy, 155 (2017), 647–653. https://doi.org/10.1016/j.solener.2017.07.002 doi: 10.1016/j.solener.2017.07.002
    [5] V. J. Chin, Z. Salam, K. Ishaque, An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution, Energy Convers. Manag., 124 (2016), 42–50. https://doi.org/10.1016/j.enconman.2016.06.076 doi: 10.1016/j.enconman.2016.06.076
    [6] F. J. Toledo, J. M. Blanes, Analytical and quasi-explicit four arbitrary point method for extraction of solar cell single-diode model parameters, Renew. Energy, 92 (2016), 346–356. https://doi.org/10.1016/j.renene.2016.02.012 doi: 10.1016/j.renene.2016.02.012
    [7] J. Cubas, S. Pindado, M. Victoria, On the analytical approach for modeling photovoltaic systems behavior, J. Power Sources, 247 (2014), 467–474. https://doi.org/10.1016/j.jpowsour.2013.09.008 doi: 10.1016/j.jpowsour.2013.09.008
    [8] A. Jain, S. Sharma, A. Kapoor, Solar cell array parameters using Lambert W-function, Sol. Energy Mater. Sol. Cells, 90 (2006), 25–31. https://doi.org/10.1016/j.solmat.2005.01.007 doi: 10.1016/j.solmat.2005.01.007
    [9] A. Ortiz-Conde, F. J. García Sánchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics, Sol. Energy Mater. Sol. Cells, 90 (2006), 352–361. https://doi.org/10.1016/j.solmat.2005.04.023 doi: 10.1016/j.solmat.2005.04.023
    [10] M. Bencherif, N. Brahmi, Solar cell parameter identification using the three main points of the current-voltage characteristic, Int. J. Ambient Energy, 43 (2020), 3064–3084. https://doi.org/10.1080/01430750.2020.1789739 doi: 10.1080/01430750.2020.1789739
    [11] S. Li, W. Gong, Q. Gu, A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renew. Sustain. Energy Rev., 141 (2021), 110828. https://doi.org/10.1016/j.rser.2021.110828 doi: 10.1016/j.rser.2021.110828
    [12] T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit, Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers, Int. J. Sol. Energy, 4 (1986), 1–12. https://doi.org/10.1080/01425918608909835 doi: 10.1080/01425918608909835
    [13] S. Liu, R. A. Dougal, Dynamic multiphysics model for solar array, IEEE Trans. Energy Convers., 17 (2002), 285–294. https://doi.org/10.1109/TEC.2002.1009482 doi: 10.1109/TEC.2002.1009482
    [14] M. Zagrouba, A. Sellami, M. Bouaïcha, M. Ksouri, Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction, Sol. Energy, 84 (2010), 860–866. https://doi.org/10.1016/j.solener.2010.02.012 doi: 10.1016/j.solener.2010.02.012
    [15] I. Choulli, M. Elyaqouti, E. Arjdal, D. Ben Hmamou, D. Saadaoui, S. Lidaighbi, et al., DIWJAYA: JAYA driven by individual weights for enhanced photovoltaic model parameter estimation, Energy Convers. Manag., 305 (2024), 118258. https://doi.org/10.1016/j.enconman.2024.118258 doi: 10.1016/j.enconman.2024.118258
    [16] X. Ru, Parameter extraction of photovoltaic model based on butterfly optimization algorithm with chaos learning strategy, Sol. Energy, 269 (2024), 112353. https://doi.org/10.1016/j.solener.2024.112353 doi: 10.1016/j.solener.2024.112353
    [17] D. Saadaoui, M. Elyaqouti, K. Assalaou, D. Ben Hmamou, S. Lidaighbi, E. Arjdal, et al., A hybrid optimization algorithm to identify unknown parameters of photovoltaic models under varying operating conditions, Eng. Appl. Artif. Intell., 133 (2024), 108544. https://doi.org/10.1016/j.engappai.2024.108544 doi: 10.1016/j.engappai.2024.108544
    [18] S. Z. Almutairi, A. M. Shaheen, A novel kangaroo escape optimizer for parameter estimation of solar photovoltaic cells/modules via one, two and three-diode equivalent circuit modeling, Sci. Rep., 15 (2025), 32669. https://doi.org/10.1038/s41598-025-19917-4 doi: 10.1038/s41598-025-19917-4
    [19] I. Abazine, M. Elyaqouti, E. Arjdal, D. Saadaoui, D. Ben Hmamou, A. Elhammoudy, et al., Accurate parameter extraction for photovoltaic systems using an improved and stable hybrid Analytical-NRBO algorithm, Int. J. Hydrogen Energy, 139 (2025), 564–593. https://doi.org/10.1016/j.ijhydene.2025.05.208 doi: 10.1016/j.ijhydene.2025.05.208
    [20] S. Yu, A. A. Heidari, G. Liang, C. Chen, H. Chen, Q. Shao, Solar photovoltaic model parameter estimation based on orthogonally-adapted gradient-based optimization, Optik, 252 (2022), 168513. https://doi.org/10.1016/j.ijleo.2021.168513 doi: 10.1016/j.ijleo.2021.168513
    [21] I. H. Smaili, G. Moustafa, D. R. Almalawi, A. Ginidi, A. M. Shaheen, H. S. E. Mansour, Enhanced Artificial Rabbits Algorithm Integrating Equilibrium Pool to Support PV Power Estimation via Module Parameter Identification, Int. J. Energy Res., 2024 (2024), 8913560. https://doi.org/10.1155/2024/8913560 doi: 10.1155/2024/8913560
    [22] A. E. Ramadan, S. Kamel, T. Khurshaid, S. R. Oh, S. B. Rhee, Parameter Extraction of Three Diode Solar Photovoltaic Model Using Improved Grey Wolf Optimizer, Sustainability, 13 (2021), 6963. https://doi.org/10.3390/su13126963 doi: 10.3390/su13126963
    [23] M. A. Khelifa, B. Lekouaghet, and A. Boukabou, Symmetric chaotic gradient-based optimizer algorithm for efficient estimation of PV parameters, Optik (Stuttg)., 259 (2022), 168873. https://doi.org/10.1016/j.ijleo.2022.168873 doi: 10.1016/j.ijleo.2022.168873
    [24] P. J. Gnetchejo, S. N. Essiane, P. Ele, R. Wamkeue, D. M. Wapet, S. P. Ngoffe, Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System, J. Power Energy Eng., 07 (2019), 1. https://doi.org/10.4236/jpee.2019.78001. doi: 10.4236/jpee.2019.78001
    [25] A. A. Z. Diab, H. M. Sultan, R. Aljendy, A. S. Al-Sumaiti, M. Shoyama, Z. M. Ali, Tree Growth Based Optimization Algorithm for Parameter Extraction of Different Models of Photovoltaic Cells and Modules, IEEE Access, 8 (2020), 119668–119687. https://doi.org/10.1109/ACCESS.2020.3005236 doi: 10.1109/ACCESS.2020.3005236
    [26] A. M. Shaheen, A. M. Elsayed, A. R. Ginidi, R. A. El-Sehiemy, E. Elattar, Enhanced social network search algorithm with powerful exploitation strategy for PV parameters estimation, Energy Sci. Eng., 10 (2022), 1398–1417. https://doi.org/10.1002/ESE3.1109 doi: 10.1002/ESE3.1109
    [27] C. Kumar, D. Magdalin Mary, A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules, Optik, 264 (2022), 169379. https://doi.org/10.1016/j.ijleo.2022.169379 doi: 10.1016/j.ijleo.2022.169379
    [28] A. Abbassi, R. Ben Mehrez, Y. Bensalem, R. Abbassi, M. Kchaou, M. Jemli, et al., Improved Arithmetic Optimization Algorithm for Parameters Extraction of Photovoltaic Solar Cell Single-Diode Model, Arab. J. Sci. Eng., 47 (2022), 10435–10451. https://doi.org/10.1007/s13369-022-06605-y. doi: 10.1007/s13369-022-06605-y
    [29] D. Izci, S. Ekinci, A. G. Hussien, Efficient parameter extraction of photovoltaic models with a novel enhanced prairie dog optimization algorithm, Sci. Rep., 14 (2024), 1–20, Apr., doi:https://doi.org/10.1038/s41598-024-58503-y
    [30] D. T. Cotfas, A. M. Deaconu, P. A. Cotfas, Hybrid successive discretisation algorithm used to calculate parameters of the photovoltaic cells and panels for existing datasets, IET Renew. Power Gener., 15 (2021), 3661–3687. https://doi.org/10.1049/RPG2.12262 doi: 10.1049/RPG2.12262
    [31] A. R. Ginidi, A. M. Shaheen, R. A. El-Sehiemy, H. M. Hasanien, A. Al-Durra, Estimation of electrical parameters of photovoltaic panels using heap-based algorithm, IET Renew. Power Gener., 16 (2022), 2292–2312. https://doi.org/10.1049/rpg2.12523 doi: 10.1049/rpg2.12523
    [32] P. J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, S. Perabi Ngoffe, Important notes on parameter estimation of solar photovoltaic cell, Energy Convers. Manag., 197 (2019), 111870. https://doi.org/10.1016/J.ENCONMAN.2019.111870 doi: 10.1016/J.ENCONMAN.2019.111870
    [33] R. Abbassi, S. Saidi, S. Urooj, B. N. Alhasnawi, M. A. Alawad, M. Premkumar, An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models, Mathematics, 11 (2023), 4565. https://doi.org/10.3390/math11224565 doi: 10.3390/math11224565
    [34] H. Rezk, M. A. Abdelkareem, Optimal parameter identification of triple diode model for solar photovoltaic panel and cells, Energy Rep., 8 (2022), 1179–1188. https://doi.org/10.1016/j.egyr.2021.11.179 doi: 10.1016/j.egyr.2021.11.179
    [35] H. Chen, S. Jiao, M. Wang, A. A. Heidari, X. Zhao, Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts, J. Clean. Prod., 244 (2020), 118778. https://doi.org/10.1016/j.jclepro.2019.118778 doi: 10.1016/j.jclepro.2019.118778
    [36] Z. Wu, D. Yu, X. Kang, Parameter identification of photovoltaic cell model based on improved ant lion optimizer, Energy Convers. Manag., 151 (2017), 107–115. https://doi.org/10.1016/J.ENCONMAN.2017.08.088 doi: 10.1016/J.ENCONMAN.2017.08.088
    [37] H. M. Ridha, A. A. Heidari, M. Wang, H. Chen, Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models, Energy Convers. Manag., 209 (2020), 112660. https://doi.org/10.1016/J.ENCONMAN.2020.112660 doi: 10.1016/J.ENCONMAN.2020.112660
    [38] H. Chen, S. Jiao, A. A. Heidari, M. Wang, X. Chen, X. Zhao, An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models, Energy Convers. Manag., 195 (2019), 927–942. https://doi.org/10.1016/J.ENCONMAN.2019.05.057 doi: 10.1016/J.ENCONMAN.2019.05.057
    [39] Y. Liu, G. Chong, A. Asghar Heidari, H. Chen, G. Liang, X. Ye, et al., Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models, Energy Convers. Manag., 223 (2020), 113211. https://doi.org/10.1016/J.ENCONMAN.2020.113211 doi: 10.1016/J.ENCONMAN.2020.113211
    [40] H. Zhang, A. A. Heidari, M. Wang, L. Zhang, H. Chen, C. Li, Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules, Energy Convers. Manag., 211 (2020), 112764. https://doi.org/10.1016/J.ENCONMAN.2020.112764 doi: 10.1016/J.ENCONMAN.2020.112764
    [41] M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, M. A. Elhosseini, Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation, Expert Syst. Appl., 236 (2024), 121417. https://doi.org/10.1016/j.eswa.2023.121417 doi: 10.1016/j.eswa.2023.121417
    [42] P. J. Gnetchejo, S. Ndjakomo Essiane, A. Dadjé, P. Ele, A combination of Newton-Raphson method and heuristics algorithms for parameter estimation in photovoltaic modules, Heliyon, 7 (2021), e06673. https://doi.org/10.1016/J.HELIYON.2021.E06673 doi: 10.1016/J.HELIYON.2021.E06673
    [43] M. Qaraad, S. Amjad, N. K. Hussein, M. Badawy, S. Mirjalili, M. A. Elhosseini, Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators, Comput. Electr. Eng., 106 (2023), 108603. https://doi.org/10.1016/j.compeleceng.2023.108603 doi: 10.1016/j.compeleceng.2023.108603
    [44] D. Maden, E. Çelik, E. H. Houssein, G. Sharma, Squirrel search algorithm applied to effective estimation of solar PV model parameters: a real-world practice, Neural Comput. Appl., 35 (2023), 13529–13546. https://doi.org/10.1007/s00521-023-08451-x doi: 10.1007/s00521-023-08451-x
    [45] H. G. G. Nunes, J. A. N. Pombo, S. J. P. S. Mariano, M. R. A. Calado, J. A. M. Felippe de Souza, A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization, Appl. Energy, 211 (2018), 774–791. https://doi.org/10.1016/J.APENERGY.2017.11.078 doi: 10.1016/J.APENERGY.2017.11.078
    [46] A. M. Shaheen, R. A. El-Seheimy, G. Xiong, E. Elattar, A. R. Ginidi, Parameter identification of solar photovoltaic cell and module models via supply demand optimizer, Ain Shams Eng. J., 13 (2022), 101705. https://doi.org/10.1016/J.ASEJ.2022.101705 doi: 10.1016/J.ASEJ.2022.101705
    [47] Y. Lu, S. Liang, H. Ouyang, S. Li, G. ge Wang, Hybrid multi-group stochastic cooperative particle swarm optimization algorithm and its application to the photovoltaic parameter identification problem, Energy Reports, 9 (2023), 4654–4681. https://doi.org/10.1016/J.EGYR.2023.03.105 doi: 10.1016/J.EGYR.2023.03.105
    [48] V. J. Chin, Z. Salam, Coyote optimization algorithm for the parameter extraction of photovoltaic cells, Sol. Energy, 194 (2019), 656–670. https://doi.org/10.1016/j.solener.2019.10.093 doi: 10.1016/j.solener.2019.10.093
    [49] O. S. Elazab, H. M. Hasanien, I. Alsaidan, A. Y. Abdelaziz, S. M. Muyeen, Parameter estimation of three diode photovoltaic model using grasshopper optimization algorithm, Energies, 13 (2020), 497. https://doi.org/10.3390/en13020497 doi: 10.3390/en13020497
    [50] M. Gafar, S. Sarhan, A. R. Ginidi, A. M. Shaheen, An Improved Bio-Inspired Material Generation Algorithm for Engineering Optimization Problems Including PV Source Penetration in Distribution Systems, Appl. Sci., 15 (2025), 603. https://doi.org/10.3390/APP15020603 doi: 10.3390/APP15020603
    [51] M. Dehghani, G. Bektemyssova, Z. Montazeri, G. Shaikemelev, O. P. Malik, G. Dhiman, Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems, Biomimetics, 8 (2023), 507. https://doi.org/10.3390/biomimetics8060507 doi: 10.3390/biomimetics8060507
    [52] A. Khaled, M. Gafar, S. Sarhan, A. M. Shaheen, A. S. Alwakeel, A lyrebird optimizer with mimicry and territory protection mechanisms for spectrum sharing MIMO system with intelligent reflecting surface, Results Eng., 26 (2025), 105519. https://doi.org/10.1016/J.RINENG.2025.105519 doi: 10.1016/J.RINENG.2025.105519
    [53] S. H. Hakmi, H. Alnami, G. Moustafa, A. R. Ginidi, A. M. Shaheen, Modified Rime-Ice Growth Optimizer with Polynomial Differential Learning Operator for Single- and Double-Diode PV Parameter Estimation Problem, Electronics, 13 (2024), 1611. https://doi.org/10.3390/ELECTRONICS13091611 doi: 10.3390/ELECTRONICS13091611
    [54] M. Kumar, A. Kumar, An efficient parameters extraction technique of photovoltaic models for performance assessment, Sol. Energy, 158 (2017), 192–206. https://doi.org/10.1016/j.solener.2017.09.046 doi: 10.1016/j.solener.2017.09.046
    [55] Z. Meng, Y. Zhao, S. Tang, Y. Sun, An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model, Renew. Energy, 153 (2020), 1174–1182. https://doi.org/10.1016/j.renene.2020.02.084 doi: 10.1016/j.renene.2020.02.084
    [56] A. A. Elbaset, H. Ali, M. Abd-El Sattar, Novel seven-parameter model for photovoltaic modules, Sol. Energy Mater. Sol. Cells, 130 (2014), 442–455. https://doi.org/10.1016/j.solmat.2014.07.016 doi: 10.1016/j.solmat.2014.07.016
    [57] K. Tifidat, N. Maouhoub, An efficient method for predicting PV modules performance based on the two-diode model and adaptable to the single-diode model, Renew. Energy, 216 (2023), 119102. https://doi.org/10.1016/j.renene.2023.119102 doi: 10.1016/j.renene.2023.119102
    [58] A. Ginidi, S. M. Ghoneim, A. Elsayed, R. El-Sehiemy, A. Shaheen, A. El-Fergany, Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems, Sustainability, 13 (2021), 9459. https://doi.org/10.3390/SU13169459 doi: 10.3390/SU13169459
    [59] M. H. Sulaiman, Z. Mustaffa, M. M. Saari, H. Daniyal, Barnacles Mating Optimizer: A new bio-inspired algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 87 (2020), 103330. https://doi.org/10.1016/j.engappai.2019.103330 doi: 10.1016/j.engappai.2019.103330
    [60] J. Liang, S. Ge, B. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manag., 203 (2019), 112138. https://doi.org/10.1016/j.enconman.2019.112138 doi: 10.1016/j.enconman.2019.112138
    [61] G. Kanimozhi, Harish Kumar, Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function, Appl. Soft Comput. J., 71 (2018), 141–151. https://doi.org/10.1016/j.asoc.2018.06.025 doi: 10.1016/j.asoc.2018.06.025
    [62] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241–257. https://doi.org/10.1016/j.apenergy.2019.01.008 doi: 10.1016/j.apenergy.2019.01.008
    [63] H. Ben Aribia et al., Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules, Sustainability, 15 (2023), 7896. https://doi.org/10.3390/su15107896 doi: 10.3390/su15107896
    [64] W. Alsaggaf, M. Gafar, S. Sarhan, A. M. Shaheen, A. R. Ginidi, Chemical-Inspired Material Generation Algorithm (MGA) of Single- and Double-Diode Model Parameter Determination for Multi-Crystalline Silicon Solar Cells, Appl. Sci., 14 (2024), 8549. https://doi.org/10.3390/APP14188549 doi: 10.3390/APP14188549
    [65] R. M. Rizk-Allah, A. A. El-Fergany, Conscious neighborhood scheme-based Laplacian barnacles mating algorithm for parameters optimization of photovoltaic single- and double-diode models, Energy Convers. Manag., 226 (2020), 113522. https://doi.org/10.1016/j.enconman.2020.113522 doi: 10.1016/j.enconman.2020.113522
    [66] A. F. Nematollahi, A. Rahiminejad, B. Vahidi, A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization, Appl. Soft Comput. J., 59 (2017), 596–621. https://doi.org/10.1016/j.asoc.2017.06.033 doi: 10.1016/j.asoc.2017.06.033
    [67] S. M. Ebrahimi, E. Salahshour, M. Malekzadeh, Francisco Gordillo, Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm, Energy, 179 (2019), 358–372. https://doi.org/10.1016/j.energy.2019.04.218 doi: 10.1016/j.energy.2019.04.218
    [68] E. E. Ali, M. A. El-Hameed, A. A. El-Fergany, M. M. El-Arini, Parameter extraction of photovoltaic generating units using multi-verse optimizer, Sustain. Energy Technol. Assessments, 17 (2016), 68–76. https://doi.org/10.1016/j.seta.2016.08.004 doi: 10.1016/j.seta.2016.08.004
    [69] F. A. Şenel, F. Gökçe, A. S. Yüksel, T. Yiğit, A novel hybrid PSO–GWO algorithm for optimization problems, Eng. Comput., 35 (2019), 1359–1373. https://doi.org/10.1007/s00366-018-0668-5 doi: 10.1007/s00366-018-0668-5
    [70] A. M. Beigi, A. Maroosi, Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms, Sol. Energy, 171 (2018), 435–446. https://doi.org/10.1016/j.solener.2018.06.092 doi: 10.1016/j.solener.2018.06.092
    [71] V. Khanna, B. K. Das, D. Bisht, Vandana, P. K. Singh, A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm, Renew. Energy, 78 (2015), 105–113. https://doi.org/10.1016/J.RENENE.2014.12.072 doi: 10.1016/J.RENENE.2014.12.072
    [72] G. Moustafa, I. H. Smaili, D. R. Almalawi, A. R. Ginidi, A. M. Shaheen, M. Elshahed, et al., Dwarf Mongoose Optimizer for Optimal Modeling of Solar PV Systems and Parameter Extraction, Electron., 12 (2023), 4990. https://doi.org/10.3390/electronics12244990 doi: 10.3390/electronics12244990
    [73] D. Oliva, E. Cuevas, G. Pajares, Parameter identification of solar cells using artificial bee colony optimization, Energy, 72 (2014), 93–102. https://doi.org/10.1016/j.energy.2014.05.011 doi: 10.1016/j.energy.2014.05.011
    [74] J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10 (2006), 281–295. https://doi.org/10.1109/TEVC.2005.857610 doi: 10.1109/TEVC.2005.857610
    [75] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. https://doi.org/10.1016/j.energy.2016.01.052 doi: 10.1016/j.energy.2016.01.052
    [76] L. Guo, Z. Meng, Y. Sun, L. Wang, Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm, Energy Convers. Manag., 108 (2016), 520–528. https://doi.org/10.1016/j.enconman.2015.11.041 doi: 10.1016/j.enconman.2015.11.041
    [77] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems, Inf. Sci., 183 (2012), 1–15. https://doi.org/10.1016/j.ins.2011.08.006 doi: 10.1016/j.ins.2011.08.006
    [78] X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation, Appl. Energy, 212 (2018), 1578–1588. https://doi.org/10.1016/j.apenergy.2017.12.115 doi: 10.1016/j.apenergy.2017.12.115
    [79] G. Moustafa, H. Alnami, A. R. Ginidi, A. M. Shaheen, An improved Kepler optimization algorithm for module parameter identification supporting PV power estimation, Heliyon, 10 (2024), e39902. https://doi.org/10.1016/J.HELIYON.2024.E39902 doi: 10.1016/J.HELIYON.2024.E39902
    [80] S. Xu, Y. Wang, Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm, Energy Convers. Manag., 144 (2017), 53–68. https://doi.org/10.1016/J.ENCONMAN.2017.04.042 doi: 10.1016/J.ENCONMAN.2017.04.042
    [81] S. A. Mohamed, A. M. Shaheen, M. H. Alqahtani, B. M. Al Faiya, Enhancement of rime algorithm using quadratic interpolation learning for parameters identification of photovoltaic models, Sci. Rep., 15 (2025), 1–24. https://doi.org/10.1038/s41598-025-04589-x doi: 10.1038/s41598-025-04589-x
    [82] G. Moustafa, H. Alnami, S. H. Hakmi, A. Ginidi, A. M. Shaheen, F. A. Al-Mufadi, An Advanced Bio-Inspired Mantis Search Algorithm for Characterization of PV Panel and Global Optimization of Its Model Parameters, Biomimetics, 8 (2023), 490. https://doi.org/10.3390/BIOMIMETICS8060490 doi: 10.3390/BIOMIMETICS8060490
    [83] I. Choulli, M. Elyaqouti, E. H. Arjdal, D. Saadaoui, D. Ben hmamou, S. Lidaighbi, et al., An Analytical-Iterative Method for Accurate Parameter Estimation of the Single-Diode Model in Photovoltaic Modules: Application to Monocrystalline and Polycrystalline Modules under Various Environmental Conditions, Green Energy Intell. Transp., 5 (2025) 100285. https://doi.org/10.1016/J.GEITS.2025.100285 doi: 10.1016/J.GEITS.2025.100285
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4) PDF downloads(0) Cited by(0)

Article outline

Figures and Tables

Figures(26)  /  Tables(20)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog