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Abstract: Accurate modeling of photovoltaic (PV) cells is essential for performance assessment,
control, and optimization of solar energy systems. The diode circuit models, particularly the single-
diode (SD), double-diode (DD), and triple-diode (TD) structures, are widely adopted for characterizing
PV behavior; however, extracting their unknown parameters is a challenging nonlinear, multimodal
optimization problem. To address these challenges, this study proposes a modified lyrebird
optimization (MLO) algorithm, an enhanced variant of the recently developed LO. It integrates a
memory-based learn search strategy (MBLSS) to reinforce exploration and a diversity maintenance
learn search strategy (DMLSS) to refine exploitation. The algorithm was employed to extract
parameters of both the RTC France solar cell and the Solarex MSX-60 PV module under SD, DD, and
TD models. Extensive simulations and statistical analyses demonstrated that the proposed MLO
significantly outperforms the conventional LO and a wide range of metaheuristic and analytical
methods in terms of root mean square error (RMSE), convergence speed, stability, and robustness
across multiple runs. In the MSX-60 module tests, the proposed MLO reduced the RMSE by more
than 55% compared to the conventional LO and achieved a stable mean RMSE of 1.75 x 107 over 50
independent runs. Similarly, for the RTC France solar cell, MLO achieved a minimum RMSE of 9.82
x 107, outperforming several recently reported metaheuristics. Moreover, the proposed MLO was
extended and validated on the Shell S75 monocrystalline module under different irradiance and
temperature conditions. The results demonstrated consistently lower RMSE values and near-zero
variance across operating ranges, confirming the robustness and stability of MLO in practical PV
environments. The strong agreement between simulated and experimental I-V and P—V characteristics
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confirms the reliability of the extracted parameters. These findings highlight the potential of MLO as
a robust and accurate tool for PV modeling, with promising applications in solar system design,
performance evaluation, and predictive energy management.

Keywords: Lyrebird optimization; Modified lyrebird optimization; Parameters PV cell extraction;
Single diode; Double diode; Triple diode model
Mathematics Subject Classification: Primary: 90B99; Secondary: 90C59

1. Introduction

Solar PV energy has emerged as a crucial part of contemporary energy systems as the world’s
energy transition quickens and the need for sustainable energy sources keeps rising [1]. Solar PV, being
clean and renewable, has become a vital technology for lowering greenhouse gas emissions and
attaining energy independence. Accurate PV power generation modeling is necessary to realize the
entire potential of solar PV [2]. These models serve as the basis for efficient system approach
performance analysis, fault detection, and energy forecasting by enabling accurate simulation,
evaluation, control, and optimization of PV systems. Furthermore, optimizing energy distribution
across power grids, strengthening energy management tactics, and increasing energy efficiency all
depend on accurate models [3]. The diode circuit model, which has a strong physical foundation and
allows for accurate characterization of the current—voltage (I-V) behavior of solar cells under a variety
of environmental conditions, stands out among the other modeling approaches [4].

The SD [4] and DD [5] models are two categories into which the diode circuit model can be
divided based on the necessary level of complexity and accuracy. Five or seven unknown parameters
in the two models need to be obtained for the simulation. Furthermore, obtaining these parameters is
extremely difficult because PV models are nonlinear, multi-variable, and multimodal. Thus, a major
area of research continues to be the development of effective and precise techniques for obtaining PV
model parameters.

The diode circuit model, which may be divided into two primary categories, is the primary focus
of the parameter extraction techniques that are currently being studied. The analytical method
represents the first category of parameter identification approaches. It makes use of key data points,
including the maximum power point, open-circuit voltage, and short-circuit current, to solve equations
and determine model parameters. This technique involves addressing a series of transcendental
equations at critical points of the [-V characteristic curve, and it has been widely applied for extracting
PV model parameters [6]. The primary benefits are a quicker computation, a more straightforward
method, a reduction in calculation time, and accurate results. In [7], a quick and precise analytical
method was proposed using datasheets made accessible by the manufacturers. Later, an approach based
on Lambert’s W-function—a precise and impromptu analytical technique—was proposed in [8].
Additionally, in [9], a different analysis technique based on the Co-content function was proposed. In
recent years, a graphical technique has been used to solve analytical problems [10]. The approach has
significant disadvantages but requires the least quantity of data. Due to its enormous complexity, the
set of equations is challenging to solve, and the solution process is prone to divergence. Additionally,
the chosen data points have a significant impact on the model’s correctness, and errors in these points
reduce the overall reliability of the model.
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The optimization method, which has drawn more attention recently [11], is the second category.
The category, which may be further separated into deterministic and metaheuristic approaches, makes
use of measured data, such as [-V curve data, and uses numerical optimization techniques to reduce
the error between simulated and measured current data. Initial values and mathematical models are
essential to the deterministic approach. Therefore, the computation tends to deviate if the mathematical
model is intricate or if the starting values are poorly established. Conversely, the metaheuristic
approach could successfully circumvent the aforementioned problem. It is extensively useful in
engineering optimization since it is straightforward, effective, and independent of intricate
mathematical models or initial values.

In terms of calculating the parameters as efficiently as possible, numerical procedures are more
accurate than analytical methods. This is because every point on the characteristic curve is taken into
account throughout the study. In order to estimate the five parameters of a PV cell, numerical methods
based on Newton's method and nonlinear least squares were first proposed in [12]. A resistive-
companion approach was then suggested in [13], and it produced findings that were somewhat superior
to the analytical ones. Later on, it was proposed to use Newton—Raphson-based improvisation to
determine parameters for solar PV modules [14]. The prolonged computation time is the main
drawback of all numerical-based methods. In addition to the aforementioned issues, these methods
may result in less accurate findings, especially when it comes to recognizing a lot of solar PV factors
and only providing approximate initial circumstances. These methods also rely on the circumstances
of the previous system, and there is a greater chance that the solution will be trapped at local minima.

In [15], a JAYA variant driven by individual weights (DIWJAYA) was introduced for PV
parameters extraction. This improved version was based on changing the individuals by going toward
the best candidate and away from the worst, using a weight factor for every individual. This change
helped people stay away from bad options early on in their search course while carefully getting closer
to the best one overall. Additionally, a Gaussian mutation process was incorporated to support solutions’
quality and diversity by introducing regulated perturbations. In [16], an improved version of the
butterfly optimizer (BFO) incorporating a chaos learning strategy (CLS) was presented to support the
BFO’s slow convergence and reduce its susceptibility to local optima. The integrated CLS employed
chaotic maps, using tent and logistic shapes, to generate pseudorandom numbers. This enhanced BFO
variation integrated a Cauchy mutation to provide extensive variations in the population and an
effective elimination system for substituting underperforming individuals, hence expediting
convergence. It was successfully evaluated on CEC 2022 benchmark functions, and its applications
were extended for PV parameter estimation on a real YL PV power station in Guizhou, China. In [17],
a hybrid optimization approach combining the differential evolution algorithm (DEA) and the
backtracking search technique (BST) was performed to extract PV parameters under varied
environmental conditions. This hybrid method started the population inside the limits of the parameters
and used BST’s tuned adjustments to mix the existing and new populations. It also used DEA’s
mutation operators following BST’s preliminary selection, which gave a range of options that DEA
improved for better convergence. A kangaroo escape optimizer (KEO) was introduced in [18] to
discover PV parameters that depict zigzag maneuvers, long jumping, decoy throwing, and exploring
safer locations. This approach was motivated by the predator escape behaviors of kangaroos and was
used for PV estimate on benchmarks such as Photowatt-PWP201 and RTC France. In this KEO approach,
to avoid stagnation, dimensions were probabilistically hidden during updates via a decoy drop technique.
Also, a chaotic logistic mapping was used to describe energy levels and flexible transfer strategies for
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reduced energy shifts to big leaps for variety, while high energy favors zigzag escaping. In [19], an
integrated analytical Newton—Raphson-based optimizer (NRBO) was developed, with the analytical
technique generating starting parameter predictions from important [-V points, minimizing reliance
on random beginnings. In order to reduce the RMSE for the RTC France and solar power panels,
NRBO then improved these using NRBO’s phases. To determine the PV attributes in the current
circumstance, parameter estimation methods based on various metaheuristics were established and put
into practice, such as orthogonally-adapted gradient-based optimization (OLGBO) [20], artificial
rabbits algorithm [21], improved grey wolf optimizer (IGWO) [22], symmetric chaotic gradient-based
optimizer (SC-GBO) [23], enhanced vibrating particles system (EVPS) [24], tree growth algorithm
(TGA) [25], social network search algorithm [26], chaotic-driven tuna swarm optimizer (CTSO) [27],
arithmetic optimization algorithm (AOA) [28], enhanced prairie dog optimizer (EnPDO) [29], hybrid
successive discretization algorithm (HSDA) [30], heap-based algorithm [31], general algebraic modeling
system (GAMS) [32], mountain gazelle optimizer (MGO) [33], and marine predator algorithm (MPA) [34].

In [35], the Harris hawks optimizer (HHO) was enhanced by incorporating a chaotic drift
mechanism along with an adversarial-based exploratory strategy. Similarly, [36] introduced an improved
ant-lion optimizer (IALO) for parameter estimation, which demonstrated promising results. To achieve
a more stable and efficient model and to accurately characterize PV system behavior, an augmented
mutation Harris hawks optimizer (AMHHO) was proposed in [37], enabling faster convergence and
precise assessment of solar cell simulation parameters. In [38], an enhanced sine cosine (ESC) algorithm
was presented to estimate unknown parameters in both single-diode (SD) and double-diode (DD) PV
models. Furthermore, [39] reported the application of an upgraded Harris hawks optimizer (CCNMHHO)
for PV parameter extraction. To improve global convergence and local exploitation capabilities, the
moth-flame optimization (MFO) method was employed in [40] for identifying PV module parameters,
yielding excellent performance in SD and DD model configurations. In [41], an improved PSO was
illustrated by using quadratic interpolation to accelerate convergence and a local search strategy to avoid
stagnation in local minima to determine the unknown parameters of SD and DD. By integrating drone
squadron optimization with the Newton—Raphson performance technique, the exact constituent PV
module parameters were retrieved in [42]. Another study [43] improved the population diversity and
exploration operator of the moth-flame algorithm by using local escape operators. Although this
algorithm required a lot of function evaluations, it could yield very good results when compared to
other approaches. In [44], a squirrel search algorithm was adjusted by minimizing the RMSE in order
to estimate the unknown parameters of SD and DD models.

These methods are suggested to address the inherent drawbacks of each method, allow for various
combinations of individual methods, and then show up as a capable method to determine the
parameters of solar PV models. However, the effectiveness of these methods varies depending on the
situation. Also, the careful choice of algorithm control parameters governs their accuracy, robustness,
and rate of convergence. In this work, an improved metaheuristic approach with adaptively altering
control parameters is selected among these two options.

The current work is driven by these research gaps to develop a more effective method for
identifying and testing solar PV parameters in a wide range of scenarios, which is ideal for real-time
applications. The effectiveness of searching throughout the exploitation and exploration stages is
significantly increased by adaptively modifying the control parameters, both in the case of LO and
other stochastic techniques. MLO integrates a memory-based learn search strategy (MBLSS) to
reinforce exploration and a diversity maintenance learn search strategy (DMLSS) to refine exploitation.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 642—690.



646

These two strategies can achieve better accuracy with faster convergence, leading to optimal parameter
values, increasing overall performance, and avoiding confinement problems at local minima. The main
contributions are:

» To determine the parameters of different PV cells and modules, a modified approach known as
MLO is described.

= A number of simulation examples and statistical findings are shown and examined in order to
evaluate the effectiveness of the suggested MLO method.

= MLO achieves the best overall performance, obtaining the lowest average rank (1.40) among
twelve algorithms in the Friedman analysis.

» Post-hoc and Wilcoxon tests confirm that the performance improvements of MLO over LO and
most benchmark algorithms are statistically significant (p < 0.05), demonstrating both higher
accuracy and repeatability.

=  When applied to PV cell parameter extraction, MLO consistently yields lower RMSE and more
stable convergence, confirming its effectiveness for practical photovoltaic model identification.

» The proposed MLO is further validated on the Shell S75 PV module under varying irradiance (200—
1000 W/m?) and temperature (25-60 °C) conditions, where it consistently outperforms the original
LO and maintains extremely low standard deviation (=107""—107'#), confirming its robustness and
strong generalization capability across real operating scenario variations.

The article’s general format is as follows: In addition to outlining the study’s contribution, Section

1 provides the background and motivation. After a brief introduction, Section 2 provides a thorough

explanation of solar PV modeling and the objective formulation, while taking into account all relevant

restrictions and system factors. A description of the suggested LO and MLO techniques is specified in

Section 3, together with a list of all the significant changes that have been suggested and the statistical

results. Section 4 presents an analysis and illustration of the identification and simulation results, while

Section 5 offers the conclusion of this work.

2. Problem formulation of solar PV parameters extraction

It is necessary to propose a number of simplified and intricate models in order to ensure correct
design, simulation, and analysis. In this section, various PV models are briefly described together with
their corresponding parameters and the formulation of their goal functions.

2.1. PV cell model based on SD

An antiparallel diode, a series resistor, a shunt resistor, and a photon-generated current source
make up the PV cell model’s SD-based electrical equivalent circuit. The aforementioned paradigm is
illustrated in Figure 1 [45]. Applying Kirchhoff’s current law (KCL) to Figure 1 yields the following
equation.
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Figure 1. SD model representation.

I,=1,+1,+1 (D

where Lo L , and Ip stand for photon-generated current, diode current, and shunt resistance R,
current, respectively. Furthermore, /, V, and Rs stand for the PV cell voltage, current, and series
resistance, respectively. The expression for the current flowing through R) is:

I-R.+V
== @)
" Ry,
I-R.+V
1, =1 exp(*j—l 3)
771'Vt

where I, 771, and Vur stand for the diode’s saturation current, ideality factor, and thermal voltage,
respectively. The following is an expression of the current relationship:

_KB'T
q

I/thr (4)

where 7, g, and K5 represent temperature in K for the cell/module, the Boltzmann constant (1.38065 X
10%%) in J/K, and the electron charge (1.60217 x 107") in C, respectively. Eq. (5) is used to determine
the PV cell current using Egs. (1), (2), and (3) as follows:

I-R.+V V R
I=1,-1,|exp| ———|-1|-——=-1=72 5
ph 51{ p( — J } R R ®)

sh sh

2.2. PV cell model based on DD

Two diodes antiparallel to the current source, a photon-generated source of current, a series
resistor, and a shunt resistor make up the electric equivalent circuit of a PV cell model based on double
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diodes. The DD model is illustrated in Figure 2. When KCL is applied to Figure 2, the following
equation is produced:

| Rs

r NN~

1 Id2 Ir

vy s

lPh

Figure 2. DD model representation.

Iph=I+ISh+Id1+Id2 (6)

where La and Lo indicate the current flowing in diodes D/ and D2, while I, and I indicate the

current through the shunt resistance R, and cell output current, respectively. Moreover, Lo represents
the photon-produced current.
The current passing in diode D2 could be written as follows in Eq. (7):

I-R.+V
1,=1, |:eXp [4]_1} (7
7, Vt

where ' represents diode D2’s ideality factor, and Iss represents its saturation current.
Consequently, the PV cell output current is provided as follows:

-1, -1, p[ujl 1, p(ujl VLR )
771 ’ I/L‘hr 772 ’ I/thr Rsh Rsh

2.3. PV cell model based on TD

In addition to the components in the DD model, an additional antiparallel diode is added to make
up the triple diode equivalent electric circuit, as shown in Figure 3 [22, 25,46]. The following equation
is obtained by applying KCL to Figure 3.
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Figure 3. TD model representation.

Iph=]+ISh+Id1+Id2+Id3 )

where Las indicates the current flowing in diode D3.
The current in diode D3 can be written as follows in Eq. (10):

I-R+V
ly=1g, {exp( > ]_1:| (10)
773'Vt

where 7 represents diode D2’s ideality factor, and Iss represents its saturation current.
Consequently, the PV cell output current is provided as follows:

jop VIR p(uw
L nl'l/thr

I-R I-R
-1, exp(JJ—l —1, exp[ﬂl—l
Vo, ) 5V

2.4. Model of PV modules

(11

PV modules are made up of solar cells linked in series or series-parallel configurations. The PV
modules used in this investigation are made up of Ns and Np solar cell series and parallel combinations.
Eq. (12) provides the PV module’s output current if it consists of a SD-based PV cell [47].

I=N,1,—1I|exp ;x L+M -1
UI.NS.I/t Np Np

—+

(12)
1 (

—X _—

N,-N,-R, N, N
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2.5. Formulation of the objective function

The task of identifying parameters for the PV model is converted into a single-objective
optimization problem [48]. The RMSE between the predicted (estimated) and experimental currents
of the PV models under discussion is used as the sole objective function (OF) for this work.
Consequently, the following formulation of the optimization problem [49] is illustrated:

1 PM
RMSE = \/W[Z(Ii,(nfp,y)—lip )2] (13)
K=1

where PM represents the number of experimental [-V data points of the PV model being examined, &
represents the experimental data index, y signifies the set of parameters of the PV model that has to be

K K
found, and Lea (Ve ) represents the PV model’s current error function [50]. A better y is found if
the RMSE value is very tiny. In order to achieve ideal settings, the goal is to use MLO to minimize
RMSE.

3. Proposed MLO approach for PV parameter estimation

The LO algorithm, which focuses on the lyrebird’s inherent ability to recognize and respond to
external dangers, is based on the lyrebird’s natural threat-response behaviors [51]. It moves through
the area and decides whether to blend in or flee to a safer spot when it senses a potential threat [52].
The adaptive behavior of the LO algorithm allows it to navigate difficult optimization contexts.

3.1. Initialization of bird s locations

The first step in the LO algorithmic process is to randomly initialize the bird placements inside
the designated borders while taking into account each bird’s size (NBs). Within this framework, a
lyrebird corresponds to a candidate solution expressed as a position vector (LB) in a d-dimensional
search space. As shown in equation (14), each element of this vector denotes a decision variable of the
optimization issue.

LB, =Lp + Z, x (Up — Lp); x=1:NBs (14)

The bounds of the design parameters are Up and Lp, and Z; is a random d-dimensional vector
containing uniformly distributed values inside the range [0,1]. At this point, LBx records the location
vector, x, of each bird.

3.2. Memory initialization
The proposed MLO algorithm incorporates memory-based learn search strategy (MBLSS) and
diversity maintenance learn search strategy (DMLSS). These enhancements boost search efticiency by

finding an equilibrium between localized exploitation and extensive issue space research. Every
lyrebird’s memory is upgraded to the MLO form after it has been saved.
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LM, =LB, Y x=1:NBs (15)

where LM stores the initial location of each lyrebird, which is later used during the imitation process.
Equation (16) shows that the IAE function under optimization is used to determine each lyrebird’s
objective value (OFy) after initialization.

OF,=IAE(LB,);  x=1:NBs (16)

The lyrebird with the lowest fitness score offers the greatest possible alternative (LYzes:) in the
following ways, in accordance with the /4E minimization model:

LB, = arg( min (OFx)j (17)
l<x<NBb

3.3. Improved phase of investigation using the suggested MBLSS

At this point, the LO algorithm exploits the natural inclination of lyrebirds to move to safer
locations. Safe zones, which are continuously defined based on the optimization objective function,
are the areas where other lyrebirds with higher fitness ratings are found. The safe zones of the kth
lyrebird are expressed mathematically in the following manner:

Safe_sz{LB,»,OF,«<0Fx,' ie{l: NBs}szl: NBs,i # x (18)

where Safe_Ax is the name of the group of safer locations that the x” lyrebird can reach.

Each lyrebird regards individuals with higher fitness as potential guides, enabling it to navigate
more effectively toward promising regions of the search space. This escape-based motion technique
allows the lyrebird to move toward zones that perform better, increasing the algorithm’s exploration
capability by compelling search birds to visit previously unexplored regions of the solution
environment. Selecting superior regions strategically directs the agents’ exploration and prevents
arbitrary search behavior. The new location of the k" lyrebird is calculated by mathematically applying
the next relation:

LB if Safe_A,={}

X

LB new_=

1
g {LBX +z,(Safer_A4,—(1..LB,)) Else (19)

where LBy and LB _newx are the present and projected location vectors for the xth lyrebird after the
escape movement. Safer Ax represents the randomly selected safe zone for the jth lyrebird from the
collection (Safe_Ax) provided by Equation (17). While z, offers a random value that matches [0,1] and
controls the trip in the direction of the secure zone, /x consists of an arbitrarily selected integer that
controls the impact of the current location during the entire updating procedure. In the event that no
safe places are found for the x” lyrebird, it remains where it is, as indicated by Equation (19).

The proposed MLO uses MBLSS to enhance the fleeing phase. Lyrebirds search for safe havens
based on the best solutions currently accessible or on their more experienced colleagues. A
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probabilistic imitation mechanism is provided that takes probability (Pm) into account.

LB _new, =LB

Best

+Z,x(LM —LB,) if z, <« (20)

where 7 illustrates a randomized vector of dimension (d), and z» stands for a variable that is computed

as follows:
IT
aszx( %];lmax) (21)

where Pm indicates the imitation probability, and /7% is the current iteration, while its maximum count
is symbolized by (/Tumax). This strategy improves local refinement by allowing the lyrebird to fortify
previously viable locations through suggested MBLSS.

3.4. Enhanced phase of exploitation using the suggested DMLSS

Based on the lyrebird’s innate hiding behavior, which involves concealing in a safe location to
prevent predators from detecting it, the LO algorithm is being exploited at this stage. This behavior
leads to a fine-tuning of the search in the area surrounding the current location. Hence, a stochastic
updating mechanism is used to progressively change each lyrebird’s position, becoming more cautious
as the algorithm executes. Owing to this adaptive step-size mechanism, the initial iterations emphasize
broader local exploration, whereas the later stages concentrate on intensified exploitation around
promising regions. Throughout its exploitation, the potential location of the x” lyrebird is ascertained
using the following methodology:

T

- L
LB_new,=LB +(1-2Z;) x (Uppj (22)
where /7, influences the current iteration count and the rate of progression. As it climbs, the step size
gets smaller, encouraging more accurate local modifications.
Since DMLSS improves the hiding phase in the proposed MLO, the updating procedure in
Equation (22) has been revised to reflect this:
LB _new, =LB_+yx(LBy,—LB,) if Dis, <yxDis

max

Up - ij (23)

LB _new, =
- Else
1T,

LB, +(1-2Z7,) x [

where Disx and Dismax represent the crowding indicator and maximum distance across all lyrebirds as
can be seen in Equations (24) and (25), respectively, while y denotes the specified distance coefficient
that is a component of the set [0,1], and LBrp represents an arbitrarily selected lyrebird that is not the
current x” bird. This creates a regulated extension in seeking space, which facilitates exploring new
places and escaping congested areas.
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NBs

> LB, —LB,

Dis =" jH @9
' NBs

Dis, = njcix LB, - LB, (25)

As demonstrated, the x” lyrebird’s proximity to the rest of the population is determined by the
crowding index Disx; a lower Disx suggests the agent is in a congested (perhaps stagnant) area.
However, Dismax calculates the greatest Euclidean distance between any two of the population’s
lyrebirds.

3.5. Updates to the locations and recollections of the bird

The associated fitness rating (OF newx) is evaluated using the target function after the changed
location (LB_newx) has been determined. If this new objective number reveals an enhancement over
the current situation, the current position is modified:

LB _new, OF _new. <OF,

2
LB (IT)) Else (26)

-]

In addition, their combined memories have been updated. Each lyrebird’s memory is updated only
as its fitness increases in order to maintain accuracy and adaptability:

LB_new, OF _new <OF,

27
LM (IT) Else @D

The suggested MLO design ensures that the memory preserves the most famous history of the
lyrebird. The MLO stages are depicted in Figure 4.
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Figure 4. Proposed MLO steps.

4. Results and discussion

The proposed MLO and LO methods are evaluated using three case studies: the RTC France solar
cell, the MSX-60, and the Shell S75 PV modules. In the first case, the commercial RTC France silicon
solar cell operates at 33 °C under an irradiance of 1000 W/m?. Its electrical characteristics include a
short-circuit current of 0.7605 A, an open-circuit voltage of 0.5727 V, and a maximum power point
defined by 0.4590 V and 0.6755 A. The second case examines the MSX-60 polycrystalline silicon PV
module, which consists of 36 series-connected cells. The third case examines the Shell S75
monocrystalline silicon PV module, which consists of 36 series-connected cells.

Table 1 presents the lower and upper bounds of the parameters for the MSX—60 PV module and
the RTC France solar cell. Based on the experimental [-V data, this section provides the parameter
identification results for the SD, DD, and TD models of the solar systems.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 642—690.



655

Table 1. Boundaries of parameters for SD, DD, and TD PV models.

Parameter RTC France solar cell MSX-60 PV module Shell S75

Lower Upper Lower Upper Lower Upper
L (A) 0.00 10.00 3.5 4 0.00 20.00
Ren (Q) 0.00 100.00 150 3000 0.00 1000.00
Isy, Is, and Is3 (LA) 0.00 10.00 0.01 1 0.00 1000.00
n1, 12, and i3 per cell 1.00 2.00 1.00 2.00 1.00 2.00
Rs(QY) 0.00 2.00 0.2 0.4 0.00 5.00
No series cells (Nc) 1 36 36
Open circuit voltage (Voc) 0.5727V 21.10V 21.60V
Maximum power (Pmax) 0.323 W 60 W 75
Voltage at Pmax (Vm) 0.4590 V 17.10 V 17.60 V
Current at Pmax (/m) 0.6755 A 350 A 426 A

Additionally, the control parameters used for the proposed MLO algorithm are summarized in
Table 2. A population size of 100 search agents and a maximum of 1000 iterations were selected to
ensure a sufficient balance between computational cost and convergence reliability [53]. The imitation
probability Pm = 0.5 regulates the likelihood of adopting experience from better-performing solutions,
while the distance coefficient y = 0.25 in Eq. (23) governs the diversity preservation mechanism during
exploitation. A fixed random seed (Mersenne Twister, seed = 0) is used to guarantee result
reproducibility. The algorithm terminates when the maximum iteration count is reached, as no
additional convergence-based stopping criterion is required due to the strong stability observed across
repeated independent runs. Runs denote the number of independent executions of the optimizer
performed to account for its randomized behavior.

Table 2. Control parameters of the proposed MLO.

Control parameter Value

NBs (population size) 100

1T 0 maximum iterations 1000

1T, A counter starting from 1 to /T,ax

Pm [imitation probability, Eq. (21)] 0.5

y [distance coefficient used in Eq. (23)] 0.25

random seeds A random number seed using the default algorithm “Mersenne Twister

generator” with seed 0.

stopping criteria When the maximum iteration count (/7;mqy) is reached

4.1. The MSX-60 PV module
4.1.1.  SD model

The SD model features of the MSX—60 PV module are extracted using the suggested MLO. Table
3 lists the five unidentified SD parameter values for different inspired techniques that yielded the best

experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO, which
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are 1 for the ideality factor for d1, 6.8929271 Q for shunt resistance, 0.008009809 Q for series
resistance, 3.803241225A for photo-current, and 1.21876 x 1072 nA for saturation current for d1. In
PV modeling, ideality factors close to 1 typically represent dominant recombination in the quasi-
neutral region, while values near 2 are associated with recombination in depletion regions. Therefore,
the occurrence of 1 values near these limits is physically meaningful and consistent with well-reported
semiconductor behavior. Furthermore, the bounds were selected based on established PV modeling
literature to avoid identifiability issues and unrealistic parameter growth. Nonetheless, we have now
added a short explanatory note in the manuscript to clarify the physical interpretation of these
parameter values and to confirm that their convergence to bounds does not indicate over-constraining
but reflects plausible diode recombination mechanisms.

The results show that the proposed MLO outperforms the conventional LO in terms of
competitiveness. The proposed MLO achieves a desirable RMSE value of 1.74806 x 107, which is
lower than the conventional LO at 4.39308 x 107, Additionally, the table displays MLO’s max, mean,
and standard deviation values of 1.74810 x 1073, 1.74806 x 1073, and 5.61686 x 107°, respectively.
When compared to the conventional LO, the acquired results reveal that the MLO significantly
improves accuracy and efficacy for the best SD model characterization. The ideal parameters for the
solar PV model under discussion are found after about 50 independent runs. Figure 5 offers a statistical
summary of the RMSE values for both algorithms and the SD model throughout the 50 runs to further
examine the algorithm’s robustness. It can be seen from the figure that the proposed MLO provides
higher robustness than the conventional LO.

Figure 6 illustrates the convergence graphs of the proposed MLO and the conventional LO for
the SD PV model of the MSX-60 module. Figure 6 confirms that the proposed MLO from the
beginning of the iterative journey is associated with significant progress.

Table 3. Electrical parameters obtained by the suggested MLO and LO for the SD model.

LO MLO

Iph 3.794200555 3.803241225
Rs 0.007976533 0.008009809
Rsh 8.381544154 6.8929271
Iol 1.35057E-08 1.21876E-08
nl 1.005237573 1

min 4.39308E-03 1.74806E-03
mean 8.55766E-03 1.74806E-03
max 1.27844E-02 1.74810E-03
Std 2.18006E-03 5.61686E-09
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Figure 5. 50 runs of the proposed MLO and the conventional LO for the SD PV model of

MSX-60.
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Figure 6. Convergence graphs of the proposed MLO and the conventional LO for the SD
PV model of MSX-60.

The observed and simulated I-V and P-V features for the SD model of MSX-60 can be seen in
Figure 7(a, b). The suggested MLO and the traditional LO are used to represent the 15 measured points
for this module. The data produced by the MLO approach appears to closely match the data obtained
through experimentation, indicating that the MLO technique became effective in generating power and
current across a spectrum of voltage settings. The simulated and measured absolute errors of power vary
from 0 to 7.5767 x 1072, whereas the simulated and measured current absolute errors vary from 8.37347
x 1077 to 1.7523 x 107>, as demonstrated in Figure 8(a, b) and Table 4.
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Table 4. Absolute differences between the proposed MLO’s simulated and experimental
currents and powers for the MSX-60 SD PV model.

No. Vexp lexp Isim Pexp Psim

1 0 3.8 3.798826 0 0

2 1.6 3.7932 3.792386 6.06912 6.067817
3 3.1 3.7868 3.786348 11.73908 11.73768
4 4.6 3.7804 3.780308 17.38984 17.38942
5 6.1 3.774 3.774264 23.0214 23.02301
6 7.6 3.7676 3.768198 28.63376 28.63831
7 9.1 3.761 3.762047 34.2251 34.23463
8 10.6 3.7542 3.755554 39.79452 39.80888
9 12.1 3.7461 3.747695 45.32781 45.34711
10 13.6 3.7327 3.734383 50.76472 50.78761
11 15.1 3.6987 3.699491 55.85037 55.86231
12 17.1 3.5 3.497037 59.85 59.79934
13 18.1 3.189 3.184814 57.7209 57.64513
14 19.6 2.0962 2.098981 41.08552 41.14002
15 21.1 0 —0.00043 0 —0.00911
No. IAE PAE Absolut IAE Absolut PAE

1 —0.00117434 0 1.37908E-06 0

2 —0.00081442 0.00130307 6.63277E-07 0.001303069

3 —0.0004523 0.00140212 2.04572E-07 0.00140212

4 —9.1507E-05 0.00042093 8.37347E-09 0.000420931

5 0.000263953 —0.0016101 6.96714E-08 0.001610116

6 0.000598076 —0.0045454 3.57695E-07 0.004545378

7 0.001047018 —0.0095279 1.09625E-06 0.009527866

8 0.001354308 —0.0143557 1.83415E-06 0.01435566

9 0.001595418 —0.0193046 2.54536E-06 0.019304554

10 0.00168343 —0.0228947 2.83394E-06 0.022894654

11 0.00079055 —0.0119373 6.2497E-07 0.011937308

12 —0.00296267 0.05066171 8.77743E-06 0.050661707

13 —0.00418605 0.07576747 1.7523E-05 0.075767474

14 0.002780604 —0.0544998 7.73176E-06 0.054499844

15 —0.0004316 0.00910677 1.86279E-07 0.009106768

Figure 7(a, b) illustrates the observed and simulated [-V and P—V characteristics of the SD model
for the MSX-60 module. Both the proposed MLO and the conventional LO methods are applied to
represent the 15 measured data points for this module. The results indicate that the MLO-based
simulation closely aligns with the experimental data, confirming the effectiveness of MLO in
accurately predicting power and current over a range of voltage values. The absolute error between
simulated and measured power ranges from 0 to 7.5767 x 1072, and the current absolute error varies
between 8.37 x 10~ and 1.75 x 1075, as shown in Figure 8(a, b) and summarized in Table 4.
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Figure 7. Characteristic curves of the solar modules, both measured and estimated for the
MSX-60 SD PV model.
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Figure 8. Absolute errors in the currents and powers between simulated and experimental
values of the MSX-60 SD PV model.
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4.1.2. DD model

The DD model features of the MSX—60 PV module are extracted using the suggested MLO. Table
5 lists the seven unidentified DD parameter values for different inspired techniques that yielded the
best experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO,
which are 1 and 1 for the ideality factor for d1 and d2, 6.892926882 Q for shunt resistance,
0.008009809 Q for series resistance, 3.803241226 A for photo-current, and 1.21876 x 1072 uA and 0
pA for saturation current for d1 and d2. This demonstrates that the proposed MLO achieves a desirable
RMSE value of 1.74806 x 1073, which is lower than that of the conventional LO, at 4.04117 x 1073,
The results show that the proposed MLO outperforms the conventional LO in terms of competitiveness.
Additionally, the proposed MLO outperforms corresponding approaches in terms of competitiveness,
including the analytical methods (AM) [54], mountain-climbing algorithm (MCA) [55], Newton—
Raphson method (NRM) [56], and a combination of a numerical approach with a slope adjustment
technique (NASAT) [57]. Moreover, the table displays the MLO’s max, mean, and standard deviation
values: 1.78001 x 1073, 1.74873 x 107, and 4.51735 x 107, respectively. When compared to the
conventional LO, the MLO significantly improves accuracy and efficacy for the best DD model
characterization. The ideal parameters for the solar PV model under discussion are found after about
50 independent runs. Figure 9 offers a statistical summary of the RMSE values for both algorithms
and the DD model throughout the 50 runs in order to further examine the algorithm’s robustness. It

can be seen from the figure that the proposed MLO provides higher robustness than the conventional
LO.

Table 5. Electrical parameters obtained by the suggested MLO and LO for the DD model.

AM [54] MCA [55] NRM [56]  NASAT[57] LO MLO

Iph 3.8046 3.808361 3.8084 3.8618 3.796545747 3.803241226
Rs 0.3397 0.372046 0.3692 0.2904 0.008078825 0.008009809
Rsh 280.2171 169.081308 169.0471 286.1209 8.537603576 6.892926882
Tol 4.033E-06  4.597752E-10  6.1528E-10  3.1092E-06 0 1.21876E-08
n 2.0014 2 1.9997 2 1 1

Io2 3.9901E-10  4.597752E-10  4.8723E-10  6.0842E-10  1.22295E-08 0

n2 0.99859 1 1.0003 1 1 1

min 1.908 E-01  1.666 E-01 1379 E-01  3.43 E-02 4.04117E-03 1.74806E-03
Mean - - 7.70284E-03 1.74873E-03
max - - - 1.10606E-02 1.78001E-03
Std - - - 1.77743E-03 4.51735E-06

Journal of Industrial and Management Optimization

Volume 22, Issue 1, 642—-690.



661

Figure 9. 50 runs of the proposed MLO and the conventional LO for the DD PV model of
MSX-60.

Figure 10 illustrates the convergence graphs of the proposed MLO and the conventional LO for
the DD PV model of the MSX-60 module. Figure 10 confirms that the proposed MLO from the
beginning of the iterative journey is associated with significant progress. This is due to an improvement
in the exploration capability made possible by the MLO approach. The improvement starts at iteration
100 for all three models with the best converging attributes.
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Figure 10. Convergence graphs of the proposed MLO and the conventional LO for the DD
PV model of MSX-60.

Figure 11(a, b) shows the measured and simulated I-V and P-V curves for the DD model of the MSX-
60 module. The MLO-generated results exhibit a close agreement with the experimental data,
demonstrating the method’s accuracy in predicting power and current across different voltage ranges. The
absolute error between simulated and measured power lies between 0 and 7.5768 x 1072, while the error
for current ranges from 8.38559 x 107" to 1.7523 x 107>, as demonstrated in Figure 12(a, b) and Table 6.
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Figure 11. Characteristic curves of the solar modules, both measured and estimated for the
MSX-60 DD PV model.
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Figure 12. Absolute errors in the currents and powers between simulated and experimental
values of the MSX-60 SD PV model.
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Table 6. Absolute differences among the proposed MLO’s simulated and experimental
currents and powers for the MSX-60 DD PV model.

Vexp Iexp Isim Pexp Psim
1 0 3.8 3.798826 0 0
2 1.6 3.7932 3.792385 6.06912 6.067817
3 3.1 3.7868 3.786348 11.73908 11.73768
4 4.6 3.7804 3.780308 17.38984 17.38942
5 6.1 3.774 3.774264 23.0214 23.02301
6 7.6 3.7676 3.768198 28.63376 28.63831
7 9.1 3.761 3.762047 34.2251 34.23463
8 10.6 3.7542 3.755554 39.79452 39.80888
9 12.1 3.7461 3.747695 45.32781 45.34712
10 13.6 3.7327 3.734384 50.76472 50.78762
11 15.1 3.6987 3.699491 55.85037 55.86231
12 17.1 3.5 3.497037 59.85 59.79934
13 18.1 3.189 3.184814 57.7209 57.64513
14 19.6 2.0962 2.09898 41.08552 41.14002
15 21.1 0 —0.00043 0 —0.0091

IAE PAE Absolut IAE Absolut PAE
1 —0.0011745 0 1.37944E-06 0
2 —0.00081454 0.00130327 6.63479E-07 0.001303267
3 —0.00045239 0.00140241 2.04658E-07 0.001402415
4 —9.1573E-05 0.00042124 8.38559E-09 0.000421235
5 0.000263916 —0.0016099 6.96517E-08 0.001609888
6 0.000598067 —0.0045453 3.57685E-07 0.004545312
7 0.001047038 —0.009528 1.09629E-06 0.009528048
8 0.001354356 —0.0143562 1.83428E-06 0.014356175
9 0.001595494 —0.0193055 2.5456E-06 0.019305479
10 0.001683532 —0.022896 2.83428E-06 0.022896038
11 0.000790667 —0.0119391 6.25154E-07 0.01193907
12 —0.00296261 0.05066055 8.77703E-06 0.05066055
13 —0.00418608 0.07576806 1.75233E-05 0.075768064
14 0.002780369 —0.0544952 7.73045E-06 0.054495236
15 —0.00043144 0.0091033 1.86137E-07 0.009103299

4.1.3. TD model

The TD model features of the MSX—60 PV module are extracted using the suggested MLO. Table
7 lists the nine unidentified TD parameter values for different inspired techniques that yielded the best
experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO, which
are 1, 1, and 1 for the ideality factor for d1, d2, and d3, 6.892926994 Q for shunt resistance,
0.008009809 Q for series resistance, 3.803241225 A for photo-current, and 0, 1.21876 x 1072 pA and
0 pA for saturation current for d1, d2, and d3.
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The results show that the proposed MLO outperforms the conventional LO in terms of
competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of
1.74806 x 1073, lower than that of the conventional LO at 3.22789 x 107, Additionally, the table
displays the MLO’s max, mean, and standard deviation values: 1.97327 x 1073, 1.75887 x 1073, and
3.83808 x 107>, respectively. When compared to the conventional LO, the acquired results reveal that
the MLO significantly improves accuracy and efficacy for the best TD model characterization. The
ideal parameters for the solar PV model under discussion are found after about 50 independent runs.
Figure 13 offers a statistical summary of the RMSE values for both algorithms and the TD model
throughout the 50 runs in order to further examine the algorithm’s robustness. It can be seen from the
figure that the proposed MLO provides higher robustness than the conventional LO.

Table 7. Electrical parameters obtained by the suggested MLO and LO for the TD model.

LO MLO
Iph 3.803742788 3.803241225
Rs 0.007860924 0.008009809
Rsh 7.162340399 6.892926994
ol 6.97299E-09 0
nl 1.109662637 1
Io2 1.10214E-08 1.21876E-08
n2 1.002642904 1
Io3 7.5425E-10 0
n3 1.001484974 1
min 3.22789E-03 1.74806E-03
mean 7.65579E-03 1.75887E-03
max 1.14736E-02 1.97327E-03
Std 1.70209E-03 3.83808E-05

Figure 13. 50 runs of the proposed MLO and the conventional LO for the TD PV model
of MSX-60.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 642—690.



665

Moreover, Figure 14 illustrates the convergence graphs of the proposed MLO and the
conventional LO for the TD PV model of the MSX-60 module. Figure 14 confirms that the proposed
MLO from the beginning of the iterative journey is associated with significant progress. This is due to
an improvement in the exploration capability made possible by the MLO approach. The improvement
starts at iteration 180 for all three models with the best converging attributes.
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Figure 14. Convergence graphs of the proposed MLO and the conventional LO for the TD
PV model of MSX-60.
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Figure 15. Characteristic curves of the solar modules, both measured and estimated.
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Moreover, Figure 15(a, b) displays the experimental and simulated I-V and P—V curves for the
TD model of the MSX-60 module. The results generated by the MLO method show strong agreement
with the experimental measurements, highlighting its capability to accurately predict power and
current across various voltage levels. The absolute error for power ranges from 0 to 7.5339 x 102, and
the error for current varies between 2.22984 x 107® and 1.7326 x 107%, as demonstrated in Figure 16(a,
b) and Table 8.

Table 8. Absolute differences between the proposed MLO’s simulated and experimental
currents and powers for the MSX-60 TD PV model.

Vexp Iexp Isim Pexp Psim
1 0 3.8 3.798538 0 0
2 1.6 3.7932 3.792144 6.06912 6.06743
3 3.1 3.7868 3.786148 11.73908 11.73706
4 4.6 3.7804 3.780151 17.38984 17.3887
5 6.1 3.774 3.774149 23.0214 23.02231
6 7.6 3.7676 3.768126 28.63376 28.63776
7 9.1 3.761 3.762017 34.2251 34.23436
8 10.6 3.7542 3.755567 39.79452 39.80901
9 12.1 3.7461 3.747749 45.32781 45.34777
10 13.6 3.7327 3.734477 50.76472 50.78888
11 15.1 3.6987 3.699614 55.85037 55.86417
12 17.1 3.5 349714 59.85 59.80109
13 18.1 3.189 3.184838 57.7209 57.64556
14 19.6 2.0962 2.098811 41.08552 41.1367
15 21.1 0 -0.00041 0 —0.00875

IAE PAE Absolut IAE Absolut PAE
1 —0.00146153 0 2.13606E-06 0
2 —0.00105634 0.00169014 1.11586E-06 0.001690145
3 —0.00065179 0.00202054 4.24825E-07 0.002020537
4 —0.00024856 0.00114339 6.17839E-08 0.001143393
5 0.000149326 —0.0009109 2.22984E-08 0.000910891
6 0.000525869 —0.0039966 2.76538E-07 0.003996605
7 0.001017192 —0.0092564 1.03468E-06 0.009256443
8 0.001366709 —0.0144871 1.86789E-06 0.014487114
9 0.001649444 —0.0199583 2.72066E-06 0.019958269
10 0.001776716 —0.0241633 3.15672E-06 0.024163344
11 0.000913975 —0.013801 8.3535E-07 0.013801019
12 —0.00286008 0.04890731 8.18004E-06 0.048907314
13 —0.0041624 0.07533939 1.73255E-05 0.075339385
14 0.002611172 —0.051179 6.81822E-06 0.051178965
15 —0.00041465 0.00874916 1.71936E-07 0.008749161
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Figure 16. Absolute errors in the currents and powers between simulated and experimental
values of the MSX-60 SD PV model.

4.1.4. Computational budget and runtime discussion considering TD model

Both LO and the proposed MLO algorithms were executed under an identical computational
budget to ensure a fair comparison. Table 9 displays the computational budget and runtime comparison
for the MSX-60 TD PV model. As shown, each algorithm utilized a population size of 100 solutions
and was iterated for 1000 iterations, resulting in a total of 100,000 function evaluations per run. This
equal evaluation budget allows performance differences to be attributed solely to algorithmic design
rather than unequal search effort. The average CPU runtime measured in MATLAB (R2017b) on a
machine with 8§ GB RAM was approximately 38.58 seconds for the conventional LO and 57.70
seconds for the proposed MLO. The slightly higher computational time for MLO is expected, as the
additional memory-based and diversity maintenance mechanisms introduce extra computational
operations in both exploration and exploitation phases. However, this increase in runtime is modest
and justified by the significant improvements in accuracy, convergence behavior, and robustness, as
demonstrated by the lower RMSE values and reduced standard deviation across multiple runs.
Therefore, despite a ~50% increase in CPU time, the performance benefits of MLO outweigh its
computational overhead, making it computationally efficient and scalable for real PV parameter
estimation problems.

Table 9. Computational budget and runtime comparison for the MSX-60 TD PV model.

Item LO algorithm MLO algorithm
Population size (NBs) 100 100

Maximum iterations (/75max) 1000 1000

Total function evaluations 100,000 100,000

CPU elapsed time (s) 38.58s 57.70 s
MATLAB memory usage 1778 MB 1798 MB
Maximum available RAM 8085 MB 8085 MB
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4.2. Application for the RTC France solar cell

4.2.1.  SD model

The SD model features of the RTC France solar cell are extracted using the suggested MLO. Table 10
lists the five unidentified SD parameter values for different inspired techniques that yielded the best
experiment outcomes. The results show that the proposed MLO outperforms corresponding approaches in
terms of competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of
9.86022 x 107*. Additionally, the table displays the electrical parameters that were generated from PV
utilizing recognized optimization methods, including the classified perturbation mutation marine predator
algorithm (MPA) [58], barnacles mating optimizer (BMA) [59], PSO (CPMPSO) [60], ant lion optimizer
(ALO) [61], RIME [53], a performance-guided JAYA (PGJAYA) [62], enhanced MPA (EMPA) [58],
enriched Harris hawks optimization (EHHO) [35], growth optimizer (GO) [63], material generation
algorithm (MGA) [64], neighborhood scheme-based Laplacian MBA (NLBMA) [65], lightning
attachment procedure optimization (LAPO) [66], flexible PSO (FPSO) [67], multi-verse optimizer
(MVO) [68], jellyfish search (JFS) optimizer [58], equilibrium optimizer (EO) [58], hybrid PSO-GWO
algorithm (PSOGWO) [69], hybrid firefly and pattern search (HFAPS) [70], HEAP optimizer [58], and
particle swarm optimization (PSO) [71].

Besides, the table lists the evaluated parameters of the suggested MLO, which are 1.483914803
for the ideality factor for d1, 17.04778813 Q for shunt resistance, 0.005601219 Q for series resistance,

1.663749645 A for photo-current, and 3.31823 x 10! pA for saturation current.

Table 10. Electrical parameters obtained by the suggested MLO and LO for the SD model.

Algorithm L (A) L (BA) n R (Q) Ry (Q) RMSE

MLO 1.663749645 6.0068 1.876730845 17.04778813 0.005601219 9.86022E-04
LO 0.760827451 3.31823E-01 1.483914803 53.96055333 0.036279447 9.89674E-04
RIME[53] 0.760776 323021 x 1077 1481184 5371865291 0.036377096 9.9755 x 10
MGA [64] 0.760776 3.23x 10! 1481184  53.71852  0.036377  9.8602x 107
EO [58] 8.209153 2.85 %1072 1218068  7.714703  0.004815  2.888 x 107
PGIAYA[62] 8.2167 0.002284 58.1742 773.8117  0.3435 1.5455 x 10
MPA[58] 8.184927 7.94459 x 102 1.285180059 92.14823504 0.004537611 1.487 x 102
FPSO [67] 8.2186 0.001436 56.9854 1302813 0.2409 2.8214 x 102
PSOGWO [69] 8.2132 9.6768 1.7463 38.8968 0.0011 1.2700 x 10!
GO [63] 8.192967 431808 x 102 1244346 15.103921  0.004710  8.515347 x 10
PSO [71] 8.2027 2.8852 1.6052 33.8855 0.0019 1.0195 x 10°!
JFS [58] 8.193182 472 %1072 1.250052 1497462 0.004679  9.477 x 1073
CPMPSO[60]  8.21689146 0.00224195 1.07641028  763.535149  0.34381405  1.53903 x 10°3
EHHO [35] 82224 0.000001 80.6915 1806.0252  0.1835 5.9507 x 1072
HFAPS[70]  8.1992 0.154161 74.5795 14482590  0.2396 4.9863 x 102
MVO [68] 8.2527 0.063908 69.2388 1344813 0.1341 8.3800 x 1072
HEAP [58]  8.200974 4.49 x 1072 1.246924 11.87468  0.004696  7.425x 1073
NLBMA [65]  8.1467 0.0022 1.0839 5.0000 0.0045 3.3610 x 1072
LAPO[66] 82155 8.1491 1.7258 5.0000 0.001 1.3813 x 10°!
BMA [59] 8.1950 3.1015 1.6130 100.0000  0.0019 1.0244 x 10™!
EMPA [58]  8.21195 3.59 x 102 1.232551 7560713 0.004742  3.847 x 10
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Figure 17. Characteristic curves for RTC France SD PV cell, both measured and estimated.
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Figure 18. Absolute errors in the currents and powers between simulated and experimental
values of the RTC France SD PV cell.
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Furthermore, Figure 17(a, b) presents the experimental and simulated [-V and P-V curves for the
SD model of the RTC France PV cell. The results obtained using the MLO approach show a strong
correlation with the experimental data, confirming its effectiveness in accurately estimating power and
current across different voltage levels. The absolute error for power ranges from 1.97222 x 107 to
1.4626 x 1073, while the error for current varies between 7.69491 x 10~° and 6.287 x 107, as illustrated
in Figure 18(a, b).

4.2.2. DD model

The DD model features of the RTC France solar cell are extracted using the suggested MLO.
Table 11 lists the seven unidentified DD parameter values for different inspired techniques that yielded
the best experiment outcomes. The results show that the proposed MLO outperforms corresponding
approaches in terms of competitiveness. The proposed MLO achieves a desirable RMSE value of
9.82488 x 10*. Additionally, the table displays the electrical parameters that were generated from PV
utilizing the recognized optimization methods, including RIME [53], dwarf mongoose optimizer
(DMO) [72], modified RIME [53], and modified DMO [72]. Besides, the table lists the evaluated
parameters of the suggested MLO, which are 1.451641269 and 2 for the ideality factor for d1 and d2,
55.43031017 Q for shunt resistance, 0.036734969 Q for series resistance, 0.76078101 A for photo-
current, and 2.277 x 107! pA and 7.33063 x 10~7 A for saturation current for d1 and d2.

Table 11. Electrical parameters obtained by the suggested MLO and LO for the DD model.

Method DMO RIME MGA MRIME MDMO LO MLO

Ipn (A) 0.761086003  0.760864277  0.760781079 0.760780758  0.760777046 0.760601433 0.76078101
Ry (€2) 0.036452844  0.036173672  0.03674043  0.036767981  0.03658083  0.036350742 0.036734969
Rgi () 56.0407128 53.58354831  55.48544096 55.64800559  54.7047585  56.08242095 55.43031017
Isi (A) 3.81141E-07 43113 x10% 7.49347x 1077 8.0438 x 1077 4.27843E-07 2.97805E-07 2.277E-07

m 1.83357911 1.827202939 2 1.999974446  1.991913976 1.49706509 1.451641269
I (A) 2.38858E-07  3.25421 x 1077 2.25974x 1077 2.19744 x 1077 2.63353x 1077 3.93635E-08 7.33063E-07
"2 1.458364626 1.482783518  1.45101678 1.448694376  1.463888853  1.427632226 2

RMSE  1.028696x 103 9.9382 x 10™*  9.82485x 10* 9.8251 x 10 9.83217x 10* 9.92228E-04 9.82488E-04

Figure 19(a, b) illustrates the experimental and simulated I-V and PV curves for the DD model of
the RTC France PV cell. The MLO-based results closely match the experimental data, demonstrating the
method’s effectiveness in predicting power and current across different voltage levels. The absolute error
for power ranges from 1.97588 x 10°¢ to 1.4633 x 1073, while the current error varies between 6.6531 x
10 and 6.29321 x 1075, as demonstrated in Figure 20(a, b).
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Figure 19. Characteristic curves for the MSX-60 DD PV model, both measured and

estimated.
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Figure 20. Absolute errors in the currents and powers between simulated and experimental
values of the RTC France SD PV cell.

42.3. TD model

The TD model features of the RTC France solar cell are extracted using the suggested MLO. Table 12
lists the nine unidentified SD parameter values for different inspired techniques that yielded the best
experiment outcomes. The results show that the proposed MLO outperforms corresponding approaches in
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terms of competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of
9.82485 x 10~*. Additionally, the table displays the electrical parameters that were generated from PV
utilizing the recognized optimization methods, including artificial bee colony (ABC) [73], comprehensive
learning PSO [74], generalized oppositional TLBO [75], hazelnut tree search (HTS) algorithm [63], cat
swarm algorithm (CSA) [76], TLBO [77], growth optimizer (GO) [63], teaching—learning—based
(TLABC) [78], five phases algorithm (FPA) [63], improved Kepler optimization algorithm (IKOA)
[79], flower pollination optimizer (FPO) [80], energy valley optimizer (EVO) [63], sine cosine
approach (SCA) [38], and improved rime metaheuristic optimization (IRMO) [81].

Based on these results, the RMSE values for the MLO method are as follows: minimum 9.82485 x
10, maximum 1.00000 x 1073, mean 9.85554 x 10, and standard deviation 2.84222 x 1076, Compared
with other recently proposed optimization techniques, these findings demonstrate that MLO provides
significantly improved accuracy and robustness in characterizing the TD model.

Table 12. Comparisons between MLO, conventional LO, and recently established
competing approaches for the TD model of the RTC France PV cell.

Method Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE)
MLO 9.82485E-04 9.85554E-04 1.00000E-03 2.84222E-06
LO 9.97454E-04 1.09032E-03 1.36650E-03 7.33831E-05
FPA [63] 1.1083E-03 1.2651E-03 1.431E-03 1.127E-04
Opposition TLBO [75] 4.43212E-03 - - -

TLABC [78] 1.50482E-03 - - -

SCA [38] 9.86863E-04 - - -

EVO [63] 1.083E-03 2.3850E-03 5.361E-03 1.644E-03
FPO [80] 1.934336E-03 - - -

TLBO [77] 1.52057E-03 - - -

IRMOJ81] 9.86812 E-04 1.12068 E-03 1.6436 E-03 2.00229E-04
CSA[76] 1.22E-03 - - -

IKOA[79] 9.82490E-04 9.85769E-04 9.97427E-04 3.02730E-06
HTS [63] 1.186E-03 1.556E-03 1.988E-03 2.81E-04
ABC [73] 1.28482E-03

Comprehensive learning PSO [74] 1.3991E-03 -

4.2.4. Nonparametric statistical tests for compared algorithms considering the TD model

Considering the TD model of the RTC France SD PV cell, Table 13 presents the average Friedman
ranks computed from repeated RMSE results across different algorithms: mantis search algorithm
(MSA) [82], DMO, neural network algorithm (NNA) [82], KOA [79], IKOA [79], EVO [63], HTS
[63], RMO [81], IRMO [81], GO [63], LO, and the proposed MLO. Figure 21 displays the box plot of
the compared algorithms. As shown, the proposed MLO algorithm achieved the best overall rank (1.40),
consistently producing the lowest RMSE values. The second-best performance is by IKOA (1.90) and
GO (3.13). The original LO algorithm ranked moderately (5.87), demonstrating improvement when
modified to MLO. Algorithms such as DMO, EVO, HTS, and RMO show substantially higher ranks,
indicating inferior and more variable performance. Thus, the ranking results clearly demonstrate that
MLO provides consistently superior optimization results.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 642—690.



673

H M5A B DMO B NNA [OHTS OEVO B GO HKOA M IKOA ERMO MIRMO HLO E MLO

0.0031

0.0029

0.0027

0.0025

0.0023

W 0.0021 _ *
£ 00019 ° _'i'_

0.0017 8 :

0.0015 | f -

0.0013 | 8 | .

00011 |t 1 y y ==

0.0003

Algorithms
Figure 21. Box plot of the compared algorithms considering the TD model of
the RTC France SD PV cell.
Table 13. Friedman statistical test.

Algorithm Average rank Ranking
MSA 4.87 4
DMO 10.17 12
NNA 8.60 7
HTS 9.23 10
EVO 9.63 11
GO 3.13 3
KOA 8.83 8
IKOA 1.90 2
RMO 8.97 9
IRMO 5.40 5
LO 5.87 6
MLO 1.40 1

Also, a post-hoc multiple comparisons test is implemented between each pair of algorithms, as
shown in Table 14. Several comparisons involving MLO vs. other algorithms produced p-values <
0.05, confirming significant performance improvements. The comparison between MLO and
GO/IKOA did not yield statistical significance (p = 1); while MLO ranks higher, their result
distributions were close enough to not be statistically different in this post-hoc test. However, the
pairwise Wilcoxon test (Table 15) confirms significance where Dunn did not.
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Table 14. Post-hoc multiple comparisons statistical test.

Algorithm 1 Algorithm 2 Lower CI Mean_Diff Upper_CI p_value
MSA DMO —8.4288 =53 -2.1712 0.00003
MSA NNA —6.8622 —3.7333 —0.6045 0.004
MSA HTS —7.4955 —4.3667 —1.2378 0.0002
MSA EVO —7.8955 —4.7667 —1.6378 0.00001
MSA GO —1.3955 1.7333 4.8622 0.986
MSA KOA —=7.0955 —3.9667 —0.8378 0.0013
MSA IKOA —0.1622 2.9667 6.0955 0.0907
MSA RMO —7.2288 —4.1 -0.9712 0.0007
MSA IRMO —3.6622 —0.5333 2.5955 1

MSA LO —4.1288 -1 2.1288 1

MSA MLO 0.3378 3.4667 6.5955 0.0129
DMO NNA —1.5622 1.5667 4.6955 0.9983
DMO HTS —2.1955 0.9333 4.0622 1

DMO EVO —2.5955 0.5333 3.6622 1

DMO GO 3.9045 7.0333 10.1622 0.000002
DMO KOA —1.7955 1.3333 4.4622 1

DMO IKOA 5.1378 8.2667 11.3955 0.000012
DMO RMO —1.9288 1.2 4.3288 1

DMO IRMO 1.6378 4.7667 7.8955 0.0000059
DMO LO 1.1712 43 7.4288 0.0003
DMO MLO 5.6378 8.7667 11.8955 0.000015
NNA HTS —3.7622 —0.6333 2.4955 1

NNA EVO —4.1622 —1.0333 2.0955 1

NNA GO 2.3378 5.4667 8.5955 0.000022
NNA KOA —3.3622 —0.2333 2.8955 1

NNA IKOA 3.5712 6.7 9.8288 0.00001
NNA RMO —3.4955 —0.3667 2.7622 1

NNA IRMO 0.0712 32 6.3288 0.038
NNA LO —0.3955 2.7333 5.8622 0.1973
NNA MLO 4.0712 7.2 10.3288 0.0000001
HTS EVO —3.5288 -0.4 2.7288 1

HTS GO 29712 6.1 9.2288 0.000003
HTS KOA —2.7288 0.4 3.5288 1

HTS IKOA 4.2045 7.3333 10.4622 0.00002
HTS RMO —2.8622 0.2667 3.3955 1

HTS IRMO 0.7045 3.8333 6.9622 0.0025
HTS LO 0.2378 3.3667 6.4955 0.0195
HTS MLO 4.7045 7.8333 10.9622 0.000005
EVO GO 3.3712 6.5 9.6288 0.000006
EVO KOA —2.3288 0.8 3.9288 1
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Algorithm 1 Algorithm 2 Lower CI Mean_Diff Upper_CI p_value
EVO IKOA 4.6045 7.7333 10.8622 0.000008
EVO RMO —2.4622 0.6667 3.7955 1

EVO IRMO 1.1045 42333 7.3622 0.0004
EVO LO 0.6378 3.7667 6.8955 0.0034
EVO MLO 5.1045 8.2333 11.3622 0.000023
GO KOA —8.8288 =57 —2.5712 0.000027
GO IKOA —1.8955 1.2333 4.3622 1

GO RMO —8.9622 —5.8333 —2.7045 0.0000075
GO IRMO —5.3955 —2.2667 0.8622 0.6287
GO LO —5.8622 —2.7333 0.3955 0.1973
GO MLO —1.3955 1.7333 4.8622 0.986
KOA IKOA 3.8045 6.9333 10.0622 0.0000025
KOA RMO —3.2622 —0.1333 2.9955 1

KOA IRMO 0.3045 3.4333 6.5622 0.0148
KOA LO —0.1622 2.9667 6.0955 0.0907
KOA MLO 4.3045 7.4333 10.5622 0.0000056
IKOA RMO —10.1955 —7.0667 —3.9378 0.000009
IKOA IRMO —6.6288 =35 —0.3712 0.0112
IKOA LO —7.0955 —3.9667 —0.8378 0.0013
IKOA MLO —2.6288 0.5 3.6288 1

RMO IRMO 0.4378 3.5667 6.6955 0.0084
RMO LO —0.0288 3.1 6.2288 0.0557
RMO MLO 4.4378 7.5667 10.6955 0.0000023
IRMO LO —3.5955 —0.4667 2.6622 1

IRMO MLO 0.8712 4 7.1288 0.0011
LO MLO 1.3378 4.4667 7.5955 0.0001

Furthermore, the Wilcoxon signed-rank test was employed to evaluate the run-to-run performance
consistency between the algorithms, as summarized in Table 15. The results clearly demonstrate that
the proposed MLO algorithm exhibits significantly superior performance when compared with all
other competing methods, including LO, with p-values less than 0.05 in all direct pairwise comparisons.
This confirms that the improvement offered by MLO is not only reflected in average accuracy but is
also consistent and repeatable across multiple independent runs. It is noteworthy that the comparison
between MLO and IKOA yielded a p-value of 0.0166, which, although still below the 0.05 significance
threshold, indicates a comparatively smaller but still statistically significant performance advantage
for MLO. This suggests that while IKOA is among the stronger baseline competitors, the proposed
modifications implemented in MLO provide a more stable and robust optimization behavior overall.
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Table 15. Pairwise Wilcoxon signed-rank statistical test.

MLO vs. algorithm p-value

MLO vs. MSA 1.9209E-06
MLO vs. DMO 1.7344E-06
MLO vs. NNA 1.7344E-06
MLO vs. HTS 1.7344E-06
MLO vs. EVO 1.7300E-06
MLO vs. GO 4.2857E-06
MLO vs. KOA 1.7344E-06
MLO vs. IKOA 1.6566E-02
MLO vs. RMO 1.7344E-06
MLO vs. IRMO 1.7344E-06
MLO vs. LO 1.7344E-06

4.2.5. Electrical characteristics of the RTC France solar cell considering the TD model

Figure 22(a, b) presents the experimental and simulated I-V and P—V curves for the TD model of
the RTC France PV cell. The results generated using the proposed MLO approach show a strong
correlation with experimental measurements, confirming its effectiveness in predicting power and
current across various voltage levels. The absolute error for power ranges from 1.86255 x 107 to
1.4881 x 1073, while the current error varies between 2.82332 x 107! and 6.50807 x 10°, as
demonstrated in Figure 23(a, b).

Figure 24 illustrates the convergence graphs of the proposed MLO and the conventional LO for
the SD, DD, and TD PV model of the RTC France PV cell. Figure 24(a—) shows that the proposed
MLO from the beginning of the iterative journey is associated with significant progress. This is due to
an improvement in the exploration capability made possible by the MLO approach. The improvement
starts at iteration 200 for all three models with the best converging attributes.
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Figure 22. Characteristic curves for the MSX-60 TD PV model, both measured and
estimated.
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Figure 23. Absolute errors in the currents and powers between simulated and experimental
values of the RTC France SD PV cell.
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Figure 24. Convergence graphs of the proposed MLO and the conventional LO for
the SD, DD, and TD PV model of RTC France PV cell.

4.2.6.

Ablation study and sensitivity analysis of the RTC France solar cell considering the TD
model

This study proposes two primary interrelated changes (MBLSS/DMLSS). To show that each
modification matters, an ablation study is included in this section by implementing (i) standard LO, (ii)
LO + MBLSS only, (iii) LO + DMLSS only, and (iv) full MLO, and comparing the different indicators
of the RMSE to demonstrate the contribution of each component. As shown in Table 16, the full MLO
achieves the best performance across all evaluation indicators, with a minimum RMSE of 0.00098249,
mean RMSE of 0.00098555, maximum RMSE of 0.00100000, and standard deviation of 2.8422 x 107°,
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indicating highly stable convergence. Introducing MBLSS alone improves stability significantly
compared to standard LO, reducing the standard deviation from 7.338 x 107> to 7.097 x 1076, and
lowering the mean RMSE from 0.0010903 to 0.0009886. Meanwhile, DMLSS alone enhances global
search ability, but yields slightly higher variation (Std = 3.0584 x 10~°) and mean RMSE (0.00104518)
than MBLSS. The best performance is obtained when both strategies are combined, demonstrating a
synergistic effect in improving accuracy and robustness.

Table 16. Ablation study of the RTC France solar cell considering the TD model.

LO LO+MBLSS LO+DMLSS MLO (proposed)
Min (RMSE) 0.0009975 0.0009841 0.00101468 0.00098249
Mean (RMSE) 0.0010903 0.0009886 0.00104518 0.00098555
Max (RMSE) 0.0013665 0.0010078 0.00109726 0.001
Std (RMSE) 7.338E-05 7.097E-06 3.0584E-05 2.8422E-06

To further evaluate the robustness of the MLO algorithm, a sensitivity analysis was conducted on
the imitation probability B, and the distance coefficient y. Tables 17 and 18 report the minimum
RMSE and standard deviation obtained across combinations of P, € [0,1] and y € [0,1]. From
Table 17, the lowest minimum RMSE values are observed when P, = 0.5 and y = 0.5 (minimum
RMSE = 0.00098458), and when P, = 0.75 and y = 0.25 (minimum RMSE = 0.00098560).
Similarly, the standard deviations (Table 18) show their smallest values at B, = 0.5,y = 0.5 with Std
=1.3972 x 107%, and P, = 0.75,y = 0.25 with Std = 9.1676 x 1077 demonstrating highly stable
output. In contrast, extreme values of P, = 0 or P, = 1, combined with high y, lead to degraded
performance (e.g., RMSE increases to 0.00273855 when P, = 0,y = 0.75). These results indicate
that moderate parameter values (i.e., P, = 0.5-0.75, y = 0.25-0.50) provide the best balance
between learning influence and search diversification.

Table 17. Sensitivity analysis of the proposed MLO considering the minimum obtained RMSE.

Parameters y=0 y=10.25 y=0.5 y=0.75 y=1

Pm=0 0.00107059 0.00109641 0.00104518 0.00273855 0.00259594
Pm=0.25 0.00098856 0.00099008 0.00110661 0.00101240 0.00102182
Pm=0.5 0.00100621 0.00102290 0.000984583 0.000984591 0.00105350
Pm=0.75 0.00100518 0.00098560 0.00098700 0.00105285 0.00098632
Pm=1 0.00142479 0.00140869 0.00106247 0.00111331 0.00107447

Table 18. Sensitivity analysis of the proposed MLO considering the obtained standard

deviations of the RMSE.
Parameters y=0 y=0.25 y=0.5 y=0.75 y=1
Pm=0 4.1338E-05 8.1261E-05 3.0584E-05 1.3513E-03 9.8881E-04
Pm=0.25 7.0972E-06 1.0163E-05 2.6315E-04 5.0570E-05 1.0443E-04
Pm=0.5 3.7155E-05 1.1474E-04 1.3972E-06 1.0773E-05 1.5175E-04
Pm=0.75 3.9329E-05 9.1676E-07 2.1298E-06 1.5399E-04 3.3501E-06
Pm=1 6.0170E-04 6.0474E-04 1.7517E-04 1.7842E-04 2.0349E-04
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4.3. Application to the shell S75 PV module

In this part, the MLO and LO application is extended to the Shell S75, and evaluated under an
irradiance of 1000 W/m?, a cell temperature of 25 °C, and an air mass of AM 1.5. Its electrical
characteristics include an open-circuit voltage of 21.60 V and a short-circuit current of 4.70 A. At the
maximum power operating point, the module delivers 17.60 V and 4.26 A, resulting in a rated
maximum output power of 75 W. The temperature coefficients are 2 mA/°C for the short-circuit current
and —76 mV/°C for the open-circuit voltage, indicating increasing current and decreasing voltage with
rising temperature [83].

Figures 25 and 26 illustrate the -V and P—V curves under varying irradiance and temperature
levels, respectively, showing that MLO accurately reproduces the electrical characteristics across
different operating conditions.
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Figure 25. Electrical characteristics under different irradiance levels and a temperature of
25°C of the S75 PV module.
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irradiance of the S75 PV module.

As shown in Table 19, under varying irradiance (200-1000 W/m?), the proposed MLO
consistently achieves lower RMSE values compared to LO. At 800 W/m?, MLO achieves a minimum
RMSE of 0.086708, whereas LO yields 0.086794—0.087026 with a standard deviation of 7.75 x 1073,
demonstrating that LO suffers from higher fluctuation. Notably, MLO maintains near-zero variance
across all irradiance levels (Std in the range of ~107'7), confirming its high stability and repeatability.

Table 19. LO versus MLO under different irradiance levels and a temperature of 25 °C of

the S75 PV module.

Irradiance  Applied technique Min Max Average Std
200 LO 0.034502 0.034721 0.034937 0.000155
MLO 0.034393 0.034393 0.034393 3.27E-18
400 LO 0.069784 0.069957 0.070476 0.000238
Temperature  of MLO 0.069599 0.069599 0.069599 1.31E-17
55 0 600 LO 0.079938 0.080096 0.080541 0.000176
MLO 0.079817 0.079817 0.079817 6.54E-18
800 LO 0.086794 0.08688 0.087026 7.75E-05
MLO 0.086708 0.086708 0.086708 1.46E-17
1000 LO 0.074198 0.074353 0.074682 0.000137
MLO 0.074144 0.074144 0.074144 9.25E-18

Journal of Industrial and Management Optimization

Volume 22, Issue 1, 642—-690.



682

Table 20 further evaluates performance under temperature variations (25-60 °C) at 1000 W/m?.
At 25 °C, MLO again outperforms LO, achieving a stable RMSE of 0.074144 with a negligible
standard deviation of 9.25 x 1078, compared to LO’s 0.074198—0.0746816 and Std of 1.37 x 107, At
elevated temperatures (e.g., 60 °C), both methods experience RMSE increases due to intensified
thermal influence on diode currents and shunt resistance, but MLO still provides a lower minimum
RMSE (0.053744) than LO (0.0539443). However, MLO exhibits a higher spread at high temperature
(Std 3.08 x 107%), indicating that extreme thermal conditions introduce stronger nonlinear effects.

These results confirm that MLO delivers higher accuracy and superior stability across a wide
range of operating conditions, while maintaining robustness even when the PV model becomes more
sensitive to temperature.

Table 20. Sensitivity analysis of the proposed MLO under different temperatures and 1000
W/m? irradiance of the S75 PV module.

Temperature Applied technique Min Max Average Std
25 LO 0.074198 0.0743529 0.0746816 1.3672E-04
) MLO 0.0741441 0.0741441 0.0741441 9.2519E-18
Irradiance of
LO 0.048509 0.0489207 0.0496301 3.5887E-04
1000 W/m?
MLO 0.048171 0.0492322 0.0587022 3.3275E-03
60 LO 0.0539443 0.0545159 0.0557607 5.4032E-04
MLO 0.0537439 0.0548686 0.0635511 3.0765E-03

5. Conclusions

This work presented a modified lyrebird optimization (MLO) algorithm for the accurate
extraction of photovoltaic model parameters, addressing the limitations of conventional approaches.
The proposed MLO enhanced the original lyrebird optimization (LO) framework by introducing two
major improvements: a memory-based learn search strategy (MBLSS) to strengthen exploration and a
diversity maintenance learn search strategy (DMLSS) to improve exploitation. Furthermore, the
effectiveness of the proposed MLO was validated through extensive experiments on two well-known
PV systems, the RTC France solar cell and the Solarex MSX-60 module, under SD, DD, and TD
models. Comparative analyses against the conventional LO and several recent metaheuristic and
analytical techniques revealed that MLO consistently achieved lower RMSE, faster convergence, and
higher stability. Additional validation on the Shell S75 module demonstrated that MLO remains
effective under fluctuating irradiance and temperature conditions, achieving lower minimum RMSE
values and significantly reduced variance compared to LO. Even at high temperature operating ranges
where nonlinear effects intensify, MLO preserved superior accuracy, indicating its suitability for real-
world PV modeling, performance estimation, and control applications. Statistical evaluations of 50
independent runs confirmed the reliability and robustness of the MLO. Additionally, the strong
agreement between experimental and simulated [-V and P—V curves demonstrated the accuracy of the
extracted parameters.

Under an equal computational budget of 100,000 function evaluations, the MLO yielded superior
performance with an average runtime of ~57.7 s, which is only moderately higher than the ~38.6 s of
LO, but delivered significantly improved precision and robustness. The ablation study confirmed that
both the MBLSS and DMLSS contribute meaningfully to performance. The integrated MBLSS
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enhanced convergence stability (Std reduced from 7.338 x 1075 to 7.097 x 107°), whereas the DMLSS
improved global exploration. Their combination in the full MLO configuration achieved the best
results (minimum RMSE = 0.00098249 and Std =2.8422 % 1076). Additionally, the sensitivity analysis
on the imitation probability and distance coefficient revealed optimal performance for moderate
parameter values P, = 0.5 ~ 0.75 and y = 0.25 ~ 0.50, demonstrating that balanced learning
influence and diversity control are crucial for reliable convergence. These findings declare that the
proposed MLO is a reliable tool for PV parameter identification. By providing accurate and stable
parameter estimation, MLO contributes to improved modeling, performance evaluation, and control
of PV systems, which are crucial for efficient energy forecasting and grid integration. Future work may
extend MLO to real-time monitoring, incorporate environmental variability, and hybridize with other
techniques.

Despite the strong results, some limitations remain. First, validation is required for broader PV
technologies and real dynamic field environments. Second, while the bounds used for diode ideality
factors ensured physical plausibility, occasional convergence to the limits suggests potential parameter
identifiability issues under certain datasets. Future work will therefore include: (i) testing the MLO on
additional PV technologies (monocrystalline, polycrystalline, and thin-film) and commercial modules
such as PWP201, STM6, SM55, S75, and ST40, (i1) extending validation to partial shading and
dynamic irradiance/temperature profiles, (ii1) integrating adaptive or self-tuning mechanisms to
eliminate manual hyperparameter selection, and (iv) applying the proposed MLO to real-time MPPT
and energy-management systems.
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