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Abstract: Accurate modeling of photovoltaic (PV) cells is essential for performance assessment, 
control, and optimization of solar energy systems. The diode circuit models, particularly the single-
diode (SD), double-diode (DD), and triple-diode (TD) structures, are widely adopted for characterizing 
PV behavior; however, extracting their unknown parameters is a challenging nonlinear, multimodal 
optimization problem. To address these challenges, this study proposes a modified lyrebird 
optimization (MLO) algorithm, an enhanced variant of the recently developed LO. It integrates a 
memory-based learn search strategy (MBLSS) to reinforce exploration and a diversity maintenance 
learn search strategy (DMLSS) to refine exploitation. The algorithm was employed to extract 
parameters of both the RTC France solar cell and the Solarex MSX-60 PV module under SD, DD, and 
TD models. Extensive simulations and statistical analyses demonstrated that the proposed MLO 
significantly outperforms the conventional LO and a wide range of metaheuristic and analytical 
methods in terms of root mean square error (RMSE), convergence speed, stability, and robustness 
across multiple runs. In the MSX-60 module tests, the proposed MLO reduced the RMSE by more 
than 55% compared to the conventional LO and achieved a stable mean RMSE of 1.75 × 10−3 over 50 
independent runs. Similarly, for the RTC France solar cell, MLO achieved a minimum RMSE of 9.82 
× 10−4, outperforming several recently reported metaheuristics. Moreover, the proposed MLO was 
extended and validated on the Shell S75 monocrystalline module under different irradiance and 
temperature conditions. The results demonstrated consistently lower RMSE values and near-zero 
variance across operating ranges, confirming the robustness and stability of MLO in practical PV 
environments. The strong agreement between simulated and experimental I–V and P–V characteristics 
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confirms the reliability of the extracted parameters. These findings highlight the potential of MLO as 
a robust and accurate tool for PV modeling, with promising applications in solar system design, 
performance evaluation, and predictive energy management. 

Keywords: Lyrebird optimization; Modified lyrebird optimization; Parameters PV cell extraction; 
Single diode; Double diode; Triple diode model 
Mathematics Subject Classification: Primary: 90B99; Secondary: 90C59 
 

1. Introduction 

Solar PV energy has emerged as a crucial part of contemporary energy systems as the world’s 
energy transition quickens and the need for sustainable energy sources keeps rising [1]. Solar PV, being 
clean and renewable, has become a vital technology for lowering greenhouse gas emissions and 
attaining energy independence. Accurate PV power generation modeling is necessary to realize the 
entire potential of solar PV [2]. These models serve as the basis for efficient system approach 
performance analysis, fault detection, and energy forecasting by enabling accurate simulation, 
evaluation, control, and optimization of PV systems. Furthermore, optimizing energy distribution 
across power grids, strengthening energy management tactics, and increasing energy efficiency all 
depend on accurate models [3]. The diode circuit model, which has a strong physical foundation and 
allows for accurate characterization of the current–voltage (I–V) behavior of solar cells under a variety 
of environmental conditions, stands out among the other modeling approaches [4]. 

The SD [4] and DD [5] models are two categories into which the diode circuit model can be 
divided based on the necessary level of complexity and accuracy. Five or seven unknown parameters 
in the two models need to be obtained for the simulation. Furthermore, obtaining these parameters is 
extremely difficult because PV models are nonlinear, multi-variable, and multimodal. Thus, a major 
area of research continues to be the development of effective and precise techniques for obtaining PV 
model parameters.  

The diode circuit model, which may be divided into two primary categories, is the primary focus 
of the parameter extraction techniques that are currently being studied. The analytical method 
represents the first category of parameter identification approaches. It makes use of key data points, 
including the maximum power point, open-circuit voltage, and short-circuit current, to solve equations 
and determine model parameters. This technique involves addressing a series of transcendental 
equations at critical points of the I–V characteristic curve, and it has been widely applied for extracting 
PV model parameters [6]. The primary benefits are a quicker computation, a more straightforward 
method, a reduction in calculation time, and accurate results. In [7], a quick and precise analytical 
method was proposed using datasheets made accessible by the manufacturers. Later, an approach based 
on Lambert’s W-function—a precise and impromptu analytical technique—was proposed in [8]. 
Additionally, in [9], a different analysis technique based on the Co-content function was proposed. In 
recent years, a graphical technique has been used to solve analytical problems [10]. The approach has 
significant disadvantages but requires the least quantity of data. Due to its enormous complexity, the 
set of equations is challenging to solve, and the solution process is prone to divergence. Additionally, 
the chosen data points have a significant impact on the model’s correctness, and errors in these points 
reduce the overall reliability of the model. 
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The optimization method, which has drawn more attention recently [11], is the second category.  
The category, which may be further separated into deterministic and metaheuristic approaches, makes 
use of measured data, such as I–V curve data, and uses numerical optimization techniques to reduce 
the error between simulated and measured current data. Initial values and mathematical models are 
essential to the deterministic approach. Therefore, the computation tends to deviate if the mathematical 
model is intricate or if the starting values are poorly established. Conversely, the metaheuristic 
approach could successfully circumvent the aforementioned problem. It is extensively useful in 
engineering optimization since it is straightforward, effective, and independent of intricate 
mathematical models or initial values. 

In terms of calculating the parameters as efficiently as possible, numerical procedures are more 
accurate than analytical methods. This is because every point on the characteristic curve is taken into 
account throughout the study. In order to estimate the five parameters of a PV cell, numerical methods 
based on Newton's method and nonlinear least squares were first proposed in [12]. A resistive-
companion approach was then suggested in [13], and it produced findings that were somewhat superior 
to the analytical ones. Later on, it was proposed to use Newton–Raphson-based improvisation to 
determine parameters for solar PV modules [14]. The prolonged computation time is the main 
drawback of all numerical-based methods. In addition to the aforementioned issues, these methods 
may result in less accurate findings, especially when it comes to recognizing a lot of solar PV factors 
and only providing approximate initial circumstances. These methods also rely on the circumstances 
of the previous system, and there is a greater chance that the solution will be trapped at local minima. 

In [15], a JAYA variant driven by individual weights (DIWJAYA) was introduced for PV 
parameters extraction. This improved version was based on changing the individuals by going toward 
the best candidate and away from the worst, using a weight factor for every individual. This change 
helped people stay away from bad options early on in their search course while carefully getting closer 
to the best one overall. Additionally, a Gaussian mutation process was incorporated to support solutions’ 
quality and diversity by introducing regulated perturbations. In [16], an improved version of the 
butterfly optimizer (BFO) incorporating a chaos learning strategy (CLS) was presented to support the 
BFO’s slow convergence and reduce its susceptibility to local optima. The integrated CLS employed 
chaotic maps, using tent and logistic shapes, to generate pseudorandom numbers. This enhanced BFO 
variation integrated a Cauchy mutation to provide extensive variations in the population and an 
effective elimination system for substituting underperforming individuals, hence expediting 
convergence. It was successfully evaluated on CEC 2022 benchmark functions, and its applications 
were extended for PV parameter estimation on a real YL PV power station in Guizhou, China. In [17], 
a hybrid optimization approach combining the differential evolution algorithm (DEA) and the 
backtracking search technique (BST) was performed to extract PV parameters under varied 
environmental conditions. This hybrid method started the population inside the limits of the parameters 
and used BST’s tuned adjustments to mix the existing and new populations. It also used DEA’s 
mutation operators following BST’s preliminary selection, which gave a range of options that DEA 
improved for better convergence. A kangaroo escape optimizer (KEO) was introduced in [18] to 
discover PV parameters that depict zigzag maneuvers, long jumping, decoy throwing, and exploring 
safer locations. This approach was motivated by the predator escape behaviors of kangaroos and was 
used for PV estimate on benchmarks such as Photowatt-PWP201 and RTC France. In this KEO approach, 
to avoid stagnation, dimensions were probabilistically hidden during updates via a decoy drop technique. 
Also, a chaotic logistic mapping was used to describe energy levels and flexible transfer strategies for 
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reduced energy shifts to big leaps for variety, while high energy favors zigzag escaping. In [19], an 
integrated analytical Newton–Raphson-based optimizer (NRBO) was developed, with the analytical 
technique generating starting parameter predictions from important I–V points, minimizing reliance 
on random beginnings. In order to reduce the RMSE for the RTC France and solar power panels, 
NRBO then improved these using NRBO’s phases. To determine the PV attributes in the current 
circumstance, parameter estimation methods based on various metaheuristics were established and put 
into practice, such as orthogonally-adapted gradient-based optimization (OLGBO) [20], artificial 
rabbits algorithm [21], improved grey wolf optimizer (IGWO) [22], symmetric chaotic gradient-based 
optimizer (SC-GBO) [23], enhanced vibrating particles system (EVPS) [24], tree growth algorithm 
(TGA) [25], social network search algorithm [26], chaotic-driven tuna swarm optimizer (CTSO) [27], 
arithmetic optimization algorithm (AOA) [28], enhanced prairie dog optimizer (EnPDO) [29], hybrid 
successive discretization algorithm (HSDA) [30], heap-based algorithm [31], general algebraic modeling 
system (GAMS) [32], mountain gazelle optimizer (MGO) [33], and marine predator algorithm (MPA) [34]. 

In [35], the Harris hawks optimizer (HHO) was enhanced by incorporating a chaotic drift 
mechanism along with an adversarial-based exploratory strategy. Similarly, [36] introduced an improved 
ant–lion optimizer (IALO) for parameter estimation, which demonstrated promising results. To achieve 
a more stable and efficient model and to accurately characterize PV system behavior, an augmented 
mutation Harris hawks optimizer (AMHHO) was proposed in [37], enabling faster convergence and 
precise assessment of solar cell simulation parameters. In [38], an enhanced sine cosine (ESC) algorithm 
was presented to estimate unknown parameters in both single-diode (SD) and double-diode (DD) PV 
models. Furthermore, [39] reported the application of an upgraded Harris hawks optimizer (CCNMHHO) 
for PV parameter extraction. To improve global convergence and local exploitation capabilities, the 
moth-flame optimization (MFO) method was employed in [40] for identifying PV module parameters, 
yielding excellent performance in SD and DD model configurations. In [41], an improved PSO was 
illustrated by using quadratic interpolation to accelerate convergence and a local search strategy to avoid 
stagnation in local minima to determine the unknown parameters of SD and DD. By integrating drone 
squadron optimization with the Newton–Raphson performance technique, the exact constituent PV 
module parameters were retrieved in [42]. Another study [43] improved the population diversity and 
exploration operator of the moth-flame algorithm by using local escape operators. Although this 
algorithm required a lot of function evaluations, it could yield very good results when compared to 
other approaches. In [44], a squirrel search algorithm was adjusted by minimizing the RMSE in order 
to estimate the unknown parameters of SD and DD models.  

These methods are suggested to address the inherent drawbacks of each method, allow for various 
combinations of individual methods, and then show up as a capable method to determine the 
parameters of solar PV models. However, the effectiveness of these methods varies depending on the 
situation. Also, the careful choice of algorithm control parameters governs their accuracy, robustness, 
and rate of convergence. In this work, an improved metaheuristic approach with adaptively altering 
control parameters is selected among these two options. 

The current work is driven by these research gaps to develop a more effective method for 
identifying and testing solar PV parameters in a wide range of scenarios, which is ideal for real-time 
applications. The effectiveness of searching throughout the exploitation and exploration stages is 
significantly increased by adaptively modifying the control parameters, both in the case of LO and 
other stochastic techniques. MLO integrates a memory-based learn search strategy (MBLSS) to 
reinforce exploration and a diversity maintenance learn search strategy (DMLSS) to refine exploitation. 
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These two strategies can achieve better accuracy with faster convergence, leading to optimal parameter 
values, increasing overall performance, and avoiding confinement problems at local minima. The main 
contributions are: 
 To determine the parameters of different PV cells and modules, a modified approach known as 

MLO is described. 
 A number of simulation examples and statistical findings are shown and examined in order to 

evaluate the effectiveness of the suggested MLO method. 
 MLO achieves the best overall performance, obtaining the lowest average rank (1.40) among 

twelve algorithms in the Friedman analysis. 
 Post-hoc and Wilcoxon tests confirm that the performance improvements of MLO over LO and 

most benchmark algorithms are statistically significant (p < 0.05), demonstrating both higher 
accuracy and repeatability. 

 When applied to PV cell parameter extraction, MLO consistently yields lower RMSE and more 
stable convergence, confirming its effectiveness for practical photovoltaic model identification. 

 The proposed MLO is further validated on the Shell S75 PV module under varying irradiance (200–
1000 W/m²) and temperature (25–60 °C) conditions, where it consistently outperforms the original 
LO and maintains extremely low standard deviation (≈10⁻¹⁷–10⁻¹⁸), confirming its robustness and 
strong generalization capability across real operating scenario variations. 
The article’s general format is as follows: In addition to outlining the study’s contribution, Section 

1 provides the background and motivation. After a brief introduction, Section 2 provides a thorough 
explanation of solar PV modeling and the objective formulation, while taking into account all relevant 
restrictions and system factors. A description of the suggested LO and MLO techniques is specified in 
Section 3, together with a list of all the significant changes that have been suggested and the statistical 
results. Section 4 presents an analysis and illustration of the identification and simulation results, while 
Section 5 offers the conclusion of this work. 

2. Problem formulation of solar PV parameters extraction  

It is necessary to propose a number of simplified and intricate models in order to ensure correct 
design, simulation, and analysis. In this section, various PV models are briefly described together with 
their corresponding parameters and the formulation of their goal functions. 

2.1. PV cell model based on SD 

An antiparallel diode, a series resistor, a shunt resistor, and a photon-generated current source 
make up the PV cell model’s SD-based electrical equivalent circuit. The aforementioned paradigm is 
illustrated in Figure 1 [45]. Applying Kirchhoff’s current law (KCL) to Figure 1 yields the following 
equation. 
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Figure 1. SD model representation. 
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where 1,ph dI I
 , and PI  stand for photon-generated current, diode current, and shunt resistance Rp 

current, respectively. Furthermore, I, V, and Rs stand for the PV cell voltage, current, and series 
resistance, respectively. The expression for the current flowing through Rp is: 
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where I, 1  , and Vthr stand for the diode’s saturation current, ideality factor, and thermal voltage, 
respectively. The following is an expression of the current relationship: 

B
thr

K T
V

q




 
(4) 

where T, q, and KB represent temperature in K for the cell/module, the Boltzmann constant (1.38065 × 
10-23) in J/K, and the electron charge (1.60217 × 10-19) in C, respectively. Eq. (5) is used to determine 
the PV cell current using Eqs. (1), (2), and (3) as follows: 
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(5) 

2.2. PV cell model based on DD 

Two diodes antiparallel to the current source, a photon-generated source of current, a series 
resistor, and a shunt resistor make up the electric equivalent circuit of a PV cell model based on double 
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diodes. The DD model is illustrated in Figure 2. When KCL is applied to Figure 2, the following 
equation is produced:  

Id2 IP
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IPh

Rs

Rsh

Id1

V

+

–
 

Figure 2. DD model representation. 

1 2ph Sh d dI I I I I   
 (6) 

where 1dI  and 2dI  indicate the current flowing in diodes D1 and D2, while ShI  and I indicate the 

current through the shunt resistance Rp and cell output current, respectively. Moreover, phI
 represents 

the photon-produced current.  
The current passing in diode D2 could be written as follows in Eq. (7):  
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(7) 

where 2   represents diode D2’s ideality factor, and 2SI  represents its saturation current. 
Consequently, the PV cell output current is provided as follows:  

1 2
1 2

exp 1 exp 1S S S
ph S S

thr thr sh sh

I R V I R V I RV
I I I I

V V R R 
          

                     
(8) 

2.3. PV cell model based on TD 

In addition to the components in the DD model, an additional antiparallel diode is added to make 
up the triple diode equivalent electric circuit, as shown in Figure 3 [22, 25,46]. The following equation 
is obtained by applying KCL to Figure 3. 
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Figure 3. TD model representation. 

1 2 3ph Sh d d dI I I I I I    
 (9) 

where 3dI
 indicates the current flowing in diode D3.  

The current in diode D3 can be written as follows in Eq. (10):  
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where 3   represents diode D2’s ideality factor, and 3SI   represents its saturation current. 
Consequently, the PV cell output current is provided as follows:  
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(11) 

2.4. Model of PV modules 

PV modules are made up of solar cells linked in series or series-parallel configurations. The PV 
modules used in this investigation are made up of Ns and NP solar cell series and parallel combinations. 
Eq. (12) provides the PV module’s output current if it consists of a SD-based PV cell [47].  
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2.5. Formulation of the objective function 

The task of identifying parameters for the PV model is converted into a single-objective 
optimization problem [48]. The RMSE between the predicted (estimated) and experimental currents 
of the PV models under discussion is used as the sole objective function (OF) for this work. 
Consequently, the following formulation of the optimization problem [49] is illustrated:  

2

1

1 PM
K K K
cal exp exp

K

RMSE ( I (V , y ) I )
PM 

   
 


 
(13) 

where PM represents the number of experimental I–V data points of the PV model being examined, k 
represents the experimental data index, y signifies the set of parameters of the PV model that has to be 

found, and 
K K
cal expI (V , y )

 represents the PV model’s current error function [50]. A better y is found if 
the RMSE value is very tiny. In order to achieve ideal settings, the goal is to use MLO to minimize 
RMSE. 

3. Proposed MLO approach for PV parameter estimation 

The LO algorithm, which focuses on the lyrebird’s inherent ability to recognize and respond to 
external dangers, is based on the lyrebird’s natural threat-response behaviors [51]. It moves through 
the area and decides whether to blend in or flee to a safer spot when it senses a potential threat [52]. 
The adaptive behavior of the LO algorithm allows it to navigate difficult optimization contexts. 

3.1. Initialization of bird’s locations 

The first step in the LO algorithmic process is to randomly initialize the bird placements inside 
the designated borders while taking into account each bird’s size (NBs). Within this framework, a 
lyrebird corresponds to a candidate solution expressed as a position vector (LB) in a d-dimensional 
search space. As shown in equation (14), each element of this vector denotes a decision variable of the 
optimization issue. 

 1 1xLB   Lp  Z   Up  Lp ;        x : NBs      
(14) 

The bounds of the design parameters are Up and Lp, and Z1 is a random d-dimensional vector 
containing uniformly distributed values inside the range [0,1]. At this point, LBx records the location 
vector, x, of each bird. 

3.2. Memory initialization 

The proposed MLO algorithm incorporates memory-based learn search strategy (MBLSS) and 
diversity maintenance learn search strategy (DMLSS). These enhancements boost search efficiency by 
finding an equilibrium between localized exploitation and extensive issue space research. Every 
lyrebird’s memory is upgraded to the MLO form after it has been saved. 
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1x xLM  LB          x : NBs    
(15) 

where LMk stores the initial location of each lyrebird, which is later used during the imitation process. 
Equation (16) shows that the IAE function under optimization is used to determine each lyrebird’s 

objective value (OFx) after initialization. 

  1xx IAE ;       xLB BsOF : N  (16) 

The lyrebird with the lowest fitness score offers the greatest possible alternative (LYBest) in the 
following ways, in accordance with the IAE minimization model:  

 
1

BestLB arg m
x

in OFx
NBb 

 
  

 

 

(17) 

3.3. Improved phase of investigation using the suggested MBLSS 

At this point, the LO algorithm exploits the natural inclination of lyrebirds to move to safer 
locations. Safe zones, which are continuously defined based on the optimization objective function, 
are the areas where other lyrebirds with higher fitness ratings are found. The safe zones of the kth 
lyrebird are expressed mathematically in the following manner: 

 1 1i i xx , ;       i : NBs ? : NBs,i xSafe _ A OF O , xFLB    
(18)

where Safe_Ax is the name of the group of safer locations that the xth lyrebird can reach.  
Each lyrebird regards individuals with higher fitness as potential guides, enabling it to navigate 

more effectively toward promising regions of the search space. This escape-based motion technique 
allows the lyrebird to move toward zones that perform better, increasing the algorithm’s exploration 
capability by compelling search birds to visit previously unexplored regions of the solution 
environment. Selecting superior regions strategically directs the agents’ exploration and prevents 
arbitrary search behavior. The new location of the kth lyrebird is calculated by mathematically applying 
the next relation:  

 
  x

x

x

x

x

xa x

LB_new
LB if   Safe_ A

z . ElseSaLB LBfer _ A I


   

 

(19) 

where LBx and LB_newx are the present and projected location vectors for the xth lyrebird after the 
escape movement. Safer_Ax represents the randomly selected safe zone for the jth lyrebird from the 
collection (Safe_Ax) provided by Equation (17). While za offers a random value that matches [0,1] and 
controls the trip in the direction of the secure zone, Ix consists of an arbitrarily selected integer that 
controls the impact of the current location during the entire updating procedure. In the event that no 
safe places are found for the xth lyrebird, it remains where it is, as indicated by Equation (19). 

The proposed MLO uses MBLSS to enhance the fleeing phase. Lyrebirds search for safe havens 
based on the best solutions currently accessible or on their more experienced colleagues. A 
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probabilistic imitation mechanism is provided that takes probability (Pm) into account.  

 2B st xex bxLB  if  zLB _ new Z LM LB     
(20) 

where Z2 illustrates a randomized vector of dimension (d), and zb stands for a variable that is computed 
as follows: 

 n

n max

ITPm IT  
 

(21)

where Pm indicates the imitation probability, and ITn is the current iteration, while its maximum count 
is symbolized by (ITnmax). This strategy improves local refinement by allowing the lyrebird to fortify 
previously viable locations through suggested MBLSS.  

3.4. Enhanced phase of exploitation using the suggested DMLSS 

Based on the lyrebird’s innate hiding behavior, which involves concealing in a safe location to 
prevent predators from detecting it, the LO algorithm is being exploited at this stage. This behavior 
leads to a fine-tuning of the search in the area surrounding the current location. Hence, a stochastic 
updating mechanism is used to progressively change each lyrebird’s position, becoming more cautious 
as the algorithm executes. Owing to this adaptive step-size mechanism, the initial iterations emphasize 
broader local exploration, whereas the later stages concentrate on intensified exploitation around 
promising regions. Throughout its exploitation, the potential location of the xth lyrebird is ascertained 
using the following methodology: 

 31 2x x
n

Up  Lp
LB _ new LB Z   

IT
 

 
   

 

 

(22) 

where ITn influences the current iteration count and the rate of progression. As it climbs, the step size 
gets smaller, encouraging more accurate local modifications. 

Since DMLSS improves the hiding phase in the proposed MLO, the updating procedure in 
Equation (22) has been revised to reflect this:  
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(23) 

where Disx and Dismax represent the crowding indicator and maximum distance across all lyrebirds as 
can be seen in Equations (24) and (25), respectively, while γ denotes the specified distance coefficient 
that is a component of the set [0,1], and LBRD represents an arbitrarily selected lyrebird that is not the 
current xth bird. This creates a regulated extension in seeking space, which facilitates exploring new 
places and escaping congested areas.  
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(25) 

As demonstrated, the xh lyrebird’s proximity to the rest of the population is determined by the 
crowding index Disx; a lower Disx suggests the agent is in a congested (perhaps stagnant) area. 
However, Dismax calculates the greatest Euclidean distance between any two of the population’s 
lyrebirds.  

3.5. Updates to the locations and recollections of the bird 

The associated fitness rating (OF_newx) is evaluated using the target function after the changed 
location (LB_newx) has been determined. If this new objective number reveals an enhancement over 
the current situation, the current position is modified:  

   
1 ;x

x n
x n
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Else

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 
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(26) 

In addition, their combined memories have been updated. Each lyrebird’s memory is updated only 
as its fitness increases in order to maintain accuracy and adaptability: 

   
1 ;x

x n
x n

xOF _neLB_new
LM IT

LM IT
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Else



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

 

(27) 

The suggested MLO design ensures that the memory preserves the most famous history of the 
lyrebird. The MLO stages are depicted in Figure 4. 
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Figure 4. Proposed MLO steps. 

4. Results and discussion 

The proposed MLO and LO methods are evaluated using three case studies: the RTC France solar 
cell, the MSX-60, and the Shell S75 PV modules. In the first case, the commercial RTC France silicon 
solar cell operates at 33 °C under an irradiance of 1000 W/m². Its electrical characteristics include a 
short-circuit current of 0.7605 A, an open-circuit voltage of 0.5727 V, and a maximum power point 
defined by 0.4590 V and 0.6755 A. The second case examines the MSX-60 polycrystalline silicon PV 
module, which consists of 36 series-connected cells. The third case examines the Shell S75 
monocrystalline silicon PV module, which consists of 36 series-connected cells.  

Table 1 presents the lower and upper bounds of the parameters for the MSX–60 PV module and 
the RTC France solar cell. Based on the experimental I–V data, this section provides the parameter 
identification results for the SD, DD, and TD models of the solar systems. 
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Table 1. Boundaries of parameters for SD, DD, and TD PV models. 

Parameter RTC France solar cell MSX–60 PV module Shell S75 

 Lower  Upper Lower  Upper Lower  Upper 

Iph (A) 0.00 10.00 3.5 4 0.00 20.00 

RSh (Ω) 0.00 100.00 150 3000 0.00 1000.00 

IS1, IS2, and IS3 (μA) 0.00 10.00 0.01 1 0.00 1000.00 

η1, η2, and η3 per cell 1.00 2.00 1.00 2.00 1.00 2.00 

RS (Ω) 0.00 2.00 0.2 0.4 0.00 5.00 

No series cells (Nc) 1 36 36 

Open circuit voltage (Voc) 0.5727 V 21.10 V 21.60 V 

Maximum power (Pmax) 0.323 W 60 W 75 

Voltage at Pmax (Vm) 0.4590 V 17.10 V 17.60 V 

Current at Pmax (Im) 0.6755 A 3.50 A 4.26 A 

Additionally, the control parameters used for the proposed MLO algorithm are summarized in 
Table 2. A population size of 100 search agents and a maximum of 1000 iterations were selected to 
ensure a sufficient balance between computational cost and convergence reliability [53]. The imitation 
probability Pm = 0.5 regulates the likelihood of adopting experience from better-performing solutions, 
while the distance coefficient γ = 0.25 in Eq. (23) governs the diversity preservation mechanism during 
exploitation. A fixed random seed (Mersenne Twister, seed = 0) is used to guarantee result 
reproducibility. The algorithm terminates when the maximum iteration count is reached, as no 
additional convergence-based stopping criterion is required due to the strong stability observed across 
repeated independent runs. Runs denote the number of independent executions of the optimizer 
performed to account for its randomized behavior. 

Table 2. Control parameters of the proposed MLO. 

Control parameter Value 

NBs (population size) 100 

ITnmax maximum iterations 1000 

ITn A counter starting from 1 to ITnmax 

Pm [imitation probability, Eq. (21)] 0.5 

γ [distance coefficient used in Eq. (23)] 0.25 

random seeds A random number seed using the default algorithm “Mersenne Twister 

generator” with seed 0. 

stopping criteria When the maximum iteration count (ITnmax) is reached 

4.1. The MSX–60 PV module  

4.1.1. SD model 

The SD model features of the MSX–60 PV module are extracted using the suggested MLO. Table 
3 lists the five unidentified SD parameter values for different inspired techniques that yielded the best 
experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO, which 
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are 1 for the ideality factor for d1, 6.8929271 Ω for shunt resistance, 0.008009809 Ω for series 
resistance, 3.803241225A for photo-current, and 1.21876 × 10−2 μA for saturation current for d1. In 
PV modeling, ideality factors close to 1 typically represent dominant recombination in the quasi-
neutral region, while values near 2 are associated with recombination in depletion regions. Therefore, 
the occurrence of η values near these limits is physically meaningful and consistent with well-reported 
semiconductor behavior. Furthermore, the bounds were selected based on established PV modeling 
literature to avoid identifiability issues and unrealistic parameter growth. Nonetheless, we have now 
added a short explanatory note in the manuscript to clarify the physical interpretation of these 
parameter values and to confirm that their convergence to bounds does not indicate over-constraining 
but reflects plausible diode recombination mechanisms. 

The results show that the proposed MLO outperforms the conventional LO in terms of 
competitiveness. The proposed MLO achieves a desirable RMSE value of 1.74806 × 10−3, which is 
lower than the conventional LO at 4.39308 × 10−3. Additionally, the table displays MLO’s max, mean, 
and standard deviation values of 1.74810 × 10−3, 1.74806 × 10−3, and 5.61686 × 10−9, respectively. 
When compared to the conventional LO, the acquired results reveal that the MLO significantly 
improves accuracy and efficacy for the best SD model characterization. The ideal parameters for the 
solar PV model under discussion are found after about 50 independent runs. Figure 5 offers a statistical 
summary of the RMSE values for both algorithms and the SD model throughout the 50 runs to further 
examine the algorithm’s robustness. It can be seen from the figure that the proposed MLO provides 
higher robustness than the conventional LO. 

Figure 6 illustrates the convergence graphs of the proposed MLO and the conventional LO for 
the SD PV model of the MSX-60 module. Figure 6 confirms that the proposed MLO from the 
beginning of the iterative journey is associated with significant progress. 

Table 3. Electrical parameters obtained by the suggested MLO and LO for the SD model. 

  LO MLO 

Iph 3.794200555 3.803241225 

Rs 0.007976533 0.008009809 

Rsh 8.381544154 6.8929271 

Io1 1.35057E-08 1.21876E-08 

n1 1.005237573 1 

min 4.39308E-03 1.74806E-03 

mean 8.55766E-03 1.74806E-03 

max 1.27844E-02 1.74810E-03 

Std 2.18006E-03 5.61686E-09 
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Figure 5. 50 runs of the proposed MLO and the conventional LO for the SD PV model of 
MSX-60. 

 

Figure 6. Convergence graphs of the proposed MLO and the conventional LO for the SD 
PV model of MSX-60. 

The observed and simulated I–V and P–V features for the SD model of MSX-60 can be seen in 
Figure 7(a, b). The suggested MLO and the traditional LO are used to represent the 15 measured points 
for this module. The data produced by the MLO approach appears to closely match the data obtained 
through experimentation, indicating that the MLO technique became effective in generating power and 
current across a spectrum of voltage settings. The simulated and measured absolute errors of power vary 
from 0 to 7.5767 × 10−2, whereas the simulated and measured current absolute errors vary from 8.37347 
× 10−9 to 1.7523 × 10−5, as demonstrated in Figure 8(a, b) and Table 4. 
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Table 4. Absolute differences between the proposed MLO’s simulated and experimental 
currents and powers for the MSX-60 SD PV model. 

No. Vexp Iexp Isim Pexp Psim 

1 0 3.8 3.798826 0 0 

2 1.6 3.7932 3.792386 6.06912 6.067817 

3 3.1 3.7868 3.786348 11.73908 11.73768 

4 4.6 3.7804 3.780308 17.38984 17.38942 

5 6.1 3.774 3.774264 23.0214 23.02301 

6 7.6 3.7676 3.768198 28.63376 28.63831 

7 9.1 3.761 3.762047 34.2251 34.23463 

8 10.6 3.7542 3.755554 39.79452 39.80888 

9 12.1 3.7461 3.747695 45.32781 45.34711 

10 13.6 3.7327 3.734383 50.76472 50.78761 

11 15.1 3.6987 3.699491 55.85037 55.86231 

12 17.1 3.5 3.497037 59.85 59.79934 

13 18.1 3.189 3.184814 57.7209 57.64513 

14 19.6 2.0962 2.098981 41.08552 41.14002 

15 21.1 0 −0.00043 0 −0.00911 

No. IAE PAE Absolut IAE  Absolut PAE 

1 −0.00117434 0 1.37908E-06 0 

2 −0.00081442 0.00130307 6.63277E-07 0.001303069 

3 −0.0004523 0.00140212 2.04572E-07 0.00140212 

4 −9.1507E-05 0.00042093 8.37347E-09 0.000420931 

5 0.000263953 −0.0016101 6.96714E-08 0.001610116 

6 0.000598076 −0.0045454 3.57695E-07 0.004545378 

7 0.001047018 −0.0095279 1.09625E-06 0.009527866 

8 0.001354308 −0.0143557 1.83415E-06 0.01435566 

9 0.001595418 −0.0193046 2.54536E-06 0.019304554 

10 0.00168343 −0.0228947 2.83394E-06 0.022894654 

11 0.00079055 −0.0119373 6.2497E-07 0.011937308 

12 −0.00296267 0.05066171 8.77743E-06 0.050661707 

13 −0.00418605 0.07576747 1.7523E-05 0.075767474 

14 0.002780604 −0.0544998 7.73176E-06 0.054499844 

15 −0.0004316 0.00910677 1.86279E-07 0.009106768 

Figure 7(a, b) illustrates the observed and simulated I–V and P–V characteristics of the SD model 
for the MSX-60 module. Both the proposed MLO and the conventional LO methods are applied to 
represent the 15 measured data points for this module. The results indicate that the MLO-based 
simulation closely aligns with the experimental data, confirming the effectiveness of MLO in 
accurately predicting power and current over a range of voltage values. The absolute error between 
simulated and measured power ranges from 0 to 7.5767 × 10−2, and the current absolute error varies 
between 8.37 × 10−9 and 1.75 × 10−5, as shown in Figure 8(a, b) and summarized in Table 4. 
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(a) I–V curve 

 
(b) P–V curve 

Figure 7. Characteristic curves of the solar modules, both measured and estimated for the 
MSX-60 SD PV model. 

 
(a) Absolute current error 

 
(b) Absolute power error 

Figure 8. Absolute errors in the currents and powers between simulated and experimental 
values of the MSX-60 SD PV model. 
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4.1.2. DD model 

The DD model features of the MSX–60 PV module are extracted using the suggested MLO. Table 
5 lists the seven unidentified DD parameter values for different inspired techniques that yielded the 
best experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO, 
which are 1 and 1 for the ideality factor for d1 and d2, 6.892926882 Ω for shunt resistance, 
0.008009809 Ω for series resistance, 3.803241226 A for photo-current, and 1.21876 × 10−2 μA and 0 
μA for saturation current for d1 and d2. This demonstrates that the proposed MLO achieves a desirable 
RMSE value of 1.74806 × 10−3, which is lower than that of the conventional LO, at 4.04117 × 10−3. 
The results show that the proposed MLO outperforms the conventional LO in terms of competitiveness. 
Additionally, the proposed MLO outperforms corresponding approaches in terms of competitiveness, 
including the analytical methods (AM) [54], mountain-climbing algorithm (MCA) [55], Newton–
Raphson method (NRM) [56], and a combination of a numerical approach with a slope adjustment 
technique (NASAT) [57]. Moreover, the table displays the MLO’s max, mean, and standard deviation 
values: 1.78001 × 10−3, 1.74873 × 10−3, and 4.51735 × 10−6, respectively. When compared to the 
conventional LO, the MLO significantly improves accuracy and efficacy for the best DD model 
characterization. The ideal parameters for the solar PV model under discussion are found after about 
50 independent runs. Figure 9 offers a statistical summary of the RMSE values for both algorithms 
and the DD model throughout the 50 runs in order to further examine the algorithm’s robustness. It 
can be seen from the figure that the proposed MLO provides higher robustness than the conventional 
LO. 

Table 5. Electrical parameters obtained by the suggested MLO and LO for the DD model. 

  AM [54] MCA [55] NRM [56] NASAT [57] LO MLO 

Iph 3.8046  3.808361  3.8084  3.8618  3.796545747 3.803241226 

Rs 0.3397  0.372046  0.3692  0.2904  0.008078825 0.008009809 

Rsh 280.2171  169.081308  169.0471  286.1209  8.537603576 6.892926882 

Io1 4.033E- 06  4.597752E- 10  6.1528E-10 3.1092E-06 0 1.21876E-08 

n1 2.0014  2 1.9997  2 1 1 

Io2 3.9901E-10  4.597752E-10  4.8723E-10 6.0842E-10 1.22295E-08 0 

n2 0.99859  1 1.0003  1 1 1 

min 1.908 E-01 1.666 E-01 1.379 E-01 3.43 E-02 4.04117E-03 1.74806E-03 

Mean - - - - 7.70284E-03 1.74873E-03 

max - - - - 1.10606E-02 1.78001E-03 

Std - - - - 1.77743E-03 4.51735E-06 
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Figure 9. 50 runs of the proposed MLO and the conventional LO for the DD PV model of 
MSX-60. 

Figure 10 illustrates the convergence graphs of the proposed MLO and the conventional LO for 
the DD PV model of the MSX-60 module. Figure 10 confirms that the proposed MLO from the 
beginning of the iterative journey is associated with significant progress. This is due to an improvement 
in the exploration capability made possible by the MLO approach. The improvement starts at iteration 
100 for all three models with the best converging attributes. 

 

Figure 10. Convergence graphs of the proposed MLO and the conventional LO for the DD 
PV model of MSX-60. 

Figure 11(a, b) shows the measured and simulated I–V and P–V curves for the DD model of the MSX-
60 module. The MLO-generated results exhibit a close agreement with the experimental data, 
demonstrating the method’s accuracy in predicting power and current across different voltage ranges. The 
absolute error between simulated and measured power lies between 0 and 7.5768 × 10−2, while the error 
for current ranges from 8.38559 × 10−9 to 1.7523 × 10−5, as demonstrated in Figure 12(a, b) and Table 6. 
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(a) I–V 

 
(b) P–V curve 

Figure 11. Characteristic curves of the solar modules, both measured and estimated for the 
MSX-60 DD PV model. 

 

 

Figure 12. Absolute errors in the currents and powers between simulated and experimental 
values of the MSX-60 SD PV model. 
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Table 6. Absolute differences among the proposed MLO’s simulated and experimental 
currents and powers for the MSX-60 DD PV model. 

  Vexp Iexp Isim Pexp Psim 

1 0 3.8 3.798826 0 0 

2 1.6 3.7932 3.792385 6.06912 6.067817 

3 3.1 3.7868 3.786348 11.73908 11.73768 

4 4.6 3.7804 3.780308 17.38984 17.38942 

5 6.1 3.774 3.774264 23.0214 23.02301 

6 7.6 3.7676 3.768198 28.63376 28.63831 

7 9.1 3.761 3.762047 34.2251 34.23463 

8 10.6 3.7542 3.755554 39.79452 39.80888 

9 12.1 3.7461 3.747695 45.32781 45.34712 

10 13.6 3.7327 3.734384 50.76472 50.78762 

11 15.1 3.6987 3.699491 55.85037 55.86231 

12 17.1 3.5 3.497037 59.85 59.79934 

13 18.1 3.189 3.184814 57.7209 57.64513 

14 19.6 2.0962 2.09898 41.08552 41.14002 

15 21.1 0 −0.00043 0 −0.0091 

  IAE PAE Absolut IAE  Absolut PAE 

1 −0.0011745 0 1.37944E-06 0 

2 −0.00081454 0.00130327 6.63479E-07 0.001303267 

3 −0.00045239 0.00140241 2.04658E-07 0.001402415 

4 −9.1573E-05 0.00042124 8.38559E-09 0.000421235 

5 0.000263916 −0.0016099 6.96517E-08 0.001609888 

6 0.000598067 −0.0045453 3.57685E-07 0.004545312 

7 0.001047038 −0.009528 1.09629E-06 0.009528048 

8 0.001354356 −0.0143562 1.83428E-06 0.014356175 

9 0.001595494 −0.0193055 2.5456E-06 0.019305479 

10 0.001683532 −0.022896 2.83428E-06 0.022896038 

11 0.000790667 −0.0119391 6.25154E-07 0.01193907 

12 −0.00296261 0.05066055 8.77703E-06 0.05066055 

13 −0.00418608 0.07576806 1.75233E-05 0.075768064 

14 0.002780369 −0.0544952 7.73045E-06 0.054495236 

15 −0.00043144 0.0091033 1.86137E-07 0.009103299 

4.1.3. TD model 

The TD model features of the MSX–60 PV module are extracted using the suggested MLO. Table 
7 lists the nine unidentified TD parameter values for different inspired techniques that yielded the best 
experiment outcomes. Besides, the table lists the evaluated parameters of the suggested MLO, which 
are 1, 1, and 1 for the ideality factor for d1, d2, and d3, 6.892926994 Ω for shunt resistance, 
0.008009809 Ω for series resistance, 3.803241225 A for photo-current, and 0, 1.21876 × 10−2 μA and 
0 μA for saturation current for d1, d2, and d3. 
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The results show that the proposed MLO outperforms the conventional LO in terms of 
competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of 
1.74806 × 10−3, lower than that of the conventional LO at 3.22789 × 10−3. Additionally, the table 
displays the MLO’s max, mean, and standard deviation values: 1.97327 × 10−3, 1.75887 × 10−3, and 
3.83808 × 10−5, respectively. When compared to the conventional LO, the acquired results reveal that 
the MLO significantly improves accuracy and efficacy for the best TD model characterization. The 
ideal parameters for the solar PV model under discussion are found after about 50 independent runs. 
Figure 13 offers a statistical summary of the RMSE values for both algorithms and the TD model 
throughout the 50 runs in order to further examine the algorithm’s robustness. It can be seen from the 
figure that the proposed MLO provides higher robustness than the conventional LO. 

Table 7. Electrical parameters obtained by the suggested MLO and LO for the TD model. 

  LO MLO 

Iph 3.803742788 3.803241225 

Rs 0.007860924 0.008009809 

Rsh 7.162340399 6.892926994 

Io1 6.97299E-09 0 

n1 1.109662637 1 

Io2 1.10214E-08 1.21876E-08 

n2 1.002642904 1 

Io3 7.5425E-10 0 

n3 1.001484974 1 

min 3.22789E-03 1.74806E-03 

mean 7.65579E-03 1.75887E-03 

max 1.14736E-02 1.97327E-03 

Std 1.70209E-03 3.83808E-05 

 

Figure 13. 50 runs of the proposed MLO and the conventional LO for the TD PV model 
of MSX-60. 
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Moreover, Figure 14 illustrates the convergence graphs of the proposed MLO and the 
conventional LO for the TD PV model of the MSX-60 module. Figure 14 confirms that the proposed 
MLO from the beginning of the iterative journey is associated with significant progress. This is due to 
an improvement in the exploration capability made possible by the MLO approach. The improvement 
starts at iteration 180 for all three models with the best converging attributes. 

 

Figure 14. Convergence graphs of the proposed MLO and the conventional LO for the TD 
PV model of MSX-60. 

 
(a) I-V 

 
(b) P-V curve 

Figure 15. Characteristic curves of the solar modules, both measured and estimated. 
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Moreover, Figure 15(a, b) displays the experimental and simulated I–V and P–V curves for the 
TD model of the MSX-60 module. The results generated by the MLO method show strong agreement 
with the experimental measurements, highlighting its capability to accurately predict power and 
current across various voltage levels. The absolute error for power ranges from 0 to 7.5339 × 10⁻², and 
the error for current varies between 2.22984 × 10⁻⁸ and 1.7326 × 10⁻⁵, as demonstrated in Figure 16(a, 
b) and Table 8. 

Table 8. Absolute differences between the proposed MLO’s simulated and experimental 
currents and powers for the MSX-60 TD PV model. 

  Vexp Iexp Isim Pexp Psim 

1 0 3.8 3.798538 0 0 

2 1.6 3.7932 3.792144 6.06912 6.06743 

3 3.1 3.7868 3.786148 11.73908 11.73706 

4 4.6 3.7804 3.780151 17.38984 17.3887 

5 6.1 3.774 3.774149 23.0214 23.02231 

6 7.6 3.7676 3.768126 28.63376 28.63776 

7 9.1 3.761 3.762017 34.2251 34.23436 

8 10.6 3.7542 3.755567 39.79452 39.80901 

9 12.1 3.7461 3.747749 45.32781 45.34777 

10 13.6 3.7327 3.734477 50.76472 50.78888 

11 15.1 3.6987 3.699614 55.85037 55.86417 

12 17.1 3.5 3.49714 59.85 59.80109 

13 18.1 3.189 3.184838 57.7209 57.64556 

14 19.6 2.0962 2.098811 41.08552 41.1367 

15 21.1 0 -0.00041 0 −0.00875 

  IAE PAE Absolut IAE  Absolut PAE 

1 −0.00146153 0 2.13606E-06 0 

2 −0.00105634 0.00169014 1.11586E-06 0.001690145 

3 −0.00065179 0.00202054 4.24825E-07 0.002020537 

4 −0.00024856 0.00114339 6.17839E-08 0.001143393 

5 0.000149326 −0.0009109 2.22984E-08 0.000910891 

6 0.000525869 −0.0039966 2.76538E-07 0.003996605 

7 0.001017192 −0.0092564 1.03468E-06 0.009256443 

8 0.001366709 −0.0144871 1.86789E-06 0.014487114 

9 0.001649444 −0.0199583 2.72066E-06 0.019958269 

10 0.001776716 −0.0241633 3.15672E-06 0.024163344 

11 0.000913975 −0.013801 8.3535E-07 0.013801019 

12 −0.00286008 0.04890731 8.18004E-06 0.048907314 

13 −0.0041624 0.07533939 1.73255E-05 0.075339385 

14 0.002611172 −0.051179 6.81822E-06 0.051178965 

15 −0.00041465 0.00874916 1.71936E-07 0.008749161 
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Figure 16. Absolute errors in the currents and powers between simulated and experimental 
values of the MSX-60 SD PV model. 

4.1.4. Computational budget and runtime discussion considering TD model 

Both LO and the proposed MLO algorithms were executed under an identical computational 
budget to ensure a fair comparison. Table 9 displays the computational budget and runtime comparison 
for the MSX-60 TD PV model. As shown, each algorithm utilized a population size of 100 solutions 
and was iterated for 1000 iterations, resulting in a total of 100,000 function evaluations per run. This 
equal evaluation budget allows performance differences to be attributed solely to algorithmic design 
rather than unequal search effort. The average CPU runtime measured in MATLAB (R2017b) on a 
machine with 8 GB RAM was approximately 38.58 seconds for the conventional LO and 57.70 
seconds for the proposed MLO. The slightly higher computational time for MLO is expected, as the 
additional memory-based and diversity maintenance mechanisms introduce extra computational 
operations in both exploration and exploitation phases. However, this increase in runtime is modest 
and justified by the significant improvements in accuracy, convergence behavior, and robustness, as 
demonstrated by the lower RMSE values and reduced standard deviation across multiple runs. 
Therefore, despite a ~50% increase in CPU time, the performance benefits of MLO outweigh its 
computational overhead, making it computationally efficient and scalable for real PV parameter 
estimation problems. 

Table 9. Computational budget and runtime comparison for the MSX-60 TD PV model. 

Item LO algorithm MLO algorithm 

Population size (NBs) 100 100 

Maximum iterations (ITnmax) 1000 1000 

Total function evaluations 100,000 100,000 

CPU elapsed time (s) 38.58 s 57.70 s 

MATLAB memory usage 1778 MB 1798 MB 

Maximum available RAM 8085 MB 8085 MB 
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4.2. Application for the RTC France solar cell 

4.2.1. SD model 

The SD model features of the RTC France solar cell are extracted using the suggested MLO. Table 10 
lists the five unidentified SD parameter values for different inspired techniques that yielded the best 
experiment outcomes. The results show that the proposed MLO outperforms corresponding approaches in 
terms of competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of 
9.86022 × 10−4. Additionally, the table displays the electrical parameters that were generated from PV 
utilizing recognized optimization methods, including the classified perturbation mutation marine predator 
algorithm (MPA) [58], barnacles mating optimizer (BMA) [59], PSO (CPMPSO) [60], ant lion optimizer 
(ALO) [61], RIME [53], a performance-guided JAYA (PGJAYA) [62], enhanced MPA (EMPA) [58], 
enriched Harris hawks optimization (EHHO) [35], growth optimizer (GO) [63], material generation 
algorithm (MGA) [64], neighborhood scheme-based Laplacian MBA (NLBMA) [65], lightning 
attachment procedure optimization (LAPO) [66], flexible PSO (FPSO) [67], multi-verse optimizer 
(MVO) [68], jellyfish search (JFS) optimizer [58], equilibrium optimizer (EO) [58], hybrid PSO–GWO 
algorithm (PSOGWO) [69], hybrid firefly and pattern search (HFAPS) [70], HEAP optimizer [58], and 
particle swarm optimization (PSO) [71].  

Besides, the table lists the evaluated parameters of the suggested MLO, which are 1.483914803 
for the ideality factor for d1, 17.04778813 Ω for shunt resistance, 0.005601219 Ω for series resistance, 
1.663749645 A for photo-current, and 3.31823 × 10−1 μA for saturation current. 

Table 10. Electrical parameters obtained by the suggested MLO and LO for the SD model. 

Algorithm Iph (A) Isd (μA) n Rsh (Ω) Rss (Ω) RMSE

MLO 1.663749645 6.0068 1.876730845 17.04778813 0.005601219 9.86022E-04

LO 0.760827451 3.31823E-01 1.483914803 53.96055333 0.036279447 9.89674E-04

RIME[53] 0.760776 3.23021 × 10−1 1.481184 53.71865291 0.036377096 9.9755 × 10−4

MGA [64] 0.760776 3.23× 10−1 1.481184 53.71852 0.036377 9.8602× 10−4

EO [58] 8.209153 2.85 × 10−2 1.218068 7.714703 0.004815 2.888 × 10−3

PGJAYA [62] 8.2167 0.002284 58.1742 773.8117 0.3435 1.5455 × 10−4

MPA[58] 8.184927 7.94459 × 10−2 1.285180059 92.14823504 0.004537611 1.487 × 10−2

FPSO [67] 8.2186 0.001436 56.9854 130.2813 0.2409 2.8214 × 10−2

PSOGWO [69] 8.2132 9.6768 1.7463 38.8968 0.0011 1.2700 × 10−1

GO [63] 8.192967 4.31808 × 10−2 1.244346 15.103921 0.004710 8.515347 × 10−3

PSO [71] 8.2027 2.8852 1.6052 33.8855 0.0019 1.0195 × 10−1

JFS [58] 8.193182 4.72 × 10−2 1.250052 14.97462 0.004679 9.477 × 10−3

CPMPSO[60] 8.21689146  0.00224195 1.07641028 763.535149 0.34381405  1.53903 × 10−3

EHHO [35] 8.2224 0.000001 80.6915 1806.0252 0.1835 5.9507 × 10−2

HFAPS[70] 8.1992 0.154161 74.5795 1448.2590 0.2396 4.9863 × 10−2

MVO [68] 8.2527 0.063908 69.2388 134.4813 0.1341 8.3800 × 10−2

HEAP [58] 8.200974 4.49 × 10−2 1.246924 11.87468 0.004696 7.425 × 10−3

NLBMA [65] 8.1467 0.0022 1.0839 5.0000 0.0045 3.3610 × 10−2

LAPO [66] 8.2155 8.1491 1.7258 5.0000 0.001 1.3813 × 10−1

BMA [59] 8.1950 3.1015 1.6130 100.0000 0.0019 1.0244 × 10−1

EMPA [58] 8.21195 3.59 × 10−2 1.232551 7.560713 0.004742 3.847 × 10−3
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(a) I–V 

 
(b) P–V curve 

Figure 17. Characteristic curves for RTC France SD PV cell, both measured and estimated. 

 

 

Figure 18. Absolute errors in the currents and powers between simulated and experimental 
values of the RTC France SD PV cell. 
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Furthermore, Figure 17(a, b) presents the experimental and simulated I–V and P–V curves for the 
SD model of the RTC France PV cell. The results obtained using the MLO approach show a strong 
correlation with the experimental data, confirming its effectiveness in accurately estimating power and 
current across different voltage levels. The absolute error for power ranges from 1.97222 × 10⁻⁶ to 
1.4626 × 10⁻³, while the error for current varies between 7.69491 × 10⁻⁹ and 6.287 × 10⁻⁶, as illustrated 
in Figure 18(a, b). 

4.2.2. DD model 

The DD model features of the RTC France solar cell are extracted using the suggested MLO. 
Table 11 lists the seven unidentified DD parameter values for different inspired techniques that yielded 
the best experiment outcomes. The results show that the proposed MLO outperforms corresponding 
approaches in terms of competitiveness. The proposed MLO achieves a desirable RMSE value of 
9.82488 × 10−4. Additionally, the table displays the electrical parameters that were generated from PV 
utilizing the recognized optimization methods, including RIME [53], dwarf mongoose optimizer 
(DMO) [72], modified RIME [53], and modified DMO [72]. Besides, the table lists the evaluated 
parameters of the suggested MLO, which are 1.451641269 and 2 for the ideality factor for d1 and d2, 
55.43031017 Ω for shunt resistance, 0.036734969 Ω for series resistance, 0.76078101 A for photo-
current, and 2.277 × 10−1 μA and 7.33063 × 10−7 μA for saturation current for d1 and d2. 

Table 11. Electrical parameters obtained by the suggested MLO and LO for the DD model. 

Method DMO RIME MGA MRIME MDMO LO MLO

IPh (A) 0.761086003 0.760864277 0.760781079 0.760780758 0.760777046 0.760601433 0.76078101

Rss (Ω) 0.036452844 0.036173672 0.03674043 0.036767981 0.03658083 0.036350742 0.036734969

RSh (Ω) 56.0407128 53.58354831 55.48544096 55.64800559 54.7047585 56.08242095 55.43031017

IS1 (A) 3.81141E-07 4.3113 × 10−8 7.49347× 10−7 8.0438 × 10−7 4.27843E-07 2.97805E-07 2.277E-07

η1 1.83357911 1.827202939 2 1.999974446 1.991913976 1.49706509 1.451641269

IS2 (A) 2.38858E-07 3.25421 × 10−7 2.25974× 10−7 2.19744 × 10−7 2.63353× 10−7 3.93635E-08 7.33063E-07

η2 1.458364626 1.482783518 1.45101678 1.448694376 1.463888853 1.427632226 2 

RMSE 1.028696× 10−3 9.9382 × 10−4 9.82485× 10−4 9.8251 × 10−4 9.83217× 10−4 9.92228E-04 9.82488E-04

Figure 19(a, b) illustrates the experimental and simulated I–V and P–V curves for the DD model of 
the RTC France PV cell. The MLO-based results closely match the experimental data, demonstrating the 
method’s effectiveness in predicting power and current across different voltage levels. The absolute error 
for power ranges from 1.97588 × 10⁻⁶ to 1.4633 × 10⁻³, while the current error varies between 6.6531 × 
10⁻⁹ and 6.29321 × 10⁻⁶, as demonstrated in Figure 20(a, b). 
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(a) I–V 

 

(b) P–V curve 

Figure 19. Characteristic curves for the MSX-60 DD PV model, both measured and 
estimated. 

 

 

Figure 20. Absolute errors in the currents and powers between simulated and experimental 
values of the RTC France SD PV cell. 

4.2.3. TD model 

The TD model features of the RTC France solar cell are extracted using the suggested MLO. Table 12 
lists the nine unidentified SD parameter values for different inspired techniques that yielded the best 
experiment outcomes. The results show that the proposed MLO outperforms corresponding approaches in 
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terms of competitiveness. This demonstrates that the proposed MLO achieves a desirable RMSE value of 
9.82485 × 10−4. Additionally, the table displays the electrical parameters that were generated from PV 
utilizing the recognized optimization methods, including artificial bee colony (ABC) [73], comprehensive 
learning PSO [74], generalized oppositional TLBO [75], hazelnut tree search (HTS) algorithm [63], cat 
swarm algorithm (CSA) [76], TLBO [77], growth optimizer (GO) [63], teaching–learning–based 
(TLABC) [78], five phases algorithm (FPA) [63], improved Kepler optimization algorithm (IKOA) 
[79], flower pollination optimizer (FPO) [80], energy valley optimizer (EVO) [63], sine cosine 
approach (SCA) [38], and improved rime metaheuristic optimization (IRMO) [81]. 

Based on these results, the RMSE values for the MLO method are as follows: minimum 9.82485 × 
10⁻⁴, maximum 1.00000 × 10⁻³, mean 9.85554 × 10⁻⁴, and standard deviation 2.84222 × 10⁻⁶. Compared 
with other recently proposed optimization techniques, these findings demonstrate that MLO provides 
significantly improved accuracy and robustness in characterizing the TD model. 

Table 12. Comparisons between MLO, conventional LO, and recently established 
competing approaches for the TD model of the RTC France PV cell. 

Method Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE) 

MLO 9.82485E-04 9.85554E-04 1.00000E-03 2.84222E-06 

LO 9.97454E-04 1.09032E-03 1.36650E-03 7.33831E-05 

FPA [63] 1.1083E-03 1.2651E-03 1.431E-03 1.127E-04 

Opposition TLBO [75] 4.43212E-03 - - - 

TLABC [78] 1.50482E-03 - - - 

SCA [38] 9.86863E-04 - - - 

EVO [63] 1.083E-03 2.3850E-03 5.361E-03 1.644E-03 

FPO [80] 1.934336E-03 - - - 

TLBO [77] 1.52057E-03 - - - 

IRMO[81] 9.86812 E-04 1.12068 E-03 1.6436 E-03 2.00229E-04 

CSA [76] 1.22E-03 - - - 

IKOA[79] 9.82490E-04  9.85769E-04 9.97427E-04  3.02730E-06 

HTS [63] 1.186E-03 1.556E-03 1.988E-03 2.81E-04 

ABC [73] 1.28482E-03 - - - 

Comprehensive learning PSO [74] 1.3991E-03 - - - 

4.2.4. Nonparametric statistical tests for compared algorithms considering the TD model 

Considering the TD model of the RTC France SD PV cell, Table 13 presents the average Friedman 
ranks computed from repeated RMSE results across different algorithms: mantis search algorithm 
(MSA) [82], DMO, neural network algorithm (NNA) [82], KOA [79], IKOA [79], EVO [63], HTS 
[63], RMO [81], IRMO [81], GO [63], LO, and the proposed MLO. Figure 21 displays the box plot of 
the compared algorithms. As shown, the proposed MLO algorithm achieved the best overall rank (1.40), 
consistently producing the lowest RMSE values. The second-best performance is by IKOA (1.90) and 
GO (3.13). The original LO algorithm ranked moderately (5.87), demonstrating improvement when 
modified to MLO. Algorithms such as DMO, EVO, HTS, and RMO show substantially higher ranks, 
indicating inferior and more variable performance. Thus, the ranking results clearly demonstrate that 
MLO provides consistently superior optimization results. 
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Figure 21. Box plot of the compared algorithms considering the TD model of 
the RTC France SD PV cell. 

Table 13. Friedman statistical test. 

Algorithm Average rank Ranking 

MSA 4.87 4 

DMO 10.17 12 

NNA 8.60 7 

HTS 9.23 10 

EVO 9.63 11 

GO 3.13 3 

KOA 8.83 8 

IKOA 1.90 2 

RMO 8.97 9 

IRMO 5.40 5 

LO 5.87 6 

MLO 1.40 1 

Also, a post-hoc multiple comparisons test is implemented between each pair of algorithms, as 
shown in Table 14. Several comparisons involving MLO vs. other algorithms produced p-values < 
0.05, confirming significant performance improvements. The comparison between MLO and 
GO/IKOA did not yield statistical significance (p = 1); while MLO ranks higher, their result 
distributions were close enough to not be statistically different in this post-hoc test. However, the 
pairwise Wilcoxon test (Table 15) confirms significance where Dunn did not. 
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Table 14. Post-hoc multiple comparisons statistical test. 

Algorithm 1 Algorithm 2 Lower_CI Mean_Diff Upper_CI p_value 

MSA DMO −8.4288 −5.3 −2.1712 0.00003 

MSA NNA −6.8622 −3.7333 −0.6045 0.004 

MSA HTS −7.4955 −4.3667 −1.2378 0.0002 

MSA EVO −7.8955 −4.7667 −1.6378 0.00001 

MSA GO −1.3955 1.7333 4.8622 0.986 

MSA KOA −7.0955 −3.9667 −0.8378 0.0013 

MSA IKOA −0.1622 2.9667 6.0955 0.0907 

MSA RMO −7.2288 −4.1 −0.9712 0.0007 

MSA IRMO −3.6622 −0.5333 2.5955 1 

MSA LO −4.1288 −1 2.1288 1 

MSA MLO 0.3378 3.4667 6.5955 0.0129 

DMO NNA −1.5622 1.5667 4.6955 0.9983 

DMO HTS −2.1955 0.9333 4.0622 1 

DMO EVO −2.5955 0.5333 3.6622 1 

DMO GO 3.9045 7.0333 10.1622 0.000002 

DMO KOA −1.7955 1.3333 4.4622 1 

DMO IKOA 5.1378 8.2667 11.3955 0.000012 

DMO RMO −1.9288 1.2 4.3288 1 

DMO IRMO 1.6378 4.7667 7.8955 0.0000059 

DMO LO 1.1712 4.3 7.4288 0.0003 

DMO MLO 5.6378 8.7667 11.8955 0.000015 

NNA HTS −3.7622 −0.6333 2.4955 1 

NNA EVO −4.1622 −1.0333 2.0955 1 

NNA GO 2.3378 5.4667 8.5955 0.000022 

NNA KOA −3.3622 −0.2333 2.8955 1 

NNA IKOA 3.5712 6.7 9.8288 0.00001 

NNA RMO −3.4955 −0.3667 2.7622 1 

NNA IRMO 0.0712 3.2 6.3288 0.038 

NNA LO −0.3955 2.7333 5.8622 0.1973 

NNA MLO 4.0712 7.2 10.3288 0.0000001 

HTS EVO −3.5288 −0.4 2.7288 1 

HTS GO 2.9712 6.1 9.2288 0.000003 

HTS KOA −2.7288 0.4 3.5288 1 

HTS IKOA 4.2045 7.3333 10.4622 0.00002 

HTS RMO −2.8622 0.2667 3.3955 1 

HTS IRMO 0.7045 3.8333 6.9622 0.0025 

HTS LO 0.2378 3.3667 6.4955 0.0195 

HTS MLO 4.7045 7.8333 10.9622 0.000005 

EVO GO 3.3712 6.5 9.6288 0.000006 

EVO KOA −2.3288 0.8 3.9288 1 

Continued on next page 
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Algorithm 1 Algorithm 2 Lower_CI Mean_Diff Upper_CI p_value 

EVO IKOA 4.6045 7.7333 10.8622 0.000008 

EVO RMO −2.4622 0.6667 3.7955 1 

EVO IRMO 1.1045 4.2333 7.3622 0.0004 

EVO LO 0.6378 3.7667 6.8955 0.0034 

EVO MLO 5.1045 8.2333 11.3622 0.000023 

GO KOA −8.8288 −5.7 −2.5712 0.000027 

GO IKOA −1.8955 1.2333 4.3622 1 

GO RMO −8.9622 −5.8333 −2.7045 0.0000075 

GO IRMO −5.3955 −2.2667 0.8622 0.6287 

GO LO −5.8622 −2.7333 0.3955 0.1973 

GO MLO −1.3955 1.7333 4.8622 0.986 

KOA IKOA 3.8045 6.9333 10.0622 0.0000025 

KOA RMO −3.2622 −0.1333 2.9955 1 

KOA IRMO 0.3045 3.4333 6.5622 0.0148 

KOA LO −0.1622 2.9667 6.0955 0.0907 

KOA MLO 4.3045 7.4333 10.5622 0.0000056 

IKOA RMO −10.1955 −7.0667 −3.9378 0.000009 

IKOA IRMO −6.6288 −3.5 −0.3712 0.0112 

IKOA LO −7.0955 −3.9667 −0.8378 0.0013 

IKOA MLO −2.6288 0.5 3.6288 1 

RMO IRMO 0.4378 3.5667 6.6955 0.0084 

RMO LO −0.0288 3.1 6.2288 0.0557 

RMO MLO 4.4378 7.5667 10.6955 0.0000023 

IRMO LO −3.5955 −0.4667 2.6622 1 

IRMO MLO 0.8712 4 7.1288 0.0011 

LO MLO 1.3378 4.4667 7.5955 0.0001 

Furthermore, the Wilcoxon signed-rank test was employed to evaluate the run-to-run performance 
consistency between the algorithms, as summarized in Table 15. The results clearly demonstrate that 
the proposed MLO algorithm exhibits significantly superior performance when compared with all 
other competing methods, including LO, with p-values less than 0.05 in all direct pairwise comparisons. 
This confirms that the improvement offered by MLO is not only reflected in average accuracy but is 
also consistent and repeatable across multiple independent runs. It is noteworthy that the comparison 
between MLO and IKOA yielded a p-value of 0.0166, which, although still below the 0.05 significance 
threshold, indicates a comparatively smaller but still statistically significant performance advantage 
for MLO. This suggests that while IKOA is among the stronger baseline competitors, the proposed 
modifications implemented in MLO provide a more stable and robust optimization behavior overall. 
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Table 15. Pairwise Wilcoxon signed-rank statistical test. 

MLO vs. algorithm p-value 

MLO vs. MSA 1.9209E-06 

MLO vs. DMO 1.7344E-06 

MLO vs. NNA 1.7344E-06 

MLO vs. HTS 1.7344E-06 

MLO vs. EVO 1.7300E-06 

MLO vs. GO 4.2857E-06 

MLO vs. KOA 1.7344E-06 

MLO vs. IKOA 1.6566E-02 

MLO vs. RMO 1.7344E-06 

MLO vs. IRMO 1.7344E-06 

MLO vs. LO 1.7344E-06 

4.2.5. Electrical characteristics of the RTC France solar cell considering the TD model 

Figure 22(a, b) presents the experimental and simulated I–V and P–V curves for the TD model of 
the RTC France PV cell. The results generated using the proposed MLO approach show a strong 
correlation with experimental measurements, confirming its effectiveness in predicting power and 
current across various voltage levels. The absolute error for power ranges from 1.86255 × 10⁻⁶ to 
1.4881 × 10⁻³, while the current error varies between 2.82332 × 10⁻¹⁰ and 6.50807 × 10⁻⁶, as 
demonstrated in Figure 23(a, b). 

Figure 24 illustrates the convergence graphs of the proposed MLO and the conventional LO for 
the SD, DD, and TD PV model of the RTC France PV cell. Figure 24(a–c) shows that the proposed 
MLO from the beginning of the iterative journey is associated with significant progress. This is due to 
an improvement in the exploration capability made possible by the MLO approach. The improvement 
starts at iteration 200 for all three models with the best converging attributes. 
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(a) I–V 

 
(b) P–V curve 

Figure 22. Characteristic curves for the MSX-60 TD PV model, both measured and 
estimated. 

 

 

Figure 23. Absolute errors in the currents and powers between simulated and experimental 
values of the RTC France SD PV cell. 
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(a) SD

(b) DD

(c) TD 

Figure 24. Convergence graphs of the proposed MLO and the conventional LO for 
the SD, DD, and TD PV model of RTC France PV cell. 

4.2.6. Ablation study and sensitivity analysis of the RTC France solar cell considering the TD 
model 

This study proposes two primary interrelated changes (MBLSS/DMLSS). To show that each 
modification matters, an ablation study is included in this section by implementing (i) standard LO, (ii) 
LO + MBLSS only, (iii) LO + DMLSS only, and (iv) full MLO, and comparing the different indicators 
of the RMSE to demonstrate the contribution of each component. As shown in Table 16, the full MLO 
achieves the best performance across all evaluation indicators, with a minimum RMSE of 0.00098249, 
mean RMSE of 0.00098555, maximum RMSE of 0.00100000, and standard deviation of 2.8422 × 10−6, 
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indicating highly stable convergence. Introducing MBLSS alone improves stability significantly 
compared to standard LO, reducing the standard deviation from 7.338 × 10−5 to 7.097 × 10−6, and 
lowering the mean RMSE from 0.0010903 to 0.0009886. Meanwhile, DMLSS alone enhances global 
search ability, but yields slightly higher variation (Std = 3.0584 × 10−5) and mean RMSE (0.00104518) 
than MBLSS. The best performance is obtained when both strategies are combined, demonstrating a 
synergistic effect in improving accuracy and robustness. 

Table 16. Ablation study of the RTC France solar cell considering the TD model. 

 LO LO+MBLSS LO+DMLSS MLO (proposed) 

Min (RMSE) 0.0009975 0.0009841 0.00101468 0.00098249 

Mean (RMSE) 0.0010903 0.0009886 0.00104518 0.00098555 

Max (RMSE) 0.0013665 0.0010078 0.00109726 0.001 

Std (RMSE) 7.338E-05 7.097E-06 3.0584E-05 2.8422E-06 

To further evaluate the robustness of the MLO algorithm, a sensitivity analysis was conducted on 
the imitation probability 𝑃௠ and the distance coefficient 𝛾. Tables 17 and 18 report the minimum 
RMSE and standard deviation obtained across combinations of 𝑃௠ ∈ ሾ0,1ሿ  and 𝛾 ∈ ሾ0,1ሿ . From 
Table 17, the lowest minimum RMSE values are observed when 𝑃௠ ൌ 0.5 and 𝛾 ൌ 0.5 (minimum 
RMSE = 0.00098458), and when 𝑃௠ ൌ 0.75  and 𝛾 ൌ 0.25  (minimum RMSE = 0.00098560). 
Similarly, the standard deviations (Table 18) show their smallest values at 𝑃௠ ൌ 0.5, 𝛾 ൌ 0.5 with Std 
= 1.3972 × 10−6, and 𝑃௠ ൌ 0.75, 𝛾 ൌ 0.25  with Std = 9.1676 × 10−7 demonstrating highly stable 
output. In contrast, extreme values of 𝑃௠ ൌ 0 or 𝑃௠ ൌ 1, combined with high 𝛾, lead to degraded 
performance (e.g., RMSE increases to 0.00273855 when 𝑃௠ ൌ 0, 𝛾 ൌ 0.75). These results indicate 
that moderate parameter values (i.e., 𝑃௠ ൌ 0.5–0.75 , 𝛾 ൌ 0.25–0.50 ) provide the best balance 
between learning influence and search diversification. 

Table 17. Sensitivity analysis of the proposed MLO considering the minimum obtained RMSE. 

Parameters γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1 

Pm = 0 0.00107059 0.00109641 0.00104518 0.00273855 0.00259594 

Pm = 0.25 0.00098856 0.00099008 0.00110661 0.00101240 0.00102182 

Pm = 0.5 0.00100621 0.00102290 0.000984583 0.000984591 0.00105350 

Pm = 0.75 0.00100518 0.00098560 0.00098700 0.00105285 0.00098632 

Pm = 1 0.00142479 0.00140869 0.00106247 0.00111331 0.00107447 

Table 18. Sensitivity analysis of the proposed MLO considering the obtained standard 
deviations of the RMSE. 

Parameters γ = 0 γ = 0.25 γ = 0.5 γ = 0.75 γ = 1 

Pm = 0 4.1338E-05 8.1261E-05 3.0584E-05 1.3513E-03 9.8881E-04 

Pm = 0.25 7.0972E-06 1.0163E-05 2.6315E-04 5.0570E-05 1.0443E-04 

Pm = 0.5 3.7155E-05 1.1474E-04 1.3972E-06 1.0773E-05 1.5175E-04 

Pm = 0.75 3.9329E-05 9.1676E-07 2.1298E-06 1.5399E-04 3.3501E-06 

Pm = 1 6.0170E-04 6.0474E-04 1.7517E-04 1.7842E-04 2.0349E-04 
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4.3. Application to the shell S75 PV module 

In this part, the MLO and LO application is extended to the Shell S75, and evaluated under an 
irradiance of 1000 W/m², a cell temperature of 25 °C, and an air mass of AM 1.5. Its electrical 
characteristics include an open-circuit voltage of 21.60 V and a short-circuit current of 4.70 A. At the 
maximum power operating point, the module delivers 17.60 V and 4.26 A, resulting in a rated 
maximum output power of 75 W. The temperature coefficients are 2 mA/°C for the short-circuit current 
and −76 mV/°C for the open-circuit voltage, indicating increasing current and decreasing voltage with 
rising temperature [83]. 

Figures 25 and 26 illustrate the I–V and P–V curves under varying irradiance and temperature 
levels, respectively, showing that MLO accurately reproduces the electrical characteristics across 
different operating conditions. 

 

(a) I–V 

 

(b) P–V 

Figure 25. Electrical characteristics under different irradiance levels and a temperature of 
25 °C of the S75 PV module. 
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(a) I–V 

 
(b) P–V 

Figure 26. Electrical characteristics under different temperatures and 1000 W/m2 

irradiance of the S75 PV module. 

As shown in Table 19, under varying irradiance (200–1000 W/m²), the proposed MLO 
consistently achieves lower RMSE values compared to LO. At 800 W/m², MLO achieves a minimum 
RMSE of 0.086708, whereas LO yields 0.086794–0.087026 with a standard deviation of 7.75 × 10⁻⁵, 
demonstrating that LO suffers from higher fluctuation. Notably, MLO maintains near-zero variance 
across all irradiance levels (Std in the range of ~10⁻¹⁷), confirming its high stability and repeatability. 

Table 19. LO versus MLO under different irradiance levels and a temperature of 25 °C of 
the S75 PV module. 

Temperature of 

25 °C  

Irradiance  Applied technique Min Max Average Std 

200 LO 0.034502 0.034721 0.034937 0.000155 

MLO 0.034393 0.034393 0.034393 3.27E-18 

400 LO 0.069784 0.069957 0.070476 0.000238 

MLO 0.069599 0.069599 0.069599 1.31E-17 

600 LO 0.079938 0.080096 0.080541 0.000176 

MLO 0.079817 0.079817 0.079817 6.54E-18 

800 LO 0.086794 0.08688 0.087026 7.75E-05 

MLO 0.086708 0.086708 0.086708 1.46E-17 

1000 LO 0.074198 0.074353 0.074682 0.000137 

MLO 0.074144 0.074144 0.074144 9.25E-18 



682 

Journal of Industrial and Management Optimization  Volume 22, Issue 1, 642–690. 

Table 20 further evaluates performance under temperature variations (25–60 °C) at 1000 W/m². 
At 25 °C, MLO again outperforms LO, achieving a stable RMSE of 0.074144 with a negligible 
standard deviation of 9.25 × 10⁻¹⁸, compared to LO’s 0.074198–0.0746816 and Std of 1.37 × 10⁻⁴. At 
elevated temperatures (e.g., 60 °C), both methods experience RMSE increases due to intensified 
thermal influence on diode currents and shunt resistance, but MLO still provides a lower minimum 
RMSE (0.053744) than LO (0.0539443). However, MLO exhibits a higher spread at high temperature 
(Std 3.08 × 10⁻³), indicating that extreme thermal conditions introduce stronger nonlinear effects. 

These results confirm that MLO delivers higher accuracy and superior stability across a wide 
range of operating conditions, while maintaining robustness even when the PV model becomes more 
sensitive to temperature. 

Table 20. Sensitivity analysis of the proposed MLO under different temperatures and 1000 
W/m2 irradiance of the S75 PV module. 

Irradiance of 

1000 W/m2  

Temperature Applied technique Min Max Average Std 

25 LO 0.074198 0.0743529 0.0746816 1.3672E-04 

MLO 0.0741441 0.0741441 0.0741441 9.2519E-18 

50 LO 0.048509 0.0489207 0.0496301 3.5887E-04 

MLO 0.048171 0.0492322 0.0587022 3.3275E-03 

60 LO 0.0539443 0.0545159 0.0557607 5.4032E-04 

MLO 0.0537439 0.0548686 0.0635511 3.0765E-03 

5. Conclusions 

This work presented a modified lyrebird optimization (MLO) algorithm for the accurate 
extraction of photovoltaic model parameters, addressing the limitations of conventional approaches. 
The proposed MLO enhanced the original lyrebird optimization (LO) framework by introducing two 
major improvements: a memory-based learn search strategy (MBLSS) to strengthen exploration and a 
diversity maintenance learn search strategy (DMLSS) to improve exploitation. Furthermore, the 
effectiveness of the proposed MLO was validated through extensive experiments on two well-known 
PV systems, the RTC France solar cell and the Solarex MSX-60 module, under SD, DD, and TD 
models. Comparative analyses against the conventional LO and several recent metaheuristic and 
analytical techniques revealed that MLO consistently achieved lower RMSE, faster convergence, and 
higher stability. Additional validation on the Shell S75 module demonstrated that MLO remains 
effective under fluctuating irradiance and temperature conditions, achieving lower minimum RMSE 
values and significantly reduced variance compared to LO. Even at high temperature operating ranges 
where nonlinear effects intensify, MLO preserved superior accuracy, indicating its suitability for real-
world PV modeling, performance estimation, and control applications. Statistical evaluations of 50 
independent runs confirmed the reliability and robustness of the MLO. Additionally, the strong 
agreement between experimental and simulated I–V and P–V curves demonstrated the accuracy of the 
extracted parameters. 

Under an equal computational budget of 100,000 function evaluations, the MLO yielded superior 
performance with an average runtime of ~57.7 s, which is only moderately higher than the ~38.6 s of 
LO, but delivered significantly improved precision and robustness. The ablation study confirmed that 
both the MBLSS and DMLSS contribute meaningfully to performance. The integrated MBLSS 
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enhanced convergence stability (Std reduced from 7.338 × 10⁻⁵ to 7.097 × 10⁻⁶), whereas the DMLSS 
improved global exploration. Their combination in the full MLO configuration achieved the best 
results (minimum RMSE = 0.00098249 and Std = 2.8422 × 10⁻⁶). Additionally, the sensitivity analysis 
on the imitation probability and distance coefficient revealed optimal performance for moderate 
parameter values 𝑃௠ ൌ 0.5 ∼ 0.75  and 𝛾 ൌ 0.25 ∼ 0.50 , demonstrating that balanced learning 
influence and diversity control are crucial for reliable convergence. These findings declare that the 
proposed MLO is a reliable tool for PV parameter identification. By providing accurate and stable 
parameter estimation, MLO contributes to improved modeling, performance evaluation, and control 
of PV systems, which are crucial for efficient energy forecasting and grid integration. Future work may 
extend MLO to real-time monitoring, incorporate environmental variability, and hybridize with other 
techniques. 

Despite the strong results, some limitations remain. First, validation is required for broader PV 
technologies and real dynamic field environments. Second, while the bounds used for diode ideality 
factors ensured physical plausibility, occasional convergence to the limits suggests potential parameter 
identifiability issues under certain datasets. Future work will therefore include: (i) testing the MLO on 
additional PV technologies (monocrystalline, polycrystalline, and thin-film) and commercial modules 
such as PWP201, STM6, SM55, S75, and ST40, (ii) extending validation to partial shading and 
dynamic irradiance/temperature profiles, (iii) integrating adaptive or self-tuning mechanisms to 
eliminate manual hyperparameter selection, and (iv) applying the proposed MLO to real-time MPPT 
and energy-management systems.  
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