Sparse index tracking has emerged as a prominent passive portfolio management strategy, leveraging sparse portfolios to replicate the performance of financial benchmarks. However, while investors often exhibit behavioral biases that influence portfolio selection, existing research has yet to incorporate investor preference information. This paper investigated the cardinality-constrained index tracking problem by integrating investor preferences and enforcing sparsity through a minimal subset of selected assets. Specifically, we proposed a novel approach that incorporates fuzzy preference relations into the sparse tracking model via an additive consistency under priority vectors. This framework captures investor preference heterogeneity while harmonizing subjective inputs with objective tracking performance. An effective matrix decomposition method was employed to address the cardinality-constrained optimization, yielding a precise lower bound and substantially decreasing computational demands. By combining the supergradient method with a branch-and-bound algorithm, our model enhances the efficiency of optimal portfolio selection. Extensive numerical experiments demonstrated that the proposed method outperforms existing lower-bound techniques and mixed-integer programming solvers in tracking efficiency. Furthermore, the preference-aware model balances customization and risk-adjusted returns, achieving superior risk-return performance across multiple tracking metrics. These findings provide practical insights for investor decision-making in portfolio management.
Citation: Chun Wang, Zhongming Wu, Wei Xu, Yu Yuan. An exact algorithm for a cardinality-constrained index tracking model considering investment preferences in portfolio optimization[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 612-641. doi: 10.3934/jimo.2026023
Sparse index tracking has emerged as a prominent passive portfolio management strategy, leveraging sparse portfolios to replicate the performance of financial benchmarks. However, while investors often exhibit behavioral biases that influence portfolio selection, existing research has yet to incorporate investor preference information. This paper investigated the cardinality-constrained index tracking problem by integrating investor preferences and enforcing sparsity through a minimal subset of selected assets. Specifically, we proposed a novel approach that incorporates fuzzy preference relations into the sparse tracking model via an additive consistency under priority vectors. This framework captures investor preference heterogeneity while harmonizing subjective inputs with objective tracking performance. An effective matrix decomposition method was employed to address the cardinality-constrained optimization, yielding a precise lower bound and substantially decreasing computational demands. By combining the supergradient method with a branch-and-bound algorithm, our model enhances the efficiency of optimal portfolio selection. Extensive numerical experiments demonstrated that the proposed method outperforms existing lower-bound techniques and mixed-integer programming solvers in tracking efficiency. Furthermore, the preference-aware model balances customization and risk-adjusted returns, achieving superior risk-return performance across multiple tracking metrics. These findings provide practical insights for investor decision-making in portfolio management.
| [1] |
J. Li, H. Nie, T. Chai, F. L. Lewis, Reinforcement learning for optimal tracking of large-scale systems with multitime scales, Sci. China Inf. Sci., 66 (2023), 1–25. https://doi.org/10.1007/s11432-022-3796-2 doi: 10.1007/s11432-022-3796-2
|
| [2] |
A. Granzer-Guay, R. H. Kwon, Risk-return adaptive receding Horizon Index Tracking Strategy, Eng. Econ., 69 (2024), 189–212. https://doi.org/10.1080/0013791X.2024.2402688 doi: 10.1080/0013791X.2024.2402688
|
| [3] |
A. Ling, J. Li, L. Wen, Y. Zhang, When trackers are aware of ESG: Do ESG ratings matter to tracking error portfolio performance, Econ. Model., 125 (2023), 106346. https://doi.org/10.1016/j.econmod.2023.106346 doi: 10.1016/j.econmod.2023.106346
|
| [4] | I. Rais, S. Alam, C. Kumar, S. S. Meghwani, Bi-objective Enhanced Index Tracking: Performance Analysis of Meta-heuristic Algorithms with Real-World Constraints, Proceedings of Third International Conference on Computing and Communication Networks, (2023), 453–469. https://doi.org/10.1007/978-981-97-2671-4_35 |
| [5] |
M. C. Yuen, S. C. Ng, M. F. Leung, H. Che, A metaheuristic-based framework for index tracking with practical constraints, Complex Intell. Syst., 9 (2022), 3469–3469. https://doi.org/10.1007/s40747-022-00918-z doi: 10.1007/s40747-022-00918-z
|
| [6] |
L. Zhao, G. Li, S. Penev, Regularized distributionally robust optimization with application to the index tracking problem, Ann. Oper. Res., 337 (2024), 397–424. https://doi.org/10.1007/s10479-023-05726-3 doi: 10.1007/s10479-023-05726-3
|
| [7] |
T. Zhang, S. Lai, Portfolio selection balancing concentration and diversification, J. Ind. Manag. Optim., 10 (2025), 3618–3647. https://doi.org/10.3934/jimo.2025025 doi: 10.3934/jimo.2025025
|
| [8] |
J. E. Beasley, N. Meade, T. J. Chang, An evolutionary heuristic for the index tracking problem, Eur. J. Oper. Res., 148 (2003), 621–643. http://dx.doi.org/10.1016/S0377-2217(02)00425-3 doi: 10.1016/S0377-2217(02)00425-3
|
| [9] |
J. Brodie, I. Daubechies, C. De Mol, D. Giannone, I. Loris, Sparse and stable Markowitz portfolios, Proc. Natl. Acad. Sci., 106 (2009), 12267–12272. https://doi.org/10.1073/pnas.0904287106 doi: 10.1073/pnas.0904287106
|
| [10] |
X. P. Li, Z. L. Shi, C. S. Leung, H. C. So, Sparse Index Tracking With K-Sparsity or $\epsilon$-Deviation Constraint via $\ell_0$-Norm Minimization, IEEE Trans. Neural. Netw. Learn. Syst., 34 (2023), 10930–10943. https://doi.org/10.1109/TNNLS.2022.3171819 doi: 10.1109/TNNLS.2022.3171819
|
| [11] |
E. Yamagata, S. Ono, Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via $\ell_0$-Constrained Portfolio, IEEE Open. J. Signal. Process., 5 (2024), 810–819. https://doi.org/10.1109/OJSP.2024.3389810 doi: 10.1109/OJSP.2024.3389810
|
| [12] |
X. Wu, R. Liang, Z. Zhang, Z. Cui, Multi-block linearized alternating direction method for sparse fused Lasso modeling problems, Appl. Math. Model., 137 (2025), 115694. https://doi.org/10.1016/j.apm.2024.115694 doi: 10.1016/j.apm.2024.115694
|
| [13] |
H. Jiang, W. Zheng, Y. Dong, Sparse and robust estimation with ridge minimax concave penalty, Inf. Sci., 571 (2021), 154–174. https://doi.org/10.1016/j.ins.2021.04.047 doi: 10.1016/j.ins.2021.04.047
|
| [14] |
F. Khan, S. Muhammadullah, A. Sharif, C. C. Lee, The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models, Energy Econ., 130 (2024), 107269. https://doi.org/10.1016/j.eneco.2023.107269 doi: 10.1016/j.eneco.2023.107269
|
| [15] |
H. Zhao, L. Kong, H. D. Qi, Optimal portfolio selections via $\ell_{1, 2}$-norm regularization, Comput. Optim. Appl., 80 (2021), 853–881. https://doi.org/10.1007/s10589-021-00312-4 doi: 10.1007/s10589-021-00312-4
|
| [16] |
Z. Wu, K. Sun, Z. Ge, Z. Allen-Zhao, T. Zeng, Sparse portfolio optimization via $\ell_1$ over $\ell_2$ regularization, Eur. J. Oper. Res., 319 (2024), 820–833. https://doi.org/10.1016/j.ejor.2024.07.017 doi: 10.1016/j.ejor.2024.07.017
|
| [17] |
D. Bertsimas, R. Shioda, Algorithm for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43 (2009), 1–22. https://doi.org/10.1007/s10589-007-9126-9 doi: 10.1007/s10589-007-9126-9
|
| [18] | R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suárez, Selection of optimal investment portfolios with cardinality constraints, 2006 IEEE International Conference on Evolutionary Computation, (2006), 2382–2388. http://dx.doi.org/10.1109/CEC.2006.1688603 |
| [19] |
K. Michell, W. Kristjanpoller, Strongly-typed genetic programming and fuzzy inference system: An embedded approach to model and generate trading rules, Appl. Soft Comput., 90 (2020), 106169. https://doi.org/10.1016/j.asoc.2020.106169 doi: 10.1016/j.asoc.2020.106169
|
| [20] |
X. Zhao, J. Dou, Bi-objective integrated supply chain design with transportation choices: a multi-objective particle swarm optimization, J Ind. Manag. Optim., 15 (2019), 1263–1288. https://doi.org/10.3934/jimo.2018095 doi: 10.3934/jimo.2018095
|
| [21] |
K. Smith-Miles, Understanding instance hardness for optimisation algorithms: Methodologies, open challenges and post-quantum implications, Appl. Math. Model., 142 (2025), 115965. https://doi.org/10.1016/j.apm.2025.115965 doi: 10.1016/j.apm.2025.115965
|
| [22] | M. C. Yuen, S. C. Ng, M. F. Leung, H. Che, Metaheuristics for index-tracking with cardinality constraints, 2021 11th International Conference on Information Science and Technology, (2021), 646–651. https://doi.org/10.1109/ICIST52614.2021.9440584 |
| [23] |
D. Maringer, O. Oyewumi, Optimal construction and rebalancing of index-tracking portfolios, Eur. J. Oper. Res., 264 (2018), 370–387. https://doi.org/10.1016/j.ejor.2017.06.055 doi: 10.1016/j.ejor.2017.06.055
|
| [24] | S. Ma, Y. Gao, B. Zhang, Output-space branch-and-bound reduction algorithm for solving generalized linear multiplicative programming programs, J. Appl. Math. Comput., 2024, 1–31. https://doi.org/10.1007/s12190-024-02202-4 |
| [25] |
K. Benidis, Y. Feng, D. P. Palomar, Sparse Portfolios for High-Dimensional Financial Index Tracking, IEEE Trans. Signal Process., 66 (2018), 155–170. https://doi.org/10.1109/TSP.2017.2762286 doi: 10.1109/TSP.2017.2762286
|
| [26] |
Y. Zheng, B. Chen, T. M. Hospedales, Y. Yang, Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach, Proc. AAAI Conf. Artif. Intell., 34 (2020), 1242–1249. https://doi.org/10.1609/aaai.v34i01.5478 doi: 10.1609/aaai.v34i01.5478
|
| [27] |
F. S. G. Constante, J. C. López, M. J. Rider, Optimal reactive power dispatch with discrete controllers using a branch-and-bound algorithm: A semidefinite relaxation approach, IEEE Trans. Power Syst., 36 (2021), 4539–4550. https://doi.org/10.1109/TPWRS.2021.3056637 doi: 10.1109/TPWRS.2021.3056637
|
| [28] |
X. Zheng, Y. Pan, Z. Hu, Perspective Reformulations of Semicontinuous Quadratically Constrained Quadratic Programs, INFORMS J. Comput., 33 (2020), 163–179. https://doi.org/10.1287/ijoc.2019.0925 doi: 10.1287/ijoc.2019.0925
|
| [29] |
X. Deng, W. Li, Y. Liu, Hesitant fuzzy portfolio selection model with score and novel hesitant semi-variance, Comput. Ind. Eng., 164 (2022), 107879. https://doi.org/10.1016/j.cie.2021.107879 doi: 10.1016/j.cie.2021.107879
|
| [30] |
S. Nayak, S. Maharana, An efficient fuzzy mathematical approach to solve multi-objective fractional programming problem under fuzzy environment, J. Appl. Math. Comput., 69 (2023), 2873–2899. https://doi.org/10.1007/s12190-023-01860-0 doi: 10.1007/s12190-023-01860-0
|
| [31] |
S. Orlovsky, Decision-making with a fuzzy preference relation, Fuzzy Sets Syst., 1 (1978), 155–167. http://dx.doi.org/10.1016/B978-1-4832-1450-4.50077-8 doi: 10.1016/B978-1-4832-1450-4.50077-8
|
| [32] |
Y. Xu, Q. Wang, F. Chiclana, E. Herrera-Viedma, A local adjustment method to improve multiplicative consistency of fuzzy reciprocal preference relations, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 5702–5714. https://doi.org/10.1109/TSMC.2023.3275167 doi: 10.1109/TSMC.2023.3275167
|
| [33] |
T. Tanino, Fuzzy preference orderings in group decision making, Fuzzy Sets Syst., 12 (1984), 117–131. http://dx.doi.org/10.1016/0165-0114(84)90032-0 doi: 10.1016/0165-0114(84)90032-0
|
| [34] |
C. Li, Y. Dong, Y. Xu, F. Chiclana, E. Herrera-Viedma, F. Herrera, An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and fusion: Taxonomy and future directions, Inf. Fusion, 52 (2019), 143–156. http://dx.doi.org/10.1016/j.inffus.2018.12.004 doi: 10.1016/j.inffus.2018.12.004
|
| [35] |
J. Ma, Z. P. Fan, Y. P. Jiang, J. Y. Mao, L. Ma, A method for repairing the inconsistency of fuzzy preference relations, Fuzzy Sets Syst., 157 (2006), 20–33. https://doi.org/10.1016/j.fss.2005.05.046 doi: 10.1016/j.fss.2005.05.046
|
| [36] | Z. Xu, Uncertain multi-attribute decision making: Methods and applications, Springer, Berlin Heidelberg, 2015. |
| [37] |
W. Guo, Z. Gong, X. Xu, E. Herrera-Viedma, Additive and multiplicative consistency modeling for incomplete linear uncertain preference relations and its weight acquisition, IEEE Trans. Fuzzy Syst., 29 (2020), 805–819. https://doi.org/10.1109/TFUZZ.2020.2965909 doi: 10.1109/TFUZZ.2020.2965909
|
| [38] |
A. Yazidi, M. Ivanovska, F. M. Zennaro, P. G. Lind, E. Herrera-Viedma, A new decision making model based on Rank Centrality for GDM with fuzzy preference relations, Eur. J. Oper. Res., 297 (2022), 1030–1041. https://doi.org/10.1016/j.ejor.2021.05.030 doi: 10.1016/j.ejor.2021.05.030
|
| [39] |
S. S. Dey, A. Kazachkov, A. Lodi, G. Munoz, Cutting plane generation through sparse principal component analysis, SIAM J. Optim., 32 (2022), 1319–1343. https://doi.org/10.1137/21M1399956 doi: 10.1137/21M1399956
|
| [40] |
F. S. Gharehchopogh, Quantum-inspired metaheuristic algorithms: comprehensive survey and classification, Artif. Intell. Rev., 56 (2023), 5479–5543. https://doi.org/10.1007/s10462-022-10280-8} doi: 10.1007/s10462-022-10280-8
|
| [41] |
W. Xu, J. Tang, K. F. C. Yiu, J. W. Peng, An efficient global optimal method for cardinality-constrained portfolio optimization, INFORMS J. Comput., 36 (2024), 690–704. https://doi.org/10.1287/ijoc.2022.0344 doi: 10.1287/ijoc.2022.0344
|
| [42] |
W. Guo, G. Zhang, X. Chen, Portfolio selection models considering fuzzy preference relations of decision makers, IEEE Trans. Syst. Man Cybern. Syst., 54 (2024), 2254–2265. https://doi.org/10.1109/TSMC.2023.3342038 doi: 10.1109/TSMC.2023.3342038
|
| [43] |
D. Maringer, O. Oyewumi, Index tracking with constrained portfolios, Intell. Syst. Account. Finance Manag., 15 (2007), 57–71. https://doi.org/10.1002/isaf.285 doi: 10.1002/isaf.285
|
| [44] |
A. Scozzari, F. Tardella, S. Paterlini, T. Krink, Exact and heuristic approaches for the index tracking problem with UCITS constraints, Ann. Oper. Res., 205 (2013), 235–250. https://doi.org/10.1007/s10479-012-1207-1 doi: 10.1007/s10479-012-1207-1
|
| [45] |
K. J. Oh, T. Y. Kim, S. Min, Using genetic algorithm to support portfolio optimization for index fund management, Expert Syst. Appl., 28 (2005), 371–379. https://doi.org/10.1016/j.eswa.2004.10.014 doi: 10.1016/j.eswa.2004.10.014
|
| [46] |
A. Takeda, M. Niranjan, J. y. Gotoh, Y. Kawahara, Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios, Comput. Manag. Sci., 10 (2013), 21–49. https://doi.org/10.1007/s10287-012-0158-y doi: 10.1007/s10287-012-0158-y
|
| [47] |
K. Andriosopoulos, M. Doumpos, N. C. Papapostolou, P. K. Pouliasis, Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms, Transp. Res. Part E Logist. Transp. Rev., 52 (2013), 16–34. https://doi.org/10.1016/j.tre.2012.11.006 doi: 10.1016/j.tre.2012.11.006
|
| [48] |
R. Ruiz-Torrubiano, A. Suárez, A hybrid optimization approach to index tracking, Ann. Oper. Res., 166 (2009), 57–71. https://doi.org/10.1007/s10479-008-0404-4 doi: 10.1007/s10479-008-0404-4
|
| [49] |
D. X. Shaw, S. Liu, L. Kopman, Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optim. Methods Softw., 23 (2008), 411–420. https://doi.org/10.1080/10556780701722542 doi: 10.1080/10556780701722542
|
| [50] |
J. Gao, D. Li, Optimal cardinality-constrained portfolio selection, Oper. Res., 61 (2013), 745–761. https://doi.org/10.1287/opre.2013.1170 doi: 10.1287/opre.2013.1170
|