This paper investigates the equilibrium of a non-performing loan (NPL) securitization market characterized by strategic interactions between multiple banks and insurers. We develop a continuous-time framework in which the NPL recovery process is modeled by a Markov chain capturing stochastic macroeconomic regime shifts. Within this market, risk-averse banks and insurers—both represented by exponential utility preferences—seek to maximize their certainty-equivalent terminal wealth through optimal choices of securitization and guarantee ratios. Employing optimization techniques, we establish the equilibrium model and derive analytical, closed-form solutions for the equilibrium strategies as well as the endogenous insurance premium. Numerical experiments illustrate how equilibrium outcomes respond to key factors such as agents' risk aversion and macroeconomic transition probabilities, thereby validating the theoretical framework and offering a rigorous tool for practical decision-making and regulatory evaluation.
Citation: Pin Wang, Guojing Wang, Yang Yang, Wanrong Mu. Equilibrium strategy in a non-performing loan securitization game with regime switching[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 691-715. doi: 10.3934/jimo.2026025
This paper investigates the equilibrium of a non-performing loan (NPL) securitization market characterized by strategic interactions between multiple banks and insurers. We develop a continuous-time framework in which the NPL recovery process is modeled by a Markov chain capturing stochastic macroeconomic regime shifts. Within this market, risk-averse banks and insurers—both represented by exponential utility preferences—seek to maximize their certainty-equivalent terminal wealth through optimal choices of securitization and guarantee ratios. Employing optimization techniques, we establish the equilibrium model and derive analytical, closed-form solutions for the equilibrium strategies as well as the endogenous insurance premium. Numerical experiments illustrate how equilibrium outcomes respond to key factors such as agents' risk aversion and macroeconomic transition probabilities, thereby validating the theoretical framework and offering a rigorous tool for practical decision-making and regulatory evaluation.
| [1] |
E. Tölö, M. Virén, How much do non-performing loans hinder loan growth in europe? Eur. Econ, Rev., 136 (2021), 103773. https://doi.org/10.1016/j.euroecorev.2021.103773 doi: 10.1016/j.euroecorev.2021.103773
|
| [2] |
L. Kryzanowski, J. Liu, J. Zhang, Effect of covid-19 on non-performing loans in china, Financ. Res. Lett., 52 (2023), 103372. https://doi.org/10.1016/j.frl.2022.103372 doi: 10.1016/j.frl.2022.103372
|
| [3] |
L. Pancotto, O. Ap Gwilym, J. Williams, The evolution and determinants of the non-performing loan burden in italian banking, Pac.-Basin Financ. J., 84 (2024), 102306. https://doi.org/10.1016/j.pacfin.2024.102306 doi: 10.1016/j.pacfin.2024.102306
|
| [4] |
Q. T. Phung, H. Van Vu, H. P. Tran, Do non-performing loans impact bank efficiency? Financ. Res. Lett., 46 (2022), 102393. https://doi.org/10.1016/j.frl.2021.102393 doi: 10.1016/j.frl.2021.102393
|
| [5] |
A. S. Serrano, The impact of non-performing loans on bank lending in europe: An empirical analysis, North Am. J. Econ. Financ., 55 (2021), 101312. https://doi.org/10.1016/j.najef.2020.101312 doi: 10.1016/j.najef.2020.101312
|
| [6] | H. Wang, K. Mao, W. Wu, H. Luo, Fintech inputs, non-performing loans risk reduction and bank performance improvement, textitInt. Rev. Financ. Anal., 90 (2023), 102849. https://doi.org/10.1016/j.irfa.2023.102849 |
| [7] |
S. T. Wengerek, B. Hippert, A. Uhde, Risk allocation through securitization: evidence from non-performing loans, Q. Rev. Econ. Financ., 86 (2022), 48–64. https://doi.org/10.1016/j.qref.2022.06.005 doi: 10.1016/j.qref.2022.06.005
|
| [8] |
B. Casu, A. Clare, A. Sarkisyan, S. Thomas, Securitization and bank performance, J. Money Credit Banking, 45 (2013), 1617–1658. https://doi.org/10.1111/jmcb.12064 doi: 10.1111/jmcb.12064
|
| [9] |
C. Di Tommaso, V. Pacelli, Does nonperforming loan securitization affect credit default swap spreads? evidence from european banks, J. Int. Financ. Manage. Accounting, 33 (2022), 285–306. https://doi.org/10.1111/jifm.12147 doi: 10.1111/jifm.12147
|
| [10] |
E. Bolognesi, P. Stucchi, S. Miani, Are NPL-backed securities an investment opportunity? Q. Rev. Econ. Financ., 77 (2020), 327–339. https://doi.org/10.1016/j.qref.2019.10.007 doi: 10.1016/j.qref.2019.10.007
|
| [11] |
E. Bolognesi, C. Compagno, S. Miani, R. Tasca, Non-performing loans and the cost of deleveraging: The Italian experience, J. Account. Public Policy, 39 (2020), 106786. https://doi.org/10.1016/j.jaccpubpol.2020.106786 doi: 10.1016/j.jaccpubpol.2020.106786
|
| [12] |
G. Gorton, The subprime panic, Eur. Financ. Manage., 15 (2009), 10–46. https://doi.org/10.1111/j.1468-036X.2008.00473.x doi: 10.1111/j.1468-036X.2008.00473.x
|
| [13] |
Y. Dou, Y. Liu, G. Richardson, D. Vyas, The risk-relevance of securitizations during the recent financial crisis, Rev. Account. Stud., 19 (2014), 839–876. https://doi.org/10.1007/s11142-013-9265-4 doi: 10.1007/s11142-013-9265-4
|
| [14] |
J. Coval, J. Jurek, E. Stafford, The economics of structured finance, J. Econ. Perspect., 23 (2009), 3–25. https://doi.org/10.2307/27648292 doi: 10.2307/27648292
|
| [15] |
B. Hartman-Glaser, T. Piskorski, A. Tchistyi, Optimal securitization with moral hazard, J. Financ. Econ., 104 (2012), 186–202. https://doi.org/10.1016/j.jfineco.2011.12.007 doi: 10.1016/j.jfineco.2011.12.007
|
| [16] |
S. Malekan, G. Dionne, Securitization and optimal retention under moral hazard, J. Math. Econ., 55 (2014), 74–85. https://doi.org/10.1016/j.jmateco.2014.10.003 doi: 10.1016/j.jmateco.2014.10.003
|
| [17] |
G. Guo, H. M. Wu, A study on risk retention regulation in asset securitization process, J. Banking Financ., 45 (2014), 61–71. https://doi.org/10.1016/j.jbankfin.2013.12.027 doi: 10.1016/j.jbankfin.2013.12.027
|
| [18] |
J. C. F. Kuong, J. Zeng, Securitization and optimal foreclosure, J. Financ. Intermed., 48 (2021), 100885. https://doi.org/10.1016/j.jfi.2020.100885 doi: 10.1016/j.jfi.2020.100885
|
| [19] |
G. D. Berentsen, J. Bulla, A. Maruotti, B. Støve, Modelling clusters of corporate defaults: Regime-switching models significantly reduce the contagion source, J. R. Stat. Soc. Ser. C: Appl. Stat., 71 (2022), 698–722. https://doi.org/10.1111/rssc.12551 doi: 10.1111/rssc.12551
|
| [20] |
C. Jiang, A. Kanas, P. Molyneux, Public policy and financial stability: The impact of pca and tarp on us bank non-performing loans, Int. J. Financ. Econ., 23 (2018), 376–392. https://doi.org/10.1002/ijfe.1622 doi: 10.1002/ijfe.1622
|
| [21] |
B. B. Lahouel, L. Taleb, M. Kossai, Nonlinearities between bank stability and income diversification: A dynamic network data envelopment analysis approach, Expert Syst. Appl., 207 (2022), 117776. https://doi.org/10.1016/j.eswa.2022.117776 doi: 10.1016/j.eswa.2022.117776
|
| [22] |
T. Muvunza, Y. Jiang, Determinants and hedging effectiveness of china's sovereign credit default swaps, Int. J. Financ. Econ., 28 (2023), 2074–2087. https://doi.org/10.1002/ijfe.2526 doi: 10.1002/ijfe.2526
|
| [23] |
W. Mu, S. N. Chiu, G. Wang, Pricing cds index tranches under thinning-dependence structure with regime switching, J. Comput. Appl. Math., 451 (2024), 116080. https://doi.org/10.1016/j.cam.2024.116080 doi: 10.1016/j.cam.2024.116080
|
| [24] |
H. Zheng, L. Jiang, Basket cds pricing with interacting intensities, Financ. Stoch., 13 (2009), 445–469. https://doi.org/10.1007/s00780-009-0091-2 doi: 10.1007/s00780-009-0091-2
|
| [25] |
L. Tang, B. Wang, K.-N. Xiang, Portfolio credit risk with predetermined default orders, Quant. Financ., 16 (2016), 131–149. https://doi.org/10.1080/14697688.2015.1013147 doi: 10.1080/14697688.2015.1013147
|
| [26] |
N. Wang, N. Zhang, Z. Jin, L. Qian, Stochastic differential investment and reinsurance games with nonlinear risk processes and var constraints, Insur. Mathe. Econ., 96 (2021), 168–184. https://doi.org/10.1016/j.insmatheco.2020.11.004 doi: 10.1016/j.insmatheco.2020.11.004
|
| [27] |
J. Bi, J. Cai, Y. Zeng, Equilibrium reinsurance-investment strategies with partial information and common shock dependence, Ann. Oper. Res., 307 (2021), 1–24. https://doi.org/10.1007/s10479-021-04317-4 doi: 10.1007/s10479-021-04317-4
|
| [28] |
Y. Yang, G. Wang, J. Yao, Time-consistent reinsurance-investment games for multiple mean-variance insurers with mispricing and default risks, Insur. Mathe. Econ., 114 (2024), 79–107. https://doi.org/10.1016/j.insmatheco.2023.11.004 doi: 10.1016/j.insmatheco.2023.11.004
|
| [29] |
A. Bensoussan, C. C. Siu, S. C. P. Yam, H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025–2037. https://doi.org/10.1016/j.automatica.2014.05.033 doi: 10.1016/j.automatica.2014.05.033
|
| [30] |
C. Deng, X. Zeng, H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, Eur. J. Oper. Res., 264 (2018), 1144–1158. https://doi.org/10.1016/j.ejor.2017.06.065 doi: 10.1016/j.ejor.2017.06.065
|
| [31] |
Y. Yuan, K. Wang, C. Zhang, Stochastic differential reinsurance game for two competitive insurers with ambiguity-aversion under mean-variance premium principle, Ann. Oper. Res., 335 (2024), 441–467. https://doi.org/10.1007/s10479-024-05844-6 doi: 10.1007/s10479-024-05844-6
|
| [32] |
R. Josa-Fombellida, J. P. Rincón-Zapatero, Equilibrium strategies in a defined benefit pension plan game, Eur. J. Oper. Res., 275 (2019), 374–386. https://doi.org/10.1016/j.ejor.2018.11.018 doi: 10.1016/j.ejor.2018.11.018
|
| [33] |
Y. Kovchegov, N. Meredith, E. Nir, Occupation times and Bessel densities, Stat. Probabil. Lett., 80 (2010), 104–110. https://doi.org/10.1016/j.spl.2009.09.018 doi: 10.1016/j.spl.2009.09.018
|