Research article

Optimization of differential inclusions with parameter

  • Published: 19 November 2025
  • 34A60, 34B08, 34A45, 49K15, 90C90

  • The article considered the Bolza optimization problem for differential inclusions (DFIs) with a parameter. To achieve the final goal, the corresponding discrete, discrete-approximate, and continuous problems were studied in parallel. Under a standard interior point condition from convex analysis, optimality conditions for the given parameter-dependent problem were obtained in terms of the Euler–Lagrange equations and the Hamiltonian. The central approach relied on the equivalence results of locally adjoint mappings (LAMs). Specifically, a classical optimal control problem with a parameter was investigated.

    Citation: Elimhan N. Mahmudov, Shakir Sh. Yusubov, Dilara I. Mastaliyeva. Optimization of differential inclusions with parameter[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 214-237. doi: 10.3934/jimo.2026008

    Related Papers:

  • The article considered the Bolza optimization problem for differential inclusions (DFIs) with a parameter. To achieve the final goal, the corresponding discrete, discrete-approximate, and continuous problems were studied in parallel. Under a standard interior point condition from convex analysis, optimality conditions for the given parameter-dependent problem were obtained in terms of the Euler–Lagrange equations and the Hamiltonian. The central approach relied on the equivalence results of locally adjoint mappings (LAMs). Specifically, a classical optimal control problem with a parameter was investigated.



    加载中


    [1] P. Cannarsa, H. Frankowska, T. Scarinci, Sensitivity relations for the Mayer problem with differential inclusions, ESAIM: COCV, 21 (2015), 789–814. https://doi.org/10.1051/cocv/2014050 doi: 10.1051/cocv/2014050
    [2] F. H. Clarke, Optimization and non smooth analysis, John Wiley and Sons Inc. 1983.
    [3] A. D. Ioffe, V. Tikhomirov, Theory of extremal problems, "Nauka", Moscow, 1974; English transl., North-Holland, Amsterdam, 1978.
    [4] P. D. Loewen, R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J. Control Optim., 32 (1994), 442–470. https://doi.org/10.1137/S0363012991217494 doi: 10.1137/S0363012991217494
    [5] E. N. Mahmudov, D. I. Mastaliyeva, Optimal control of second order hereditary functional-differential inclusions with state constraints, J. Indus. Man. Optim. , 20 (2024), 3562–3579. https://doi.org/10.3934/jimo.2024065 doi: 10.3934/jimo.2024065
    [6] E. N. Mahmudov, Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints, J. Indus. Man. Optim. , 16 (2020), 2503–2520. https://doi.org/10.3934/jimo.2019066 doi: 10.3934/jimo.2019066
    [7] E. N. Mahmudov, Infimal convolution and duality in problems with third-order discrete and differential inclusions, J. Optim. Theory Appl. , 184 (2020), 781–809. https://doi.org/10.1007/s10957-019-01630-8 doi: 10.1007/s10957-019-01630-8
    [8] E. N. Mahmudov, Optimal control of higher order differential inclusions with functional constraints, ESAIM: COCV, 26 (2020), 1–23. https://doi.org/10.1051/cocv/2019018 doi: 10.1051/cocv/2019018
    [9] E. N. Mahmudov, Optimal Control of Evolution Differential Inclusions with Polynomial Linear Differential Operators, Evol. Equ. Contr. Theory, 8 (2019), 603–619. https://doi.org/10.5772/intechopen.90888 doi: 10.5772/intechopen.90888
    [10] L. Marco, J. A. Murillo, Lyapunov functions for second order differential inclusions: A viability approach, J. Math. Anal. Appl., 262 (2001), 339–354. https://doi.org/10.1006/jmaa.2001.7583 doi: 10.1006/jmaa.2001.7583
    [11] B. S. Mordukhovich, D. Wang, Optimal Control of Semilinear Unbounded Evolution Inclusions with Functional Constraints, J. Optim Theory Appl. , 167 (2015), 821–841. https://doi.org/10.1007/s10957-013-0301-0 doi: 10.1007/s10957-013-0301-0
    [12] M. Raap, M. Zsifkovits, S. W. Pickl, Trajectory optimization under kinematical constraints for moving target search, Comput. Oper. Res. , 88 (2017), 324–331. https://doi.org/10.1016/j.cor.2016.12.016 doi: 10.1016/j.cor.2016.12.016
    [13] S. D. Sağlam, E. N. Mahmudov, The Lagrange problem for differential inclusions with boundary value conditions and duality, Pacific J. Optim. , 17 (2021), 209–225.
    [14] Y. Zhu, L. Rao, Differential inclusions for fuzzy maps, Fuzzy Sets Syst. , 112 (2000), 257–261. https://doi.org/10.1016/S0165-0114(98)00077-3 doi: 10.1016/S0165-0114(98)00077-3
    [15] N. U. Ahmed, K. L. Teo, Optimal Control of Distributed Parameter Systems, New York: Elsevier North Holland, 1981.
    [16] K. Aida-zade, Y. Ashrafova, Determination of the parameters of dynamic objects, arbitrarily related by boundary conditions, J. Indus. Man. Optim. , 20 (2024), 2477–2499. https://doi.org/10.3934/jimo.2024010 doi: 10.3934/jimo.2024010
    [17] E. N. Mahmudov, Approximation and optimization of Darboux type differential inclusions with set-valued boundary conditions, Optim. Letters, 7 (2013), 871–891. https://doi.org/10.1007/s11590-012-0460-1 doi: 10.1007/s11590-012-0460-1
    [18] E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier, Boston, USA 2011.
    [19] E. N. Mahmudov, Optimal control of hyperbolic type discrete and differential inclusions described by the Laplace operator, ESAIM: COCV, 28 (2022), 1–21. https://doi.org/10.1051/cocv/2022061 doi: 10.1051/cocv/2022061
    [20] S. S. Yusubov, E. N. Mahmudov, Some necessary optimality conditions for systems with fractional Caputo derivatives, J. Indust. Manag. Optim. , 19 (2023), 8831–8850. https://doi.org/10.3934/jimo.2023063 doi: 10.3934/jimo.2023063
    [21] S. Adly, A. Hantoute, M. Théra, Nonsmooth Lyapunov pairs for infinite dimensional first-order differential inclusions, Nonlin. Anal. : Theory, Methods Appl. , 75 (2012), 985–1008. https://doi.org/10.1016/j.na.2010.11.009 doi: 10.1016/j.na.2010.11.009
    [22] S. Adly, A. Hantoute, M. Théra, Local nonsmooth Lyapunov pairs for first-order evolution differential inclusions, arXiv preprint arXiv: 1305.3737(2013). https://doi.org/10.48550/arXiv.1305.3737
    [23] N. U. Ahmed, X. Xiang, Optimal relaxed controls for differential inclusions on Banach spaces, Dynam. Syst. Appl. , 12 (2003), 235–250.
    [24] N. U. Ahmed, X. Xiang, Differential inclusions on Banach spaces and their optimal control, Nonlin. Funct. Anal. Appl. , 8 (2003), 461–488.
    [25] N. U. Ahmed, Existence of Optimal Relaxed Controls for Differential Inclusions on Banach Space, In V. Lakshmikantham, edited, Nonlinear Analysis and Applications, Marcel Dekker, Lecture Notes in Pure and Applied Mathematics, Vol. 109, Marcel Dekker Inc., New York, 1987.
    [26] D. L. Azzam, A. Makhlouf, L. Thibault, Existence and relaxation theorem for a second order differential inclusion, Numer. Funct. Anal. Optim. , 31 (2010), 1103–1119. https://doi.org/10.1080/01630563.2010.510982 doi: 10.1080/01630563.2010.510982
    [27] J. P. Aubin, A. Cellina, Differential Inclusions, Springer, Berlin, Heidelberg, 1984. https://doi.org/10.1007/978-3-642-69512-4
    [28] A. Auslender, J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl., 181 (1994), 205–218. https://doi.org/10.1006/jmaa.1994.1015 doi: 10.1006/jmaa.1994.1015
    [29] S. S. Yusubov, E. N. Mahmudov, Optimality conditions of singular controls for systems with Caputo fractional derivatives, J. Indust. Manag. Optim. , 19 (2023), 246-264. https://doi.org/10.3934/jimo.2021182 doi: 10.3934/jimo.2021182
    [30] Q. Liqun, K. L. Teo, X. Yang, Optimization and Control with Applications, Springer, 2005.
    [31] X. Zhang, Y. Kong, S. Liu, Y. Shen, A relaxed parameter condition for the primal-dual hybrid gradient method for saddle-point problem, J. Indus. Man. Optim. , 19 (2023), 1595–1610. https://doi.org/10.3934/jimo.2022008 doi: 10.3934/jimo.2022008
    [32] Q. Yan, W. Chen, X. Yang, A novel one-parameter filled function method with an application to pathological analysis, Optim. Lett. , 18 (2023), 1–22. https://doi.org/10.1007/s11590-023-02010-y doi: 10.1007/s11590-023-02010-y
    [33] E. N. Mahmudov, D. I. Mastaliyeva, Optimization of the Dirichlet problem for gradient differential inclusions, Nonlin. Diff. Equ. Appl. , 31 (2024), 1–18. https://doi.org/10.1007/s00030-023-00904-5 doi: 10.1007/s00030-023-00904-5
    [34] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes. New York, London, Sydney: John Wiley Sons, Inc., 1965.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(484) PDF downloads(22) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog