Uncertain multiple-delay differential equations (UMDDEs) driven by Liu process are critical for modeling systems with multiple-delay interactions and environmental noise. This paper proposes the method of moment estimation to estimate the parameters for UMDDEs with known or unknown delays. When the time interval of the observed data is particularly large, the parameters estimated by the above moment estimation are not very good. In order to overcome this shortcoming, the concept of residuals is introduced, and then we use the method of residual estimation to estimate the parameters for UMDDEs. Moreover, some numerical validations are investigated to show the effectiveness of the above methods for UMDDEs. Besides, the paradox of the stochastic multiple delay Logistic model is proved. Therefore, an uncertain multiple delay Logistic model is defined and applied to describe the dynamics of U.S. population dynamics.
Citation: Yilin Yang, Yin Gao. Parameter estimation in uncertain multiple-delay differential equations[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 238-255. doi: 10.3934/jimo.2026009
Uncertain multiple-delay differential equations (UMDDEs) driven by Liu process are critical for modeling systems with multiple-delay interactions and environmental noise. This paper proposes the method of moment estimation to estimate the parameters for UMDDEs with known or unknown delays. When the time interval of the observed data is particularly large, the parameters estimated by the above moment estimation are not very good. In order to overcome this shortcoming, the concept of residuals is introduced, and then we use the method of residual estimation to estimate the parameters for UMDDEs. Moreover, some numerical validations are investigated to show the effectiveness of the above methods for UMDDEs. Besides, the paradox of the stochastic multiple delay Logistic model is proved. Therefore, an uncertain multiple delay Logistic model is defined and applied to describe the dynamics of U.S. population dynamics.
| [1] |
H. Qi, B. Liu, S. Li, Stability, bifurcation, and chaos of a stage-structured predator-prey model under fear-induced and delay, Appl. Math. Comput., 476 (2024), 128780. https://doi.org/10.1016/j.amc.2024.128780 doi: 10.1016/j.amc.2024.128780
|
| [2] |
S. Eikenberry, S. Hews, J. Nagy, Y. Kuang, The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth, Math. Biosci. Eng., 6 (2009), 283–299. https://doi.org/10.3934/mbe.2009.6.283 doi: 10.3934/mbe.2009.6.283
|
| [3] |
M. Roussel, The use of delay differential equations in chemical Kinetics, J. Phys. Chem., 100 (1996), 8323–8330. https://doi.org/10.1021/jp9600672 doi: 10.1021/jp9600672
|
| [4] |
R. Kitching, Time, resources and population dynamics in insects, Aust. J. Ecol., 2 (1977), 31–42. https://doi.org/10.1111/j.1442–9993.1977.tb01125.x doi: 10.1111/j.1442–9993.1977.tb01125.x
|
| [5] |
R. Braddock, P. Driessche, On a two lag differential delay equation, ANZIAM J., 24 (1983), 292–317. https://doi.org/10.1017/S0334270000002939 doi: 10.1017/S0334270000002939
|
| [6] |
F. Ma, C. Li, T. Huang, Iterative learning control design of nonlinear multiple time-delay systems, Appl. Math. Comput., 218 (2011), 4333–4340. https://doi.org/10.1016/j.amc.2011.10.008 doi: 10.1016/j.amc.2011.10.008
|
| [7] |
M. Prakash, R. Rakkiyappan, A. Manivannan, J. Cao, Dynamical analysis of antigen-driven T-cell infection model with multiple delays, Appl. Math. Comput., 354 (2019), 266–281. https://doi.org/10.1016/j.amc.2019.02.050 doi: 10.1016/j.amc.2019.02.050
|
| [8] |
B. Bashier, K. Patidar, Optimal control of an epidemiological model with multiple time delays, Appl. Math. Comput., 292 (2017), 47–56. https://doi.org/10.1016/j.amc.2016.07.009 doi: 10.1016/j.amc.2016.07.009
|
| [9] |
S. Yang, Q. Meng, S. Peng, Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance, Automatica, 50 (2014), 1565–1579. https://doi.org/10.1016/j.automatica.2014.03.021 doi: 10.1016/j.automatica.2014.03.021
|
| [10] |
I. Ali, S. Khan, Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate, Chaos Solitons Fractals, 138 (2020), 110008. https://doi.org/10.1016/j.chaos.2020.110008 doi: 10.1016/j.chaos.2020.110008
|
| [11] |
H. Tang, X. Yang, Uncertain chemical reaction equation, Appl. Math. Comput., 411 (2021), 126479. https://doi.org/10.1016/j.amc.2021.126479 doi: 10.1016/j.amc.2021.126479
|
| [12] |
T. Frank, Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: Applications to financial physics and neurophysics, Phys. Lett. A, 360 (2007), 552–562. https://doi.org/10.1016/j.physleta.2006.08.062 doi: 10.1016/j.physleta.2006.08.062
|
| [13] |
J. Klamka, Stochastic controllability and minimum energy control of systems with multiple delays in control, Appl. Math. Comput., 206 (2008), 704–715. https://doi.org/10.1016/j.amc.2008.08.059 doi: 10.1016/j.amc.2008.08.059
|
| [14] |
Y. Hu, F. Wu, C. Huang, Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011), 42–57. https://doi.org/10.1016/j.jmaa.2010.08.017 doi: 10.1016/j.jmaa.2010.08.017
|
| [15] |
G. Muhammad, M. Akram, H. Alsulami, N. Hussain, Granular Fuzzy Fractional Continuous-Time Linear Systems: Roesser and Fornasini–Marchesini Models, Fractal Fract., 9 (2025), 398. https://doi.org/10.3390/fractalfract9070398 doi: 10.3390/fractalfract9070398
|
| [16] |
M. Akram, G. Muhammad, T. Allahviranloo, W. Pedrycz, Incommensurate non-homogeneous system of fuzzy linear fractional differential equations using the fuzzy bunch of real functions, Fuzzy Sets Syst., 473 (2023), 108725. https://doi.org/10.1016/j.fss.2023.108725 doi: 10.1016/j.fss.2023.108725
|
| [17] |
M. Akram, G. Muhammad, T. Allahviranloo, Explicit analytical solutions of an incommensurate system of fractional differential equations in a fuzzy environment, Inf. Sci., 645 (2023), 119372. https://doi.org/10.1016/j.ins.2023.119372 doi: 10.1016/j.ins.2023.119372
|
| [18] |
G. Muhammad, M. Akram, Fuzzy fractional generalized Bagley-Torvik equation with fuzzy Caputo gH-differentiability, Eng. Appl. Artif. Intell., 133 (2024), 108265. https://doi.org/10.1016/j.engappai.2024.108265 doi: 10.1016/j.engappai.2024.108265
|
| [19] | I. Barbacioru, Uncertainty functional differential equations for finance, Surv. Math. Appl., 2010 (2010), 275–284. |
| [20] | X. Ge, Y. Zhu, Existence and uniqueness theorem for uncertain delay differential equations, J. Comput. Inf. Syst., 8 (2012), 8341–8347. |
| [21] | X. Wang, Ning Y, A new existence and uniqueness theorem for uncertain delay differential equations, J. Intell. Fuzzy Syst., 37 (2019), 4103–4111. |
| [22] | X. Wang, Y. Ning, Stability of uncertain delay differential equations, J. Intell. Fuzzy Syst., 32 (2017), 2655–2664. |
| [23] |
X. Wang, Y. Ning, A new stability analysis of uncertain delay differential equations, Math. Probl. Eng., 2019 (2019), 1257386. https://doi.org/10.1155/2019/6073194 doi: 10.1155/2019/6073194
|
| [24] |
L. Jia, Y. Sheng, Stability in distribution for uncertain delay differential equation, Appl. Math. Comput., 343 (2019), 49–56. https://doi.org/10.1016/j.amc.2018.09.037 doi: 10.1016/j.amc.2018.09.037
|
| [25] |
Y. Gao, H. Tang, Some theorems of uncertain multiple-delay differential equations, Axioms, 13 (2024), 797. https://doi.org/10.3390/axioms13110797 doi: 10.3390/axioms13110797
|
| [26] |
Y. Gao, Y. Yang, H. Tang, Stability in mean for uncertain multiple-delay differential equations, Chaos Solitons Fractals, 201 (2025), 117217. https://doi.org/10.1016/j.chaos.2025.117217 doi: 10.1016/j.chaos.2025.117217
|
| [27] | B. Liu, Uncertainty Theory. 5nd ed., Berlin: Springer-Verlag, 2015. |
| [28] |
T. Q. Ye, B. D. Liu, Uncertain hypothesis test for uncertain differential equations, Fuzzy Optim. Decis. Mak., 22 (2023), 195–211. https://doi.org/10.1007/s10700-022-09389-w doi: 10.1007/s10700-022-09389-w
|
| [29] | L. Fan, The model of population projection by delay differential equation with two lags, Int. Conf. Inf. Sci. Cloud Comput. Comp., 2013,452–457. |