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Abstract: Uncertain multiple-delay differential equations (UMDDESs) driven by Liu process are
critical for modeling systems with multiple-delay interactions and environmental noise. This paper
proposes the method of moment estimation to estimate the parameters for UMDDESs with known or
unknown delays. When the time interval of the observed data is particularly large, the parameters
estimated by the above moment estimation are not very good. In order to overcome this shortcoming,
the concept of residuals is introduced, and then we use the method of residual estimation to estimate
the parameters for UMDDEs. Moreover, some numerical validations are investigated to show the
effectiveness of the above methods for UMDDEs. Besides, the paradox of the stochastic multiple
delay Logistic model is proved. Therefore, an uncertain multiple delay Logistic model is defined and
applied to describe the dynamics of U.S. population dynamics.
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1. Introduction

Delay differential equations have been applied to numerous systems, such as ecosystems [1],
mechanical automatic control systems [2], and chemical kinetics [3]. In 1977, Litching [4] discovered
that the life cycle of Australian flies exhibits multiple delay characteristics. Subsequently, Braddock
and Driessche [5] proposed a differential equation with two delay times. Furthermore, differential
equations with two or more delay times are referred to as multiple delay differential equations, which
have been used to describe iterative learning control systems [6], antigen T-cell immune systems [7],
and epidemiological models [8].

In reality, systems are always subject to “noise”. If the “noise” is modeled using the Wiener process
within the framework of probability theory, delay differential equations and multiple delay differential
equations with the Wiener process are called stochastic delay differential equations and stochastic
multiple delay differential equations, respectively. The applications of stochastic delay differential
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equations are extensive. For example, Yang et al. [9] used stochastic delay differential equations to
model stock prices in financial markets, Ali and Khan [10] employed them to describe the spread of
infectious diseases, and Jin et al. [11] applied them to model chemical reaction processes. Similarly,
stochastic multiple delay differential equations have broad applications. For instance, Frank [12] used
them to characterize stock price fluctuations in financial markets, Klamka [13] applied them to energy
control systems, and Hu et al. [ 14] utilized them in ecological systems. Moreover, differential equations
involving fuzzy sets [15—-18] were investigated by many scholars.

When the distribution and frequency are not close, the Wiener process cannot be used to model
“noise”. However, we can employ the Liu process from uncertainty theory, which is constructed
based on the belief of experts or experienced individuals, to represent “noise”. Introducing the Liu
process into delay differential equations results in uncertain delay differential equations. In 2010,
Barbacioru [19] proposed uncertain delay differential equations to model stock price fluctuations and
proved the local existence and uniqueness theorem for a special class of uncertain delay differential
equations. In 2012, Ge and Zhu [20] demonstrated the local existence and uniqueness theorem for
general uncertain delay differential equations. In 2019, Wang and Ning [21] established the global
existence and uniqueness theorem for general uncertain delay differential equations. Additionally,
Wang and Ning [22] introduced measure stability, mean stability, and p-th moment stability for
uncertain delay differential equations, providing sufficient conditions for each. Wang and Ning [23]
also proposed almost sure stability for uncertain delay differential equations and derived sufficient
conditions for its validity. Jia and Sheng [24] presented distribution stability for uncertain delay
differential equations and provided sufficient conditions for its establishment.

Uncertain multiple-delay differential equations (UMDDESs) have emerged as a critical framework
for modeling complex dynamical systems with inherent time delays and environmental noise, which
extend traditional delay differential equations by incorporating multiple discrete delays and
uncertainties governed by the Liu process, formally expressed as:

dXt = f(t9 Xt’ Xt—‘rp R Xt—‘rm’l-l)dt + g(t’ Xt, Xt—‘rl ety Xt—‘r,n;,u)dcta

where 71, 7,,...,T, represents delays, u is an unknown parameter vector, and C, denotes the Liu
process. At present, Gao and Tang [25] have proved the existence and uniqueness theorem for the
solution of UMDDE:s, and the stability in measure for UMDDEs was proposed, then two sufficient
theorems for UMDDEs being stable in measure were presented. Moreover, Gao et al. [26] proposed
the definition of stability in mean for UMDDESs, and two sufficient theorems for UMDDEs to be
stable in measure were presented. In order to apply the UMDDEs to describe some dynamic systems,
the method of parameter estimation for UMDDE:s is investigated in this paper. Meanwhile, the
contribution of this paper are given as below.

e Moment estimation method for uncertain multiple delay differential equations with known delays
is proposed.

e Moment estimation method for uncertain multiple delay differential equations with unknown
delays is provided.

e Residual method for uncertain multiple delay differential equations with unknown delays is given.

e The paradox of stochastic multiple delay Logistic model is proved.

The paper is structured as follows. Section 2 introduces the method of moment estimation for
uncertain multiple delay differential equations with known delays. Section 3 gives the method of
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moment estimation for uncertain multiple delay differential equations with unknown delays. Section
4 provides the method of residual estimation for uncertain multiple delay differential equations with
delays. Section 5 proves the paradox of the stochastic multiple-delay Logistic model and defines the
uncertain multiple-delay Logistic model to describe the dynamics of the United States. Finally, Section
6 synthesizes contributions.

2. Moment estimation method for uncertain multiple delay differential equations with known
delays

The uncertain multiple delay differential equation is
dXt = f(t7 Xt’ Xt—‘r] ) Xt—‘rza ) Xt—‘rn 5 /J)dt + g(t’ Xt9 Xt—‘rl ) Xt—‘rzs ) Xt—‘r,l > /J)dct (21)

where is an unknown parameter vector, C, is a Liu process, 7y, 75...T,, are a series of known delays,
the uncertain multiple delay differential equation (2.1) has a forward Euler difference format

Xti+1 = Xl‘,‘ + f(ti’ Xti’ Xt,'—‘l'] ) Xt,‘—‘rz, ) Xt,'—T,l;/l)(ti+l - tl) + g(tia Xt," Xti—Tl s Xt,'—Tza R Xt,-—Tn;ﬂ)(CHl - Cl)

The above formula can also be written
X = Xti — [0, X6, Xi—r), Xirys o+ s Xier s (i — 1) _Ciy =G
g(t’ Xt9 Xt—‘r1 ’ Xt——TZ’ ) Xt—Tn;ﬂ)(ti+1 - tl) tiv1 — 1 '

Based on the definition of the Liu process [27], we have

C..—C:
il 7 i N, 1).
liv1 — 1
So
Xti+1 - Xtt - f(tia Xt’ Xt—‘rl ’ Xt—Tza R Xt—Tn;/l)(ti+l - tl)
g(t’ Xh Xt—‘rl s X[——TQ’ R Xt—‘r,, 5 ,u)(ti+l - tl)

At points ¢, 1, - ,t, with observed data x;, x,,,--,x;, where t;,; —t;, = 7,i = 1,2,--- ,n -1,
where 7; is able to make 7,72, , T, and produces recursion. Replacing X, with the observed value
X, let

~ N(O, 1). (2.2)

- X — [, xy, Xi—t1s Xt=195 """ » Xy (L1 — 1)

8(t, Xty Xi—gys Xirys*** s X3 l)(Hig1 — 1)
which can be seen as a function of the argument u, i = 1,2,--- ,n — 1. From equation (2.2), we can
think of h;(u) as a sample from the standard normal uncertainty distribution. More importantly, the
sample moment can be seen as the overall moment, and we obtain the k-order moment.

Xi,,
hip) = = : 2.3)

1 n—1
— D) k=12, (2.4)
i=2

And k moments
k
352 =2)|Bul k=1,2,--- (2.5)

Journal of Industrial and Management Optimization Volume 22, Issue 1, 238-255.



241

where By, is the number of Bernoulli. So, we have

5 g(h,.m))k =322 -2) Bl k=1,2,--- K, (2.6)
where K is the dimension of the parameter u.
Example 2.1. Assume the uncertain multiple delay differential equation
dX; = (i Xi—01 + 2 Xi-02)dt + 3 X;-03X,dC,, (2.7)
According to equation (2.3), we have

hiu) = hi(u) = Xiy — Xy — (W1 Xy—0.1 + M2Xy—02) * (Tiv1 — ;)

(2.8)
H3X1 X-03(tis1 — 1)
The observation data for Example 2.1 are shown in Table 1.
Table 1. Observed data of Example 2.1.
i 1 2 3 4 5 6 7 8
t# 01 02 03 04 05 06 0.7 0.8
x, 06 07 08 13 15 14 19 21
i 9 10 11 12 13 14 15 16
t 09 10 1.1 12 13 14 15 1.6
x, 22 1.7 21 24 26 25 28 27
The values u;, (,, and 7 are estimated from equation (2.4) by using the following equations.
1 O (X1 — X, — (U1 X0 + HoXi-02) * (i1 — 1) _0
12 & M3 X, X-03(fiv1 — 1)
1 125 Xy, = X, — (X0 + H2X,—02) * (fie1 — 1)\ _ 1 (2.9)
12 4~ H3Xy Xy-03(fis1 — 1)
1 > Xpy — X, — (W1 Xg—0.1 + M2Xy—02) * (L1 — 1) : ~ 0
12 ~ H3XyXy,—03(tis1 — 1;) '
Using MATLAB to calculate the equations (2.9), we have
i = 1.8166, 1, = —1.0041, fi5 = 0.3798.
Therefore, the uncertain multiple delay differential equation (2.7) is
dX, = (1.8166X,_o; — 1.0041X,_¢,) dt + 0.3798X,_3 * X,dC,. (2.10)

As shown in Figure 1, we find that the data in Table 1 lies between 0.999-path and 0.001-path, so
[, fi, and f13 are acceptable. In addition, Figure 2 shows X at different times ¢ and .
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Figure 1. X", X099 and observed data.
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Figure 2. X' of uncertain multiple-delay differential equation (2.10).

3. Moment estimation method for uncertain multiple delay differential equations with
unknown delays

Uncertain multiple delay differential equation
dXt = f(t’ Xt’ Xt—Tl’Xt—TZ’ e ’Xt—‘rn;,u)dt + g(t’ Xt’ Xt—Tl,Xt—Tza T ,Xt—-rn;,u)dct, (31)
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where u is the parameter vector of a position, C; is the Liu process, 7y, 72, - - - T, stand for a series of
known delays. The uncertain multiple-delay differential equation (3.1) has a forward Euler difference
scheme.

Xt,url = Xt,- + f(th ti Xti—Tl ’ Xt,-—Tp ) Xl‘,——‘r,,;/-l)(ti+l - tt) + f(ti9 Xt,-’ Xti—Tl ’ Xt,-—Tp Tt Xt,-—Tn;/J)(CHl - Cl)

Expand X,,_., at the event point ¢,

dX;
X, =X, —1—— +o(1), (3.2)
dr
we get an approximation
dXx,
X 2 X, —T—. 3.3
-7 t 1 dl ( )
Therefore
Xt,-+1 - Xt; Xt1+1 - Xt,- Xz,-+1 - Xti Xt,-+1 - Xt;
- . %f ti’leXt,'_T]—’Xt,' — Ty 7Xt,'_Tm—;
liv1 — 4 Liv1 — 1 liv1 — & Liv1 — 4
X1 — X X1 — X, X1 — X, C,. -C,
+g(ti’Xti’Xti _TIM’XG _TZMa“' ,Xt,- —Tm Al [l; il t"
liv1 — 1 Liv1 — 1 Liv1 — 1 liv1 — 4

Based on the definition of the Liu process [27], we have

Ci+l - Ci
—— ~ N, 1).
liy1 — 4
Therefore
X, X, X, X, X,., X, Xo,, ~Xy; |
tH _t.l - f(ti’Xti,Xt,- - T tl.+ s : ’Xl‘i -2 ;.+ 1 . ) ,Xt,- Tm ;_+ . : ,IJ)
+17k +17k i+17L +17k "‘-’NO 1) (3 4)
X.. X X’i+I_X’i X Xfi+1_Xfi X ligl — 2 ( ’ ' )
g(ti’ o At T T T A T PREE A R R )

At time points #;, f, - - - , 1, with observed data x,,, x,,,- - ,x,, where t;,, —t, =7,i=1,2,--- ,n—1,
7; 1s able to make 7y, 75, --- , T, produce recursion. Replace X, with the observed value x,, let

Xtjp) ~ X Xtjp) ~X Xtjp) ~X Mip1—;
P f tia xt[, -xl,' - T toi—1 ° -xl,' -T2 PPV xl,‘ —Tm 1 Ny !
h (Il) _ +17h +17h +17h i+1 (3 5)
pi N b X X T Xtjp1 ~ Xt X T Xtjp1 ~ Xt X T Xt =X, ’ ’
8 \li> Xy Xy U= 2 M 27—t 2 M m ti—t;

which can be seen as a function of the parameter u, i = 1,2,--- ,n— 1, we can think of ip; as a sample
from the standard normal inverse uncertainty distribution. More importantly, the sample moment can
be seen as the overall moment, and we obtain the k-order moment.

1 n—1 )
n_QZZUzpiou)) k=12, (3.6)
And k moments .
37(2"—2)|Bk|,k: 1,2,--- K. (3.7)
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So
1
n-2

n—1
D (hp; ()t =37 (25 = 2) B, (3.8)
i=2

where k is the dimension of the parameter u.

Example 3.1. Assume an uncertain multiple delay differential equation
Xm = (a]Xt_T] + CIQX,_TZ) dl + (a3Xt + a4Xt_T3) dC[, (3.9)
The observation data of Example 3.1 are shown in Table 2.

Table 2. Observed data of Example 3.1.

i 1 2 3 4 5 6 7 8

t# 01 03 04 07 10 11 13 14
x, 058 062 076 0.82 097 1.03 132 147
i 9 10 11 12 13 14 15 16
t 154 1.69 1.75 1.81 196 212 227 230
X, 294 299 305 3.11 3.16 322 327 3.30

According to equation 2.6, the estimates aj, a,,as,as, 71, T, and 73 are solved by the following
system of equations.

1 Xijpy — X Xi —Xt;
1 (=, = (@1 (3, = 132 + a4 (3, — 122 )) (e — 1)
_ Z i+17k +174 — 0
Xijpy — X
15 (6133%,» +ay (Xz,- — T3 t;l—_,l)) (fiv1 — 1)
_ - 2
Xt — Xy Xipy —X4;
1 & (X, — X, — (Cll (xz,- -t _,.l) +ar (xt,- T )) * (fiy1 — 1)
_ i+17k +17k — 1 (3 10)
Xt — X :
15 4 (a3xz,- +ay (xz,- - T3 ﬁ)) (fiv1 — 1)
_ - 3
1 Xijpy — X Xijy |~y
1~ [ Xy — X, — (a1 (xz,. - T ) +a, (xz,- — Tyt ) * (ti — 1)
_ Z tiv1 =1t tiv1 =1 _ O
Xegy )~y -
15 i=1 (a3xt,~ +ay (xz,v — T3 —tl[:l_,il )) (tiv1 — 1)

Using MATLAB to calculate the equations (3.10), we have
a, = 0.2451,a, = 0.2451,a3 = 0.9951, a4 = 0.9472, 7, = 1.6257,7, = 1.6257, 73 = 0.6337.
Therefore, the uncertain multiple delay differential equation (3.1) is
dX; = (0.2451X,_1 6257 + 0.2451X,_1 6257) dt + (0.9951X, + 0.9472X,_6337) dC,. (3.11)

As the Figure 3 of Example 3.1, we find that the data in Table 2 is located in 0.1-path and 0.9-path.
So ({11, ft) and T are acceptable, and in addition, X{ at different times ¢ and « are given in Figure 4.
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Figure 3. X!, X*?and observed data.

5000

Figure 4. X! of uncertain multiple delay differential equation (3.11).

4. Residual-based method of moment estimation

When the time interval of the observed data is particularly large, the parameters estimated by the
above moment estimation method are not very good. In order to overcome this shortcoming, this
section first introduces the concept of residual, and then uses residual estimation to generate parameters
from uncertain multiple delay differential equations. Consider the uncertain multiple delay differential
equation (2.1). Suppose that x,,, x,, - - - , x,, 18 the observed data of the uncertain process X, in the time
interval t,1,,--- ,t,. For any given index i (2 < i < n), we solve the following updated uncertain
multiple delay differential equations.
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Xm‘ = f(ta Xt’ Xl‘—‘l’p ot ’Xt—Tn)dl + 8 (ta Xl" Xt—‘l’la et ’Xt—‘r,,dt) dCl
XIH = Xt
Xfi—l—Tl = X1

4.1)

Xfi—z -11 = X1y

Xli—n -1 = Xty

where x,,_, is the new initial value at the time point #;_;, the uncertainty distribution of the uncertain
variable X, is expressed as @,, and for any x (0 < x < 1), we have

M@, (X,) < x} = M{X, <0, (0)} = 0, (@, () = x.
Therefore, @, is a linear uncertain variable whose distribution function is

0,x<0
F(x)=<x,0<x<1 4.2)
1,x>1

Using the observation x,, instead of X,, , we have

8i = ®l‘,'(xl‘,‘) (4'3)
Therefore, &; is a sample of the linear uncertain variable @, (X,,).

Definition 4.1. For any index i(2 < i < n), &; in the formula (4.3) is called the i th residual of the

uncertain multiple delay differential equation (2.1).

The uncertain multiple delay differential equation (2.1) generally has no analytical solution, so
we propose a numerical method to calculate the residual of the uncertain multiple delay differential
equation (2.1). Firstly, the difference form of the uncertain multiple delay differential equation (2.1) is
obtained by Euler.

Xy =X, + [, X s X e 5 Xy s G — 1) + 81, Xy X ey X —2s (G — Cisy)
4.4)
approximate X, ; as

TA
_ J
Xirmry = Kooy = 77— ey = X,
1— —

For more convenience, let

Tj
U] = Xti—l - —(-xti,l - xti72)$
liit —tio
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where j = 1,2,--- ,m. So the difference formula (4.4) becomes

Xy =X, + i, X, U, Uy - S U i) (8 — £i21) + (61, X, Un, Uny -+ Uy )(Cy = Ciny),

replace X;,_,, X, , with the observation data x,_,, x,_,, and make

T.
_ J
Vj el i — ('xti—l - xfifz) >
tio1—tio

we have

Xl,‘ = Xl,'_l + f(ti—]’Xl‘,'_p V]’ VZa T Vm;/’t)(tl - ti—l) + g(ti—]’Xl‘i_17 V]a V27 R Vm;/’t)(cl - Ci—])'
Define

e :Xl‘,',l + f(ti—l’Xl‘,',l’ V15 V27 ) Vm7l~l)(tl - ti—l)’

0 =8(tic1, Xo s Vi, Vo, oo, Vi i) (8 = £icy).

It can be seen that X, follows a normal distribution with mean e; and standard deviation o, then

-1
(e — x;)
g~ |1+exp (—)) . 4.5)
( \/§0' i
For any given parameter ¢ and n observation data x,,, x,, - - - , X,,, we can get the following residual

of n — 2 uncertain multiple delay differential equation 2.1,
€1,&2, " , Ep-2.
For any given positive integer k, the k-order sample moment of the linear uncertainty distribution is

n-2

1
— ;sﬁ‘(m.

And the k-order global moment of the linear uncertainty distribution is

1
k+1
Assuming that the sample moments of order k and the population moments of order k are equal, we
have

1

n-—1

n-2
1
k)= ——,k=1,2,--- , p. 4.6
;gl(ﬂ) k+1’ ’ P (4.6)

Solve the equation (4.6) to obtain the positional parameter y. Here, p means that p parameters need
to be estimated.
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Example 4.1. Consider the uncertain multiple delay differential equation
dXt = (Cllxt_ﬂ + ath_Tz) dt + (a3X[t - T3) dCt, (4.7)
The observation data of Example 4.1 are shown in Table 3.

Table 3. Observed data of Example 4.1.

i 1 2 3 4 5 6 7 8
# 02 05 08 11 14 17 20 23
x, 037 053 0.65 0.71 0.87 1.13 123 134
i 9 10 11 12 13 14 15 16
26 29 32 35 38 41 44 47
x, 147 155 1.67 176 1.87 192 212 230

The estimates of ay, a», as, 71, 7, and 73 from equation (4.6) are obtained from the following system
of equations,

=~ ==
M= 1P
o, o
= =
N N
[
W= N =

= -

||'M;
wa
=
N
=

1 4.8)
1 4 1
13 2,00 =5
1 & . 1
13 2 =g
1 &
_— 6 = —
14 ; &) =3
Using MATLAB to calculate the equations (4.8) we have
7, =0.0171,7, = 0.0038, 73 = 0.0001,a, = 0.5785,a, = —0.1812,a; = 0.3769.
Therefore, the uncertain multiple delay differential equation (4.7) is
dXt = (0.5785X1_0.0171 + 0.1812Xt_0.0038) dr + 0.3769X,_0.0001dC,. (49)

According to the formula (4.5), we can obtain the residual plot of the uncertain multiple delay
differential equation (4.9) as shown in Figure 5.
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Figure 5. Picture of residuals for uncertain multiple delay differential equation (4.9).

According to the hypothesis testing method proposed by Ye and Liu [28] , in order to determine
whether the uncertain multiple delay differential equation 4.9 is suitable for the observed data in Table
3, we should test whether the residual data in Table 4 is from the linear uncertainty distribution.

Table 4. Table of residuals of uncertain multiple delay differential equations (4.9).

i 1 2 3 4 5 6 7
g 0.8538 0.4004 0.8475 0.9483 0.3874 0.3857 0.4149
i 8 9 10 11 12 13 14

g 02639 03402 0.2618 0.2887 0.1863 0.4410 0.3691

Test whether the residual in Table 4 satisfies

W =A{(z1,22," -+ ,210) : At least one indicator (1 <i < 14) must be z; < 0.0251 or z; > 0.975}

by setting the signal level @ = 0.05, @ X 14 = 0.7. According to the residual data in Table 4, we have
(e1,&2, -+ ,&14) € W. Therefore, the uncertain multiple-delay Logistic model 4.9 is consistent with the
observed data.

5. Uncertain multiple delay Logistic model

In characterizing the Australian fly population, Litching [4] pointed out in 1977 that the life cycle of
Australian flies is characterized by multiple delays. Based on this observation, Braddock and Driessche
[5] proposed two delayed Logistic models in 1983.

d
% =rp(1 —a\prr, — 2P1-1,)
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where r, ay, a,, 71 and 1, are normal numbers, considering the effect of environmental fluctuations on
the system, if we characterize with the Wiener process under probability theory, dp,/dt = W,, therefore,
replacing r with r + oW,, we have

dp,/dt = (r+0'W,)p,(1 — a1 Pi—r, — Q2Pi—1,) - (5.1

The unreasonableness of the uncertain multiple delay Logistis model (5.1) will be proved below.
First of all, from the definition of the Wiener process, we know the expected value and variance of W;
are 0 and dlt, respectively, which is

1
w,~ N[0, —].
g

By means of the stochastic multiple delayed Logistic model (5.1), we have

dp;
(pt (1 — a1 Pt — Clzp,_Tz)) dz

. 1
=r+oW,~N|roc*—].
r+ oW, (rO' dt)

For any given normal number M as dr goes to 0, we have

P > M)

dp; ) ( dp )}
=Pr >M <-M
{((pt(l — a1 Pt _a2pl—7’2))dl U (pt(l — a1 P, _a2pt—‘r2))dt

dp,
(pt (1 —a1Pr-r; — a2pt—‘rz)) dr

:Pr{ dp ZM}+Pr{ dp: s—M}
(p: (1 = a1pi—r, — ar2pi—r,)) dt (p: (1 = a1pi—r, — @2p1,)) dt
dp; dp:
—r —r
— PI' (Pt(l—alpt—rl —azpz-rz))dl > M r \/E + Pr ([’1(1—a1[’1—11—a2171—72)dl < _M +r \/E

o/ Vdr o o/ Vdr o
:1—®(E@)+®(—M”@)—>1,

g g

where O (-) represents a random normal distribution, it also means

Pr{ ZM}:I,

That is, at least one of the terms in dp,/dt and 1/(p/(1 — a;p,—, — axp,—+,)) 1s positive infinity.
However, K is a normal number that does not exceed the limit of the resource, that is, at any time ¢,
p: < K,s01/(p(1—=a,pi—, —azp;—-,)) 1s bounded. So dp,/dt is +oo . In other words, the instantaneous
increase rate of population dp,/dt is positive infinity, and it is impossible to reach positive infinity
according to a finite population. Therefore, the stochastic multiple delayed Logistic model (5.1) is not
reasonable.

dp,
(pt (1 — A1 Pr-1; — azpt—‘rz)) dr
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We can take dC,/dt to represent the noise term, and the uncertain multiple-delay logistic model is

% =rp (1 —a\pir, — @2pi—r,) + opi (1 — @1 pr—r, — @2p1-1,) 9
t dr

Where C, represents the Liu process, according to the definition of the Liu process, the expected
value and variance of dC,/dr are 0 and 1, respectively. Therefore, there is a limit to the instantaneous
growth rate of population size that we can obtain. In other words, the theory satisfies the practical
situation. The data in Table 5 comes from the data in Table I in [29], which shows the continuous
development of American society and economy and the characteristics of multiple delays in female
childbearing age. Fan [29] use differential equation with two delays to describe the population
dynamics of the United States from 1900 to 2010. When we consider the effect of “noise” on
population dynamics in the United States, it can be characterized by a Logistic model 5.2 with

uncertain multiple delays.

(5.2)

Table S. The number of American population (Unit:Billion).

i 1 2 3 4 5 6 7 8 9 10 11 12
t; 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
x, 076 092 1.06 123 132 151 179 203 227 249 281 3.09

For a Logistic model (5.2) with uncertain multiple delays, we have parameters r, €,a; and a, to
estimate.

1 & 1
IS, 1
101,;‘91(”) 2

1 & 1
1IN 2yt
10 ZA‘S =3
’1‘0 (5.3)
1 \ 1
1925w =3

1 & 1
_ 4 i
101_;8'(”) 5

Using MATLAB to calculate the equations (5.3), we have

a; = 0.0129,a, = 0.0668, 7, = 0.22,7, = 0.127.7 = 0.1516, 6, = 0.0029.

Therefore, based on US population data, the uncertain multiple delayed Logistic model (5.2) is

dp, = 01516p[ (1 - 0.0129]),_0‘22 — 0.0668]),_0,127) dt+00029p, (1 - 0.0129p,_0.22 - 0.0668[9,_0,127) dCt
(5.4)
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1 2 3 4 5 6 7 8 9 10
1

Figure 6. The residual plot for uncertain multiple delay Logistic model (5.4).

According to formula (4.5), we can obtain the residual graph of the uncertain multiple delay Logistic
model (5.4) as shown in Figure 6.

Based on the hypothesis testing method proposed by Ye and Liu [28], in order to determine whether
the uncertain multiple delay differential equation (5.4) is suitable for the observed data, we should test
whether the residual in Table 6 is from the linear uncertainty distribution.

Table 6. The residual table for uncertain multiple delay Logistic model (5.4).

i 1 2 3 4 5
g 02626 0.3837 0.0260 0.3539 0.8399
i 6 7 8 9 10

g 05186 0.4853 0.3626 0.9183 0.8824

Set the signal level @ = 0.05,0.05 x 10 = 0.5, that is, test whether the residual data is satisfied.

W ={(z1,22, - ,210) : At least one indicator z;(1 < i < 10) must be z; < 0.0251 or z; > 0.975}

According to the residual data in Table 6, we have (g1, &,,- - ,&19) € W. Therefore, the uncertain
multiple-delay Logistic model (5.4) is consistent with the observed data. On the other hand, if it is
uncertain that the Liu process C, in the multiple-delay Logistic model (5.4) is replaced by the Wiener
process, we can obtain a stochastic multiple-delay Logistic model.

dp, = 01516pt (1 - 0.0129pt_0.22 — 0.0668[),_0‘127) dt+00029p, (1 — 0.0129p,_o.22 - 0.0668]),_0.127) th
(5.5)
Select t = 1910, A = 10™*, we have

Pr{Xi910+a: < X910} = 49.93%.
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This means that the population of the United States will decline with a probability of 49.93%. In
real terms, however, the population of the United States is increasing. Therefore, the random multiple
delayed Logistic model (5.5) is not reasonable.

6. Conclusion

In order to apply the uncertain multiple delay differential equation to describe the dynamic systems
in our world, this paper presented the method of moment estimation to estimate the parameters of
uncertain multiple delay differential equations with known and unknown delays. Some numerical
examples were discussed to confirm the effectiveness of the above method. When the time intervals
of data are relatively large, the above method was invalid, the method of moment estimation based on
residuals was provided to estimate the parameters of uncertain multiple delay differential equations.
The numerical example was given to confirm the effectiveness of the above method by hypothesis
testing. Meanwhile, the paradox of stochastic multiple delay Logistic model was proved, an uncertain
multiple delay Logistic model was defined and applied to describe the population dynamics of the
United States.
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