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Abstract: Uncertain multiple-delay differential equations (UMDDEs) driven by Liu process are
critical for modeling systems with multiple-delay interactions and environmental noise. This paper
proposes the method of moment estimation to estimate the parameters for UMDDEs with known or
unknown delays. When the time interval of the observed data is particularly large, the parameters
estimated by the above moment estimation are not very good. In order to overcome this shortcoming,
the concept of residuals is introduced, and then we use the method of residual estimation to estimate
the parameters for UMDDEs. Moreover, some numerical validations are investigated to show the
effectiveness of the above methods for UMDDEs. Besides, the paradox of the stochastic multiple
delay Logistic model is proved. Therefore, an uncertain multiple delay Logistic model is defined and
applied to describe the dynamics of U.S. population dynamics.
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1. Introduction

Delay differential equations have been applied to numerous systems, such as ecosystems [1],
mechanical automatic control systems [2], and chemical kinetics [3]. In 1977, Litching [4] discovered
that the life cycle of Australian flies exhibits multiple delay characteristics. Subsequently, Braddock
and Driessche [5] proposed a differential equation with two delay times. Furthermore, differential
equations with two or more delay times are referred to as multiple delay differential equations, which
have been used to describe iterative learning control systems [6], antigen T-cell immune systems [7],
and epidemiological models [8].

In reality, systems are always subject to “noise”. If the “noise” is modeled using the Wiener process
within the framework of probability theory, delay differential equations and multiple delay differential
equations with the Wiener process are called stochastic delay differential equations and stochastic
multiple delay differential equations, respectively. The applications of stochastic delay differential

https://www.aimspress.com/journal/jimo
https://dx.doi.org/10.3934/jimo.2026009


239

equations are extensive. For example, Yang et al. [9] used stochastic delay differential equations to
model stock prices in financial markets, Ali and Khan [10] employed them to describe the spread of
infectious diseases, and Jin et al. [11] applied them to model chemical reaction processes. Similarly,
stochastic multiple delay differential equations have broad applications. For instance, Frank [12] used
them to characterize stock price fluctuations in financial markets, Klamka [13] applied them to energy
control systems, and Hu et al. [14] utilized them in ecological systems. Moreover, differential equations
involving fuzzy sets [15–18] were investigated by many scholars.

When the distribution and frequency are not close, the Wiener process cannot be used to model
“noise”. However, we can employ the Liu process from uncertainty theory, which is constructed
based on the belief of experts or experienced individuals, to represent “noise”. Introducing the Liu
process into delay differential equations results in uncertain delay differential equations. In 2010,
Barbacioru [19] proposed uncertain delay differential equations to model stock price fluctuations and
proved the local existence and uniqueness theorem for a special class of uncertain delay differential
equations. In 2012, Ge and Zhu [20] demonstrated the local existence and uniqueness theorem for
general uncertain delay differential equations. In 2019, Wang and Ning [21] established the global
existence and uniqueness theorem for general uncertain delay differential equations. Additionally,
Wang and Ning [22] introduced measure stability, mean stability, and p-th moment stability for
uncertain delay differential equations, providing sufficient conditions for each. Wang and Ning [23]
also proposed almost sure stability for uncertain delay differential equations and derived sufficient
conditions for its validity. Jia and Sheng [24] presented distribution stability for uncertain delay
differential equations and provided sufficient conditions for its establishment.

Uncertain multiple-delay differential equations (UMDDEs) have emerged as a critical framework
for modeling complex dynamical systems with inherent time delays and environmental noise, which
extend traditional delay differential equations by incorporating multiple discrete delays and
uncertainties governed by the Liu process, formally expressed as:

dXt = f (t, Xt, Xt−τ1 , . . . , Xt−τm; µ)dt + g(t, Xt, Xt−τ1 , . . . , Xt−τm; µ)dCt,

where τ1, τ2, . . . , τm represents delays, µ is an unknown parameter vector, and Ct denotes the Liu
process. At present, Gao and Tang [25] have proved the existence and uniqueness theorem for the
solution of UMDDEs, and the stability in measure for UMDDEs was proposed, then two sufficient
theorems for UMDDEs being stable in measure were presented. Moreover, Gao et al. [26] proposed
the definition of stability in mean for UMDDEs, and two sufficient theorems for UMDDEs to be
stable in measure were presented. In order to apply the UMDDEs to describe some dynamic systems,
the method of parameter estimation for UMDDEs is investigated in this paper. Meanwhile, the
contribution of this paper are given as below.

• Moment estimation method for uncertain multiple delay differential equations with known delays
is proposed.
• Moment estimation method for uncertain multiple delay differential equations with unknown

delays is provided.
• Residual method for uncertain multiple delay differential equations with unknown delays is given.
• The paradox of stochastic multiple delay Logistic model is proved.

The paper is structured as follows. Section 2 introduces the method of moment estimation for
uncertain multiple delay differential equations with known delays. Section 3 gives the method of

Journal of Industrial and Management Optimization Volume 22, Issue 1, 238–255.



240

moment estimation for uncertain multiple delay differential equations with unknown delays. Section
4 provides the method of residual estimation for uncertain multiple delay differential equations with
delays. Section 5 proves the paradox of the stochastic multiple-delay Logistic model and defines the
uncertain multiple-delay Logistic model to describe the dynamics of the United States. Finally, Section
6 synthesizes contributions.

2. Moment estimation method for uncertain multiple delay differential equations with known
delays

The uncertain multiple delay differential equation is

dXt = f (t, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)dt + g(t, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)dCt (2.1)

where is an unknown parameter vector, Ct is a Liu process, τ1, τ2...τm are a series of known delays,
the uncertain multiple delay differential equation (2.1) has a forward Euler difference format

Xti+1 = Xti + f (ti, Xti , Xti−τ1 , Xti−τ2 , · · · , Xti−τn; µ)(ti+1 − ti) + g(ti, Xti , Xti−τ1 , Xti−τ2 , · · · , Xti−τn; µ)(Ci+1 −Ci).

The above formula can also be written

Xti+1 − Xti − f (ti, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)(ti+1 − ti)
g(t, Xt, Xt−τ1 , Xt−−τ2 , · · · , Xt−τn; µ)(ti+1 − ti)

=
Ci+1 −Ci

ti+1 − ti
.

Based on the definition of the Liu process [27], we have

Ci+1 −Ci

ti+1 − ti
∼ N(0, 1).

So
Xti+1 − Xti − f (ti, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)(ti+1 − ti)

g(t, Xt, Xt−τ1 , Xt−−τ2 , · · · , Xt−τn; µ)(ti+1 − ti)
∼ N(0, 1). (2.2)

At points t1, t2, · · · , tn with observed data xt1 , xt2 , · · · , xtn , where ti+1 − ti = τ, i = 1, 2, · · · , n − 1,
where τi is able to make τ1, τ2, · · · , τn and produces recursion. Replacing Xti with the observed value
xti , let

hi(µ) =
xti+1 − xti − f (ti, xt, xt−τ1 , xt−τ2 , · · · , xt; µ)(ti+1 − ti)

g(t, xt, xt−τ1 , xt−τ2 , · · · , xt; µ)(ti+1 − ti)
, (2.3)

which can be seen as a function of the argument µ, i = 1, 2, · · · , n − 1. From equation (2.2), we can
think of hi(µ) as a sample from the standard normal uncertainty distribution. More importantly, the
sample moment can be seen as the overall moment, and we obtain the k-order moment.

1
n − 2

n−1∑
i=2

(hi(µ))k, k = 1, 2, · · · (2.4)

And k moments
3

k
2 (2k − 2) |Bk| , k = 1, 2, · · · (2.5)
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where Bk is the number of Bernoulli. So, we have

1
n − 2

n−1∑
i=2

(hi(µ))k = 3
k
2 (2k − 2) |Bk| , k = 1, 2, · · · ,K, (2.6)

where K is the dimension of the parameter µ.

Example 2.1. Assume the uncertain multiple delay differential equation

dXt = (µ1Xt−0.1 + µ2Xt−0.2)dt + µ3Xt−0.3XtdCt, (2.7)

According to equation (2.3), we have

hi(µ) = hi(µ) =
xti+1 − xti − (µ1xti−0.1 + µ2xti−0.2) ∗ (ti+1 − ti)

µ3xti xti−0.3(ti+1 − ti)
(2.8)

The observation data for Example 2.1 are shown in Table 1.

Table 1. Observed data of Example 2.1.

i 1 2 3 4 5 6 7 8
ti 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
xti 0.6 0.7 0.8 1.3 1.5 1.4 1.9 2.1
i 9 10 11 12 13 14 15 16
ti 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
xti 2.2 1.7 2.1 2.4 2.6 2.5 2.8 2.7

The values µ1, µ2, and τ are estimated from equation (2.4) by using the following equations.



1
12

15∑
i=4

(
xti+1 − xti − (µ1xti−0.1 + µ2xti−0.2) ∗ (ti+1 − ti)

µ3xti xti−0.3(ti+1 − ti)

)
= 0

1
12

15∑
i=4

(
xti+1 − xti − (µ1xti−0.1 + µ2xti−0.2) ∗ (ti+1 − ti)

µ3xti xti−0.3(ti+1 − ti)

)2

= 1

1
12

15∑
i=4

(
xti+1 − xti − (µ1xti−0.1 + µ2xti−0.2) ∗ (ti+1 − ti)

µ3xti xti−0.3(ti+1 − ti)

)3

= 0.

(2.9)

Using MATLAB to calculate the equations (2.9), we have

µ̂1 = 1.8166, µ̂2 = −1.0041, µ̂3 = 0.3798.

Therefore, the uncertain multiple delay differential equation (2.7) is

dXt = (1.8166Xt−0.1 − 1.0041Xt−0.2) dt + 0.3798Xt−0.3 ∗ XtdCt. (2.10)

As shown in Figure 1, we find that the data in Table 1 lies between 0.999-path and 0.001-path, so
µ̂1, µ̂2, and µ̂3 are acceptable. In addition, Figure 2 shows Xαt at different times t and α.
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Figure 2. Xαt of uncertain multiple-delay differential equation (2.10).

3. Moment estimation method for uncertain multiple delay differential equations with
unknown delays

Uncertain multiple delay differential equation

dXt = f (t, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)dt + g(t, Xt, Xt−τ1 , Xt−τ2 , · · · , Xt−τn; µ)dCt, (3.1)

Journal of Industrial and Management Optimization Volume 22, Issue 1, 238–255.



243

where µ is the parameter vector of a position, Ct is the Liu process, τ1, τ2, · · · τn stand for a series of
known delays. The uncertain multiple-delay differential equation (3.1) has a forward Euler difference
scheme.

Xti+1 = Xti + f (ti, Xti , Xti−τ1 , Xti−τ2 , · · · , Xti−τn; µ)(ti+1 − ti) + f (ti, Xti , Xti−τ1 , Xti−τ2 , · · · , Xti−τn; µ)(Ci+1 −Ci).

Expand Xti−τi at the event point t,

Xt−τi = Xt − τi
dXt

dt
+ o (τi) , (3.2)

we get an approximation

Xt−τi ≈ Xt − τi
dXt

dt
. (3.3)

Therefore

Xti+1 − Xti

ti+1 − ti
≈ f

(
ti, Xti , Xti − τ1

Xti+1 − Xti

ti+1 − ti
, Xti − τ2

Xti+1 − Xti

ti+1 − ti
, · · · , Xti − τm

Xti+1 − Xti

ti+1 − ti
; µ

)
+ g

(
ti, Xti , Xti − τ1

Xti+1 − Xti

ti+1 − ti
, Xti − τ2

Xti+1 − Xti

ti+1 − ti
, · · · , Xti − τm

Xti+1 − Xti

ti+1 − ti
; µ

)
Cti+1 −Cti

ti+1 − ti
.

Based on the definition of the Liu process [27], we have

Ci+1 −Ci

ti+1 − ti
∼ N(0, 1).

Therefore

Xti+1−Xti
ti+1−ti

− f
(
ti, Xti , Xti − τ1

Xti+1−Xti
ti+1−ti

, Xti − τ2
Xti+1−Xti

ti+1−ti
, . . . , Xti − τm

Xti+1−Xti
ti+1−ti

;µ
)

g
(
ti, Xti , Xti − τ1

Xti+1−Xti
ti+1−ti

, Xti − τ2
Xti+1−Xti

ti+1−ti
, . . . , Xti − τm

Xti+1−Xti
ti+1−ti

;µ
) ∼ N(0, 1). (3.4)

At time points ti, t2, · · · , tn with observed data xt1 , xt2 , · · · , xtn , where ti+1 − ti = τ, i = 1, 2, · · · , n − 1,
τi is able to make τ1, τ2, · · · , τn produce recursion. Replace Xti with the observed value xti , let

hpi(µ) =

xti+1−xti
ti+1−ti

− f
(
ti, xti , xti − τ1

xti+1−xti
ti+1−ti

, xti − τ2
xti+1−xti
ti+1−ti

, . . . , xti − τm
xti+1−xti

ti+1
;µ

)
g
(
ti, xti , xti − τ1

xti+1−xti
ti+1−ti

, xti − τ2
xti+1−xti
ti+1−ti

, . . . , xti − τm
xti+1−xti
ti+1−ti

;µ
) , (3.5)

which can be seen as a function of the parameter µ, i = 1, 2, · · · , n− 1, we can think of hpi as a sample
from the standard normal inverse uncertainty distribution. More importantly, the sample moment can
be seen as the overall moment, and we obtain the k-order moment.

1
n − 2

n−1∑
i=2

(hpi (µ))k , k = 1, 2, · · · (3.6)

And k moments
3

k
2
(
2k − 2

)
|Bk| , k = 1, 2, · · · ,K. (3.7)
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So
1

n − 2

n−1∑
i=2

(hpi (µ))k = 3
k
2
(
2k − 2

)
|Bk| , (3.8)

where k is the dimension of the parameter µ.

Example 3.1. Assume an uncertain multiple delay differential equation

dXt =
(
a1Xt−τ1 + a2Xt−τ2

)
dt +

(
a3Xt + a4Xt−τ3

)
dCt, (3.9)

The observation data of Example 3.1 are shown in Table 2.

Table 2. Observed data of Example 3.1.

i 1 2 3 4 5 6 7 8
ti 0.1 0.3 0.4 0.7 1.0 1.1 1.3 1.4
xti 0.58 0.62 0.76 0.82 0.97 1.03 1.32 1.47
i 9 10 11 12 13 14 15 16
ti 1.54 1.69 1.75 1.81 1.96 2.12 2.27 2.30
xti 2.94 2.99 3.05 3.11 3.16 3.22 3.27 3.30

According to equation 2.6, the estimates a1, a2, a3, a4, τ1, τ2 and τ3 are solved by the following
system of equations.



1
15

15∑
i=1

 xti+1 − xti −
(
a1

(
xti − τ1

xti+1−xti
ti+1−ti

)
+ a2

(
xti − τ2

xti+1−xti
ti+1−ti

))
∗ (ti+1 − ti)(

a3xti + a4

(
xti − τ3

xti+1−xti
ti+1−ti

))
(ti+1 − ti)

 = 0

1
15

15∑
i=1

 xti+1 − xti −
(
a1

(
xti − τ1

xti+1−xti
ti+1−ti

)
+ a2

(
xti − τ2

xti+1−xti
ti+1−ti

))
∗ (ti+1 − ti)(

a3xti + a4

(
xti − τ3

xti+1−xti
ti+1−ti

))
(ti+1 − ti)


2

= 1

1
15

15∑
i=1

 xti+1 − xti −
(
a1

(
xti − τ1

xti+1−xti
ti+1−ti

)
+ a2

(
xti − τ2

xti+1−xti
ti+1−ti

))
∗ (ti+1 − ti)(

a3xti + a4

(
xti − τ3

xti+1−xti
ti+1−ti

))
(ti+1 − ti)


3

= 0.

(3.10)

Using MATLAB to calculate the equations (3.10), we have

â1 = 0.2451, â2 = 0.2451, â3 = 0.9951, â4 = 0.9472, τ̂1 = 1.6257, τ̂2 = 1.6257, τ̂3 = 0.6337.

Therefore, the uncertain multiple delay differential equation (3.1) is

dXt = (0.2451Xt−1.6257 + 0.2451Xt−1.6257) dt + (0.9951Xt + 0.9472Xt−0.6337) dCt. (3.11)

As the Figure 3 of Example 3.1, we find that the data in Table 2 is located in 0.1-path and 0.9-path.
So (µ̂1, µ̂2) and τ̂ are acceptable, and in addition, Xαt at different times t and α are given in Figure 4.
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4. Residual-based method of moment estimation

When the time interval of the observed data is particularly large, the parameters estimated by the
above moment estimation method are not very good. In order to overcome this shortcoming, this
section first introduces the concept of residual, and then uses residual estimation to generate parameters
from uncertain multiple delay differential equations. Consider the uncertain multiple delay differential
equation (2.1). Suppose that xt1 , xt2 , · · · , xtn is the observed data of the uncertain process Xt in the time
interval t1, t2, · · · , tn. For any given index i (2 ≤ i ≤ n), we solve the following updated uncertain
multiple delay differential equations.
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

dXt = f (t, Xt, Xt−τ1 , · · · , Xt−τn)dt + g
(
t, Xt, Xt−τ1 , · · · , Xt−τndt

)
dCt

Xti−1 = xti−1

Xti−1−τ1 = xti−1−τ1

...

Xti−2−τ1 = xti−2−τ1

Xti−n−τ1 = xti−1−τn

(4.1)

where xti−1 is the new initial value at the time point ti−1, the uncertainty distribution of the uncertain
variable Xti is expressed as Φti , and for any x (0 < x < 1), we have

M
{
Φti

(
Xti

)
≤ x

}
=M

{
Xti ≤ Φ

−1
ti (x)

}
= Φti

(
Φ−1

ti (x)
)
= x.

Therefore, Φti is a linear uncertain variable whose distribution function is

F(x) =


0, x ≤ 0
x, 0 < x < 1
1, x > 1

(4.2)

Using the observation xti instead of Xti , we have

εi = Φti(xti) (4.3)

Therefore, εi is a sample of the linear uncertain variable Φti(Xti).

Definition 4.1. For any index i(2 ≤ i ≤ n), εi in the formula (4.3) is called the i th residual of the
uncertain multiple delay differential equation (2.1).

The uncertain multiple delay differential equation (2.1) generally has no analytical solution, so
we propose a numerical method to calculate the residual of the uncertain multiple delay differential
equation (2.1). Firstly, the difference form of the uncertain multiple delay differential equation (2.1) is
obtained by Euler.

Xti = Xti−1 + f (ti−1, Xti−1 , Xti−1−τ1 , · · · , Xti−τm; µ)(ti − ti−1) + g(ti−1, Xti−1 , Xti−1−τ1 , · · · , Xti−1−τm; µ)(Ci −Ci−1)
(4.4)

approximate Xti−1−τ j as

Xti−1−τ j = Xti−1 −
τ j

ti−1 − ti−2
(xti−1 − xti−2),

For more convenience, let

U j = Xti−1 −
τ j

ti−1 − ti−2
(xti−1 − xti−2),
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where j = 1, 2, · · · ,m. So the difference formula (4.4) becomes

Xti = Xti−1 + f (ti−1, Xti−1 ,U1,U2, · · · ,Um; µ)(ti − ti−1) + g(ti−1, Xti−1 ,U1,U2, · · · ,Um; µ)(Ci −Ci−1),

replace Xti−1 , Xti−2 with the observation data xti−1 , xti−2 , and make

V j = xti−1 −
τ j

ti−1 − ti−2

(
xti−1 − xti−2

)
,

we have

Xti = Xti−1 + f (ti−1, Xti−1 ,V1,V2, · · · ,Vm; µ)(ti − ti−1) + g(ti−1, Xti−1 ,V1,V2, · · · ,Vm; µ)(Ci −Ci−1).

Define

ei =Xti−1 + f (ti−1, Xti−1 ,V1,V2, · · · ,Vm; µ)(ti − ti−1),
σi =g(ti−1, Xti−1 ,V1,V2, · · · ,Vm; µ)(ti − ti−1).

It can be seen that Xti follows a normal distribution with mean ei and standard deviation σi, then

εi ≈

(
1 + exp

(
π (ei − xi)
√

3σi

))−1

. (4.5)

For any given parameter µ and n observation data xt1 , xt2 , · · · , xtn , we can get the following residual
of n − 2 uncertain multiple delay differential equation 2.1,

ε1, ε2, · · · , εn−2.

For any given positive integer k, the k-order sample moment of the linear uncertainty distribution is

1
n − 1

n−2∑
i=1

εk
i (µ).

And the k-order global moment of the linear uncertainty distribution is

1
k + 1

.

Assuming that the sample moments of order k and the population moments of order k are equal, we
have

1
n − 1

n−2∑
i=1

εk
i (µ) =

1
k + 1

, k = 1, 2, · · · , p. (4.6)

Solve the equation (4.6) to obtain the positional parameter µ. Here, p means that p parameters need
to be estimated.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 238–255.



248

Example 4.1. Consider the uncertain multiple delay differential equation

dXt =
(
a1Xt−τ1 + a2Xt−τ2

)
dt + (a3Xtt − τ3) dCt, (4.7)

The observation data of Example 4.1 are shown in Table 3.

Table 3. Observed data of Example 4.1.

i 1 2 3 4 5 6 7 8
ti 0.2 0.5 0.8 1.1 1.4 1.7 2.0 2.3
xti 0.37 0.53 0.65 0.71 0.87 1.13 1.23 1.34
i 9 10 11 12 13 14 15 16
ti 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7
xti 1.47 1.55 1.67 1.76 1.87 1.92 2.12 2.30

The estimates of a1, a2, a3, τ1, τ2 and τ3 from equation (4.6) are obtained from the following system
of equations,


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14
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ε5
i (µ) =

1
6

1
14

14∑
i=1

ε6
i (µ) =

1
7

(4.8)

Using MATLAB to calculate the equations (4.8) we have

τ̂1 = 0.0171, τ̂2 = 0.0038, τ̂3 = 0.0001, â1 = 0.5785, â2 = −0.1812, â3 = 0.3769.

Therefore, the uncertain multiple delay differential equation (4.7) is

dXt = (0.5785Xt−0.0171 + 0.1812Xt−0.0038) dt + 0.3769Xt−0.0001dCt. (4.9)

According to the formula (4.5), we can obtain the residual plot of the uncertain multiple delay
differential equation (4.9) as shown in Figure 5.
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Figure 5. Picture of residuals for uncertain multiple delay differential equation (4.9).

According to the hypothesis testing method proposed by Ye and Liu [28] , in order to determine
whether the uncertain multiple delay differential equation 4.9 is suitable for the observed data in Table
3, we should test whether the residual data in Table 4 is from the linear uncertainty distribution.

Table 4. Table of residuals of uncertain multiple delay differential equations (4.9).

i 1 2 3 4 5 6 7
εi 0.8538 0.4004 0.8475 0.9483 0.3874 0.3857 0.4149
i 8 9 10 11 12 13 14
εi 0.2639 0.3402 0.2618 0.2887 0.1863 0.4410 0.3691

Test whether the residual in Table 4 satisfies

W = {(z1, z2, · · · , z10) : At least one indicator i(1 ≤ i ≤ 14) must be zi < 0.0251 or zi > 0.975}

by setting the signal level α = 0.05, α×14 = 0.7. According to the residual data in Table 4, we have
(ε1, ε2, · · · , ε14) < W. Therefore, the uncertain multiple-delay Logistic model 4.9 is consistent with the
observed data.

5. Uncertain multiple delay Logistic model

In characterizing the Australian fly population, Litching [4] pointed out in 1977 that the life cycle of
Australian flies is characterized by multiple delays. Based on this observation, Braddock and Driessche
[5] proposed two delayed Logistic models in 1983.

dpt

dt
= rpt

(
1 − a1 pt−τ1 − a2 pt−τ2

)
,
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where r, a1, a2, τ1 and τ2 are normal numbers, considering the effect of environmental fluctuations on
the system, if we characterize with the Wiener process under probability theory, dpt/dt = Wt, therefore,
replacing r with r + σWt, we have

dpt/dt =
(
r + σẆt

)
pt

(
1 − a1 pt−τ1 − a2 pt−τ2

)
. (5.1)

The unreasonableness of the uncertain multiple delay Logistis model (5.1) will be proved below.
First of all, from the definition of the Wiener process, we know the expected value and variance of Wt

are 0 and 1
dt , respectively, which is

Wt ∼ N
(
0,

1
dt

)
.

By means of the stochastic multiple delayed Logistic model (5.1), we have

dpt(
pt

(
1 − a1 pt−τ1 − a2 pt−τ2

))
dt
= r + σẆt ∼ N

(
r, σ2 1

dt

)
.

For any given normal number M as dt goes to 0, we have

Pr
{∣∣∣∣∣∣ dpt(

pt
(
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))
dt
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}
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dt
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}
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dt
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}

= Pr


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− r

σ/
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dt
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dt
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dt
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= 1 − Φ

(M − r
σ

√
dt

)
+ Φ

(
−

M + r
σ

√
dt

)
→ 1,

where Φ (·) represents a random normal distribution, it also means

Pr
{∣∣∣∣∣∣ dpt(

pt
(
1 − a1 pt−τ1 − a2 pt−τ2

))
dt

∣∣∣∣∣∣ ≥ M
}
= 1,

That is, at least one of the terms in dpt/dt and 1/(pt(1 − a1 pt−τ1 − a2 pt−τ2)) is positive infinity.
However, K is a normal number that does not exceed the limit of the resource, that is, at any time t,
pt < K, so 1/(pt(1−a1 pt−τ1 −a2 pt−τ2)) is bounded. So dpt/dt is +∞ . In other words, the instantaneous
increase rate of population dpt/dt is positive infinity, and it is impossible to reach positive infinity
according to a finite population. Therefore, the stochastic multiple delayed Logistic model (5.1) is not
reasonable.
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We can take dCt/dt to represent the noise term, and the uncertain multiple-delay logistic model is

dpt

dt
= rpt

(
1 − a1 pt−τ1 − a2 pt−τ2

)
+ σpt

(
1 − a1 pt−τ1 − a2 pt−τ2

) dCt

dt
(5.2)

Where Ct represents the Liu process, according to the definition of the Liu process, the expected
value and variance of dCt/dt are 0 and 1, respectively. Therefore, there is a limit to the instantaneous
growth rate of population size that we can obtain. In other words, the theory satisfies the practical
situation. The data in Table 5 comes from the data in Table I in [29], which shows the continuous
development of American society and economy and the characteristics of multiple delays in female
childbearing age. Fan [29] use differential equation with two delays to describe the population
dynamics of the United States from 1900 to 2010. When we consider the effect of “noise” on
population dynamics in the United States, it can be characterized by a Logistic model 5.2 with
uncertain multiple delays.

Table 5. The number of American population (Unit:Billion).

i 1 2 3 4 5 6 7 8 9 10 11 12
ti 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
xti 0.76 0.92 1.06 1.23 1.32 1.51 1.79 2.03 2.27 2.49 2.81 3.09

For a Logistic model (5.2) with uncertain multiple delays, we have parameters r, ϵ, a1 and a2 to
estimate.


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(5.3)

Using MATLAB to calculate the equations (5.3), we have

â1 = 0.0129, â2 = 0.0668, τ̂1 = 0.22, τ̂2 = 0.127.r̂ = 0.1516, σ̂2 = 0.0029.

Therefore, based on US population data, the uncertain multiple delayed Logistic model (5.2) is

dpt = 0.1516pt (1 − 0.0129pt−0.22 − 0.0668pt−0.127) dt+0.0029pt (1 − 0.0129pt−0.22 − 0.0668pt−0.127) dCt.

(5.4)
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Figure 6. The residual plot for uncertain multiple delay Logistic model (5.4).

According to formula (4.5), we can obtain the residual graph of the uncertain multiple delay Logistic
model (5.4) as shown in Figure 6.

Based on the hypothesis testing method proposed by Ye and Liu [28], in order to determine whether
the uncertain multiple delay differential equation (5.4) is suitable for the observed data, we should test
whether the residual in Table 6 is from the linear uncertainty distribution.

Table 6. The residual table for uncertain multiple delay Logistic model (5.4).

i 1 2 3 4 5
εi 0.2626 0.3837 0.0260 0.3539 0.8399
i 6 7 8 9 10
εi 0.5186 0.4853 0.3626 0.9183 0.8824

Set the signal level α = 0.05, 0.05 × 10 = 0.5, that is, test whether the residual data is satisfied.

W = {(z1, z2, · · · , z10) : At least one indicator zi(1 ≤ i ≤ 10) must be zi < 0.0251 or zi > 0.975}

According to the residual data in Table 6, we have (ε1, ε2, · · · , ε10) < W. Therefore, the uncertain
multiple-delay Logistic model (5.4) is consistent with the observed data. On the other hand, if it is
uncertain that the Liu process Ct in the multiple-delay Logistic model (5.4) is replaced by the Wiener
process, we can obtain a stochastic multiple-delay Logistic model.

dpt = 0.1516pt (1 − 0.0129pt−0.22 − 0.0668pt−0.127) dt+0.0029pt (1 − 0.0129pt−0.22 − 0.0668pt−0.127) dWt.

(5.5)
Select t = 1910,△t = 10−4, we have

Pr {X1910+∆t < X1910} = 49.93%.
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This means that the population of the United States will decline with a probability of 49.93%. In
real terms, however, the population of the United States is increasing. Therefore, the random multiple
delayed Logistic model (5.5) is not reasonable.

6. Conclusion

In order to apply the uncertain multiple delay differential equation to describe the dynamic systems
in our world, this paper presented the method of moment estimation to estimate the parameters of
uncertain multiple delay differential equations with known and unknown delays. Some numerical
examples were discussed to confirm the effectiveness of the above method. When the time intervals
of data are relatively large, the above method was invalid, the method of moment estimation based on
residuals was provided to estimate the parameters of uncertain multiple delay differential equations.
The numerical example was given to confirm the effectiveness of the above method by hypothesis
testing. Meanwhile, the paradox of stochastic multiple delay Logistic model was proved, an uncertain
multiple delay Logistic model was defined and applied to describe the population dynamics of the
United States.
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