This paper addresses a practical scheduling challenge in smart manufacturing systems, where dynamic expedited orders and tool change constraints must be handled in real time. While deep learning and multi-objective optimization methods offer strong theoretical capabilities, they are often unsuitable for industrial deployment due to high computational demands, training costs, and lack of transparency. We propose a lightweight, interpretable genetic algorithm framework that incorporates a real-time insertion mechanism and tooling-aware encoding to minimize disruptions when handling expedited orders. The method jointly considers machine-tool compatibility, job priorities, and system stability. It is validated using real production data from a precision screw manufacturing plant, demonstrating superior performance in handling expedited orders and tool constraints. The proposed method requires no training, supports online adjustments, and is well-suited for deployment in real-world production settings.
Citation: Yi-Han Chen, Hsi-Wen Wang, Chiung-Hui Tsai, Chih-Hung Wu. A genetic algorithm for tool-constrained scheduling with dynamic expedited orders in smart manufacturing[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 182-213. doi: 10.3934/jimo.2026007
This paper addresses a practical scheduling challenge in smart manufacturing systems, where dynamic expedited orders and tool change constraints must be handled in real time. While deep learning and multi-objective optimization methods offer strong theoretical capabilities, they are often unsuitable for industrial deployment due to high computational demands, training costs, and lack of transparency. We propose a lightweight, interpretable genetic algorithm framework that incorporates a real-time insertion mechanism and tooling-aware encoding to minimize disruptions when handling expedited orders. The method jointly considers machine-tool compatibility, job priorities, and system stability. It is validated using real production data from a precision screw manufacturing plant, demonstrating superior performance in handling expedited orders and tool constraints. The proposed method requires no training, supports online adjustments, and is well-suited for deployment in real-world production settings.
| [1] |
X. Xu, Y. Lu, B. Vogel-Heuser, L. Wang, Industry 4.0 and industry 5.0-inception, conception and perception, J. Manuf. Syst., 61 (2021), 530–535. https://doi.org/10.1016/j.jmsy.2021.10.006 doi: 10.1016/j.jmsy.2021.10.006
|
| [2] |
M. M. A. P. Mick, J. L. Kovaleski, R. T. Yoshino, D. M. de Genaro Chiroli, The influence between industry 4.0 and technology transfer: A framework based on systematic literature review, SAGE Open, 14 (2024), 21582440241295580. https://doi.org/10.1177/21582440241295580 doi: 10.1177/21582440241295580
|
| [3] |
M. D. Sinanis, P. Adhikari, T. R. Jones, M. Abdelfattah, D. Peroulis, High-Q high power tunable filters manufactured with injection molding technology, IEEE Access, 10 (2022), 19643–19653. https://doi.org/10.1109/ACCESS.2022.3151849 doi: 10.1109/ACCESS.2022.3151849
|
| [4] |
H. T. Nguyen, R. Olsson, Ø. Haugen, Automatic synthesis of recurrent neurons for imitation learning from CNC machine operators, IEEE Open J. Ind. Electron. Soc., 5 (2024), 91–108. https://doi.org/10.1109/OJIES.2024.3363500 doi: 10.1109/OJIES.2024.3363500
|
| [5] |
A. Nouri, A. Soroudi, A. Keane, Strategic scheduling of discrete control devices in active distribution systems, IEEE Trans. Power Delivery, 35 (2020), 2285–2299. https://doi.org/10.1109/TPWRD.2020.2965110 doi: 10.1109/TPWRD.2020.2965110
|
| [6] |
B. She, F. Li, J. Wang, H. Cui, X. Wang, R. Bo, Virtual inertia scheduling (VIS) for microgrids with static and dynamic security constraints, IEEE Trans. Sustainable Energy, 16 (2025), 785–796. https://doi.org/10.1109/TSTE.2024.3481239 doi: 10.1109/TSTE.2024.3481239
|
| [7] |
S. C. Graves, A review of production scheduling, Oper. Res., 29 (1981), 646–675. https://doi.org/10.1287/opre.29.4.646 doi: 10.1287/opre.29.4.646
|
| [8] |
R. Buddala, S. S. Mahapatra, An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method, J. Ind. Eng. Int., 15 (2019), 181–192. https://doi.org/10.1007/s40092-018-0280-8 doi: 10.1007/s40092-018-0280-8
|
| [9] |
S. Jun, S. Lee, H. Chun, Learning dispatching rules using random forest in flexible job shop scheduling problems, Int. J. Prod. Res., 57 (2019), 3290–3310. https://doi.org/10.1080/00207543.2019.1581954 doi: 10.1080/00207543.2019.1581954
|
| [10] |
G. Gong, Q. Deng, R. Chiong, X. Gong, H. Huang, An effective memetic algorithm for multi-objective job-shop scheduling, Knowl.-Based Syst., 182 (2019), 104840. https://doi.org/10.1016/j.knosys.2019.07.011 doi: 10.1016/j.knosys.2019.07.011
|
| [11] |
M. Samouilidou, G. Georgiadis, M. Georgiadis, A multi-bucket time representation framework for optimal scheduling in beverage production facilities, Comput. Chem. Eng., 183 (2024), 108611. https://doi.org/10.1016/j.compchemeng.2024.108611 doi: 10.1016/j.compchemeng.2024.108611
|
| [12] |
Y. J. Yao, Q. H. Liu, X. Y. Li, L. Gao, A novel MILP model for job shop scheduling problem with mobile robots, Rob. Comput.-Integr. Manuf., 81 (2023), 102506. https://doi.org/10.1016/j.rcim.2022.102506 doi: 10.1016/j.rcim.2022.102506
|
| [13] |
H. El Hafdaoui, A. Khallaayoun, S. Al-Majeed, Controlled non-dominated sorting genetic algorithms for multi-objective optimal design of standalone and grid-connected renewable energy systems in integrated energy sectors, IEEE Access, 13 (2025), 14658–14685. https://doi.org/10.1109/ACCESS.2025.3530084 doi: 10.1109/ACCESS.2025.3530084
|
| [14] |
S. C. Burmeister, D. Guericke, G. Schryen, A memetic NSGA-II for the multi-objective flexible job shop scheduling problem with real-time energy tariffs, Flex. Serv. Manuf. J., 36 (2024), 1530–1570. https://doi.org/10.1007/s10696-023-09517-7 doi: 10.1007/s10696-023-09517-7
|
| [15] |
T. L. Chen, C. Y. Cheng, Y. H. Chou, Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming, Ann. Oper. Res., 290 (2020), 813–836. https://doi.org/10.1007/s10479-018-2969-x doi: 10.1007/s10479-018-2969-x
|
| [16] |
K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, et al., A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem, Expert Syst. Appl., 205 (2022), 117796. https://doi.org/10.1016/j.eswa.2022.117796 doi: 10.1016/j.eswa.2022.117796
|
| [17] |
H. Wang, J. Cheng, C. Liu, Y. Zhang, S. Hu, L. Chen, Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events, Appl. Soft Comput., 131 (2022), 109717. https://doi.org/10.1016/j.asoc.2022.109717 doi: 10.1016/j.asoc.2022.109717
|
| [18] |
K. Lei, P. Guo, Y. Wang, J. Zhang, X. Meng, L. Qian, Large-scale dynamic scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement learning, IEEE Trans. Ind. Inf., 20 (2024), 1007–1018. https://doi.org/10.1109/TII.2023.3272661 doi: 10.1109/TII.2023.3272661
|
| [19] | C. Ngwu, Y. Liu, R. Wu, Reinforcement learning in dynamic job shop scheduling: a comprehensive review of ai-driven approaches in modern manufacturing, J. Intell. Manuf.. https://doi.org/10.1007/s10845-025-02585-6 |
| [20] |
J. Pei, B. Cheng, X. Liu, P. M. Pardalos, M. Kong, Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time, Ann. Oper. Res., 272 (2019), 217–241. https://doi.org/10.1007/s10479-017-2481-8 doi: 10.1007/s10479-017-2481-8
|
| [21] |
N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper. Res., 24 (1997), 1097–1100. https://doi.org/10.1016/S0305-0548(97)00031-2 doi: 10.1016/S0305-0548(97)00031-2
|
| [22] | A. Hashemi, M. B. Dowlatshahi, H. Nezamabadi-Pour, Gravitational search algorithm: Theory, literature review, and applications, Handbook of AI-based Metaheuristics, 119–150. |
| [23] |
D. Lei, Y. Yuan, J. Cai, An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling, Int. J. Prod. Res., 59 (2020), 5259–5271. https://doi.org/10.1080/00207543.2020.1775911 doi: 10.1080/00207543.2020.1775911
|
| [24] |
L. Fanjul-Peyro, Models and an exact method for the unrelated parallel machine scheduling problem with setups and resources, Expert Syst. Appl.: X, 5 (2020), 100022. https://doi.org/10.1016/j.eswax.2020.100022 doi: 10.1016/j.eswax.2020.100022
|
| [25] |
M. S. Umam, M. Mustafid, S. Suryono, A hybrid genetic algorithm and tabu search for minimizing makespan in flow shop scheduling problem, J. King Saud Univ.-Comput. Inf. Sci., 34 (2022), 7459–7467. https://doi.org/10.1016/j.jksuci.2021.08.025 doi: 10.1016/j.jksuci.2021.08.025
|
| [26] | V. K. Prajapati, M. Jain, L. Chouhan, Tabu search algorithm TSA: A comprehensive survey, in Proceedings of the 3th International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE). IEEE, 2020, 1–8. https://doi.org/10.1109/ICETCE48199.2020.9091743 |
| [27] |
D. Gao, G. G. Wang, W. Pedrycz, Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism, IEEE Trans. Fuzzy Syst., 28 (2020), 3265–3275. https://doi.org/10.1109/TFUZZ.2020.3003506 doi: 10.1109/TFUZZ.2020.3003506
|
| [28] |
S. Afsar, C. R. Vela, J. J. Palacios, I. González-Rodríguez, Mathematical models and benchmarking for the fuzzy job shop scheduling problem, Comput. Ind. Eng., 183 (2023), 109454. https://doi.org/10.1016/j.cie.2023.109454 doi: 10.1016/j.cie.2023.109454
|
| [29] |
Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential evolution: A review of more than two decades of research, Eng. Appl. Artif. Intell., 90 (2020), 103479. https://doi.org/10.1016/j.engappai.2020.103479 doi: 10.1016/j.engappai.2020.103479
|
| [30] |
S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning, Appl. Soft Comput., 91 (2020), 106208. https://doi.org/10.1016/j.asoc.2020.106208 doi: 10.1016/j.asoc.2020.106208
|
| [31] |
J. S. Neufeld, S. Schulz, U. Buscher, A systematic review of multi-objective hybrid flow shop scheduling, Eur. J. Oper. Res., 309 (2023), 1–23. https://doi.org/10.1016/j.ejor.2022.08.009 doi: 10.1016/j.ejor.2022.08.009
|
| [32] |
T. J. Ikonen, K. Heljanko, I. Harjunkoski, Reinforcement learning of adaptive online rescheduling timing and computing time allocation, Comput. Chem. Eng., 141 (2020), 106994. https://doi.org/10.1016/j.compchemeng.2020.106994 doi: 10.1016/j.compchemeng.2020.106994
|
| [33] |
M. E. Samouilidou, N. Passalis, G. P. Georgiadis, M. C. Georgiadis, Enhancing industrial scheduling through machine learning: A synergistic approach with predictive modeling and clustering, Comput. Chem. Eng., 200 (2025), 109174. https://doi.org/10.1016/j.compchemeng.2025.109174 doi: 10.1016/j.compchemeng.2025.109174
|
| [34] |
C. Y. Lee, Y. T. Huang, P. J. Chen, Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling, Comput. Chem. Eng., 187 (2024), 108745. https://doi.org/10.1016/j.compchemeng.2024.108745 doi: 10.1016/j.compchemeng.2024.108745
|
| [35] |
I. Kacem, S. Hammadi, P. Borne, Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems, IEEE Trans. Syst. Man Cybern. Part C, 32 (2002), 1–13. https://doi.org/10.1109/TSMCC.2002.1009117 doi: 10.1109/TSMCC.2002.1009117
|
| [36] |
G. Adabbo, A. Andreozzi, M. Iasiello, G. Napoli, G. P. Vanoli, A multi-objective optimization framework through genetic algorithm for hyperthermia-mediated drug delivery, Comput. Biol. Med., 189 (2025), 109895. https://doi.org/10.1016/j.compbiomed.2025.109895 doi: 10.1016/j.compbiomed.2025.109895
|
| [37] |
S. Dauzère-Pérès, J. Ding, L. Shen, K. Tamssaouet, The flexible job shop scheduling problem: A review, Eur. J. Oper. Res., 314 (2024), 409–432. https://doi.org/10.1016/j.ejor.2023.05.017 doi: 10.1016/j.ejor.2023.05.017
|
| [38] |
V. Boyer, J. Vallikavungal, X. Cantú Rodríguez, M. A. Salazar-Aguilar, The generalized flexible job shop scheduling problem, Comput. Ind. Eng., 160 (2021), 107542. https://doi.org/10.1016/j.cie.2021.107542 doi: 10.1016/j.cie.2021.107542
|
| [39] |
L. Meng, W. Cheng, B. Zhang, W. Zou, W. Fang, P. Duan, An improved genetic algorithm for solving the multi-agv flexible job shop scheduling problem, Sensors, 23 (2023), 3815. https://doi.org/10.3390/s23083815 doi: 10.3390/s23083815
|
| [40] |
G. Da Col, E. C. Teppan, Industrial-size job shop scheduling with constraint programming, Oper. Res. Perspect., 9 (2022), 100249. https://doi.org/10.1016/j.orp.2022.100249 doi: 10.1016/j.orp.2022.100249
|
| [41] | M. Garouani, M. Bouneffa, Automated machine learning hyperparameters tuning through meta-guided Bayesian optimization, Prog. Artif. Intell., (2024). https://doi.org/10.1007/s13748-023-00311-y |
| [42] |
W. Zhang, M. Kong, Y. Zhang, A. M. Fathollahi-Fard, Proximal policy optimization with population-based variable neighborhood search algorithm for coordinating photo-etching and acid-etching processes in sustainable storage chip manufacturing, J. Ind. Inf. Integr., 42 (2024), 100727. https://doi.org/10.1016/j.jii.2024.100727 doi: 10.1016/j.jii.2024.100727
|
| [43] |
F. Zhao, T. Yang, L. Song, J. Zhang, T. Xu, Jonrinaldi, An online learning metaheuristic algorithm with proximal policy optimization mechanism, Expert Syst. Appl., 289 (2025), 128403. https://doi.org/10.1016/j.eswa.2025.128403 doi: 10.1016/j.eswa.2025.128403
|
| [44] |
F. Grumbach, N. E. A. Badr, P. Reusch, S. Trojahn, A memetic algorithm with reinforcement learning for sociotechnical production scheduling, IEEE Access, 11 (2023), 68760–68775. https://doi.org/10.1109/ACCESS.2023.3292548 doi: 10.1109/ACCESS.2023.3292548
|