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Abstract: This paper addresses a practical scheduling challenge in smart manufacturing systems, where
dynamic expedited orders and tool change constraints must be handled in real time. While deep learning
and multi-objective optimization methods offer strong theoretical capabilities, they are often unsuitable
for industrial deployment due to high computational demands, training costs, and lack of transparency.
We propose a lightweight, interpretable genetic algorithm framework that incorporates a real-time
insertion mechanism and tooling-aware encoding to minimize disruptions when handling expedited
orders. The method jointly considers machine-tool compatibility, job priorities, and system stability.
It is validated using real production data from a precision screw manufacturing plant, demonstrating
superior performance in handling expedited orders and tool constraints. The proposed method requires
no training, supports online adjustments, and is well-suited for deployment in real-world production
settings.
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1. Introduction

The rise of Industry 4.0 has fundamentally transformed the landscape of manufacturing, driving a
shift toward smart factories characterized by real-time data exchange, autonomous decision-making, and
highly flexible production systems [1, 2]. Smart manufacturing environments usually integrate diverse
machine resources across technological generations. Conventional machines offer economic advantages
despite their limited flexibility, while advanced CNC (computer numerical control) systems [3] provide
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superior processing capabilities and accuracy at a higher cost. In these heterogeneous environments,
efficient task allocation is critical for maximizing productivity. Additionally, tool changeovers present
significant challenges across all machine types and are crucial in production scheduling. The process
involves machine stoppage, tool installation, calibration, and validation, introducing non-productive
time and potential quality variations [4]. These activities increase costs and reduce equipment utilization
efficiency. In high-variety, low-volume production environments, tool changeover efficiency has a
significant impact on overall productivity.
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Figure 1. Conceptual framework illustrating the relationship among machine and tool constraints,
regular/expedited orders, and scheduling efficiency. Machine M1 provides two tools (△ and⃝), M2

provides □ and △, and M3 provides⃝ and □. Each job has three tasks to be processed, the tasks of
J1 are processed in sequence by tools △, △, and⃝, the ones in J2 are by □,⃝, and □, and the ones
of J3 are by □, △, and □. The expedited job has three tasks that are processed by △,⃝, and △.

These issues become even more challenging when dealing with expedited orders, urgent, high-
priority jobs that arrive unpredictably and demand immediate integration into the production schedule.
Traditional static scheduling systems struggle to accommodate such disruptions, often leading to
complete re-scheduling or inefficient insertion strategies, such as placing expedited orders at the
beginning or end of the machining sequence [5, 6]. From a tooling standpoint, expedited orders are
particularly problematic because they often introduce new machining requirements that may not align
with the current tool setup. As a result, they may trigger unplanned tool changes, disrupt currently
optimized tool groupings, increase machine idle time, and elevate the risk of setup errors. These
cascading effects highlight the relationship between scheduling decisions and tooling constraints in
smart manufacturing environments. Figure 1 illustrates the abovementioned application scenario, where
three machines M1, M2, and M3 and three types of tools are used in the manufacturing. Initially, three
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regular jobs (J1–J3) are scheduled and processed, as shown in the center of Figure 1. An expedited
order (JE) requires scheduling adjustments at time 3, and the re-scheduled result is shown at the bottom
of Figure 1.

Graves [7] defines scheduling as “allocating available resources over a given period to achieve
specified objectives.” In practical manufacturing, this entails coordinating machines, labor, materials,
and tools within tight operational constraints, including deadlines, processing routes, and machine
capabilities. As the complexity of scheduling problems grows with the number of variables and dynamic
conditions, traditional deterministic approaches become less effective. To address this, researchers
have explored various metaheuristic algorithms. Previous studies have proposed various approaches to
tackle the flexible job-shop scheduling problem (FJSSP), achieving notable success through methods
such as teaching-learning-based optimization [8], adaptive rule generation with random forests [9], and
memetic algorithms combining local search and crossover strategies [10]. While these methods have
yielded promising results, they largely overlook the dynamic integration of expedited orders and fail to
explicitly incorporate tool change considerations.

The cases studied in this paper are small and medium-sized manufacturers producing precision
screws and fasteners. These factories represent real industrial settings where resources and equipment
are limited, which makes scheduling decisions particularly critical. They frequently face expedited
orders from customers, and full re-scheduling is often too slow to be practical. Timely completion of
urgent and higher-value orders directly affects profitability and customer trust. These factors are essential
for the survival of firms operating with narrow margins. Tooling costs further illustrate the practical
challenges observed in these cases. Each manual tool change requires removal, calibration, and trial
runs before production can resume. This results in downtime, material waste, and potential defects. The
motivation for this research arises from these real factory constraints. An effective scheduling system
must insert urgent jobs with minimal disruption to ongoing work, and must preserve current tool setups
whenever possible. As stated in [11], changeover in production lines is a critical scheduling issue, and
their MILP-based (mixed-integer linear programming [12]) framework for lot-sizing and scheduling in a
beverage plant demonstrated that buffer tanks can effectively reduce overtime and improve productivity.
In our study, the analogous issue is tool changes; thus, minimizing tool changeovers is identified as a
key scheduling consideration.

This study addresses this gap by developing a practical scheduling framework that explicitly accounts
for expedited orders and tooling costs. Genetic algorithms (GAs) are adopted as the underlying search
method because they provide a balance between solution quality and computational efficiency [13],
which is important for small and medium-sized factories where computational resources and IT expertise
are limited. In our proposed method, the encoding represents both job sequencing and tool usage patterns,
the fitness function adapts to shifting production priorities, and an insertion weight mechanism supports
urgent job placement with minimal disruption. The framework is validated using real production data
from a precision screw manufacturing plant, ensuring practical applicability and industrial relevance.

Recent studies have explored advanced techniques such as multi-objective optimization (MOO)
[14, 15] and deep learning-based approaches including reinforcement learning and transformer models
[16–19]. While these methods are theoretically powerful, they are less suited to small and medium-sized
manufacturers. MOO requires maintaining Pareto fronts with heavy computation, specialized hardware,
and dedicated IT staff. Deep learning requires substantial datasets, long training cycles, and continuous
expert involvement. These demands create cost and deployment barriers for such manufacturers. In
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contrast, the GA framework is simpler to implement, faster to compute, and easier to maintain, making
it a practical and reliable scheduling tool for real factory environments.

The goals of this research are threefold:

• To enable rapid and flexible adjustment of production schedules in response to real-time demands,
particularly expedited orders.

• To minimize the frequency and cost of tool changes by incorporating tooling constraints into the
scheduling process.

• To develop a GA-based framework that optimizes job sequencing and tool utilization under
dynamic conditions.

2. Related works

Several scheduling algorithms have been proposed to address various production scheduling problems.
In single-machine scheduling, Pei et al. [20] derived the structural properties of the problem and applied
optimization algorithms to solve it. For parallel-machine scheduling, they introduced a hybrid algorithm
combining variable neighborhood search [21] and a gravitational search algorithm [22], demonstrating
its efficiency and effectiveness. Lei et al. [23] proposed an improved artificial bee colony algorithm to
solve the distributed unrelated parallel machine scheduling problem [24]. Their approach combines
global and local searches during the employed bee and onlooker bee phases, and introduces a new
method in the scout phase to minimize makespan and machine delays. In multi-stage scheduling, Umam
et al. [25] addressed flow shop scheduling by integrating tabu search [26] with GA. They utilized
a partially opposite population initialization to enhance search speed and leveraged tabu search to
avoid local optima. The method effectively minimized the makespan across various instances and
outperformed other algorithms. Gao et al. [27] tackled fuzzy job-shop scheduling problems [28] using
differential evolution [29]. They enhanced the differential evolution’s search capabilities by introducing
a selection mechanism and demonstrated superior performance compared to other methods. Luo et
al. [30] applied reinforcement learning (RL) through the deep Q-network method to solve the dynamic
flexible job shop problem [17]. They proposed six composite scheduling rules and extracted seven state
features for re-scheduling points, using deep Q-learning to train the model and validate its feasibility on
various instances.

Regarding the methods of MOO for the FJSSP, several studies have been proposed. For example,
Burmeister [14] applied a memetic NSGA-II to solve an energy-aware FJSSP in real-time factory settings.
Chen et al. [15] proposed a multi-objective evolutionary algorithm based on multiple-neighborhoods
local search for the multi-objective distributed hybrid flow shop scheduling problem [31]. The method
employs a weighted mechanism during initialization to determine the best position for each job and
uses multiple neighborhood operators to generate new solutions. Poor solutions are replaced, and
an adaptive weight update mechanism is used to avoid local optima. Experimental results show that
this method is highly effective for the hybrid flow shop scheduling problem. Although effective, such
approaches often suffer from high computational complexity due to the maintenance of the Pareto
front, which limits their responsiveness in real-time environments. In parallel, deep reinforcement
learning (DRL) has gained popularity for dynamic scheduling. Luo [30] used DRL to handle job
insertions in the FJSSP, and Wang [17] proposed a DRL-based multi-objective framework for uncertain
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production environments. Ikonen et al. [32] applied RL to decide re-scheduling timing and computing
resource allocation in dynamic scheduling, improving online decision-making efficiency. The end-to-
end framework proposed by Lei et al. [16] learns policies that are faster than metaheuristics, and can
generalize to large-scale instances for the FJSSP. Another is a hierarchical framework by Lei et al. [18]
tackled the dynamic FJSSP in smart manufacturing, enabling near real-time decision-making for large-
scale, uncertain production lines. Samouilidou et al. [33] integrated RL with MILP to reduce changeover
times and computation in production scheduling. Lee et al. [34] embedded robust optimization into
DRL, improving stability and solution quality under demand uncertainty. A comprehensive review by
Ngwu [19] highlights the potential and limitations of DRL in manufacturing scheduling. However,
DL-based methods require large-scale training data, long convergence times, and are difficult to interpret,
reducing their applicability in real-time shop floor control.

While existing scheduling methods show strong performance, they are usually validated on
benchmark datasets and focus on general objectives without explicitly addressing the combined
challenges of dynamic expedited orders and tool changeovers. Advanced techniques such as MOO and
DRL are theoretically powerful, but their implementation demands specialized hardware, large datasets,
and expert personnel, which limits their applicability in small and medium-sized enterprises. Thus,
there remains a research gap for a scheduling framework that is computationally efficient, easy to
deploy, and able to incorporate the practical costs of both expedited orders and tool constraints. These
limitations motivate the need for more lightweight, interpretable, and flexible approaches, such as the
GA framework proposed in this study.

3. Problem formulation

3.1. Flexible job-shop scheduling

The flexible job-shop scheduling problem (FJSSP) is an extension of the classical job shop problem,
where multiple machines with varying capabilities can process each operation. It involves determining
the operation sequence and machine assignment to optimize objectives such as makespan, cost, or
resource utilization under complex constraints. In general, an n × m FJSSP involves n jobs and m
available machines, where the set of jobs is denoted as J = {J1, J2, ..., Jn}, and the set of machines as
M = {M1,M2, ...,Mm}. Each job consists of multiple operations, and different machines can process
each operation. For convenience, the following notations are used:

• oi, j: the jth operation of job Ji.

• di: the due date of job Ji.

• ti, j,k: the processing time required for operation oi, j on machine Mk.

• si, j,k: the start time of operation oi, j on machine Mk.

• wok: the operational wear of machine Mk.

• wsk: the standby wear of machine Mk.

• byk: the total standby time of machine Mk.

• ei: the profit gained if job Ji is completed by its due date.
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• pi: the penalty incurred if job Ji is not completed by its due date.

• fi: indicator of whether job i is completed by its due date.

For completing job Ji, all operations oi, j must be processed on appropriate machines. The processing
time ti, j,k for each operation oi, j on machine Mk is fixed and known in advance. Each operation oi, j can
be processed on one or more machines. Let Xi, j,k denote whether operation oi, j is assigned to machine
Mk, i.e., Xi, j,k = 1 if oi, j is assigned to Mk, otherwise Xi, j,k = 0. The assignment of operations is subject
to the following constraints:

• Each job Ji is independent and has a fixed processing time ti, j,k > 0.

• Operations within a job must follow precedence, that is, si, j,k + ti, j,k ≤ si, j+1,k.

• Each operation must have at least one available machine,
∑n

i=1
∑h

j=1 Xi, j,k ≥ 1.

• Each machine can only process one operation at a time,
∑m

k=1 Xi, j,k = 1.

This study considers three core objectives: minimizing completion time (Cmin), minimizing machine
wear (Mmin), and maximizing profit (Emax). These metrics are integrated into the fitness function of the
proposed GA framework. The objective function for minimizing total completion time is defined as:

Cmin = min

max
1≤i≤n

n∑
i=1

Ci

 , (3.1)

where

Ci = max
1≤ j≤h

 h∑
j=1

(si, j,k + ti, j,k)

 (3.2)

is the completion time for job Ji. The objective for minimizing machine wear is:

Mmin = min

 m∑
k=1

(Wok +Wsk)

 , (3.3)

where Wok =

n∑
i=1

h∑
j=1

(ti, j,k × wok) is the total operational machine wear of machine Mk and Wsk =

(byk × wsk) is the total standby wear for machine Mk. The objective for maximizing profit is:

Emax = max

 n∑
i=1

Ei

 , (3.4)

where Ei = ei − ( fi × pi) and fi = 1, if di − Ci ≤ 0 (job completed overdue), otherwise fi = 0 (job
completed on-time).

The FJSSP is classified as an NP-hard problem, with two critical decisions: the sequencing of jobs
and the selection of machines. While the primary objective of the typical FJSSP is to minimize the
makespan, this study further incorporates considerations such as job due dates, machine operating
wear, idle energy consumption, etc. In the FJSSP, it is typically assumed that any job operation can be
performed on any available machine; however, this study considers machine-tool compatibility, where
operations are constrained by the specific tools each machine supports. These additional factors enhance
the practical applicability of the FJSSP, but also increase the problem’s complexity.
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3.2. Tool constraints

The traditional FJSSP primarily focuses on optimizing job-machine assignments and operation
sequencing. These models assume that tools are readily available and interchangeable without cost,
neglecting the operational consequences of tool changes. In practice, however, tool switching incurs
overhead in the form of setup adjustments, idle time, and potential scheduling delays.

To illustrate the impact of tool changes on scheduling efficiency, consider a simple example with
two machines, M1 and M2, and three tools, ta, tb, and tc. Machine M1 can operate with tools ta, tb, and
tc, while machine M1 supports tools ta and tc only. Assume there are three jobs: J1 requires tool ta, J2

requires tb, and J3 also requires ta. Three scheduling results are listed in Table 1. It can be observed that
schedule A requires tool changes twice, schedule B requires one change, and schedule C requires no tool
changes. This example demonstrates that different job sequences and machine assignments can result in
different numbers of tool changes. Fewer tool changes are preferable, as they reduce non-productive
time and increase machine availability.

Table 1. Comparison of scheduling options and tool change frequency.

Scheduling (Machine Assignment) Tool Change Sequence Tool Changes
A: J1(M1)→ J2(M1)→ J3(M1) M1 : ta → tb → ta 2
B: J1(M1)→ J3(M1)→ J2(M1) M1 : ta → ta → tb 1
C: J1(M2)→ J3(M2), J2(M1) No tool change on each machine 0

The cost associated with tool usage includes three components: (1) the number of tool changes, (2)
the time required for each change, and (3) the wear or calibration overhead induced by tool switching.
To account for these costs, the model introduces the following variables:

• tci: number of tool changes for completing Job Ji.

• tt: the average time required per tool change.

• Wt: machine wear per tool change (e.g., calibration or degradation effect).

The total completion time Ci of Job Ji in Eq. (3.2) is updated as:

Ci = max
1≤ j≤h

 h∑
j=1

(si, j,k + ti, j,k) + tci · tt

 (3.5)

Similarly, the machine wear objective in Eq. (3.3) is updated as:

Mmin = min

 m∑
k=1

(Wok +Wsk) +
∑

i

Wt · tci

 (3.6)

3.3. Expedited orders

In the traditional FJSSP, once a machine starts processing an assigned job, it cannot be interrupted
and must complete the current job before switching to a new task. Expedited orders, on the other hand,
are time-sensitive and demand immediate processing. Most conventional FJSSP models assume that
all jobs are known in advance and that scheduling is performed in a static or semi-static manner. In
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contrast, real manufacturing environments often encounter expedited orders that arrive dynamically
and unpredictably, requiring on-the-fly adjustments to an already active schedule. These urgent jobs
must be inserted in a way that minimizes interference with ongoing operations, which adds considerable
complexity to the scheduling process. From a scheduling perspective, such scenarios involve not
only handling job priorities, but also preserving machine-tool compatibility, avoiding unnecessary tool
switches, and maintaining the stability of the existing schedule. A dynamic insertion mechanism is
therefore critical to ensure the timely integration of urgent jobs while still satisfying due dates and
resource constraints. If expedited orders are scheduled at the end of the production queue, their due
dates may be missed. Conversely, inserting them too early can disrupt the planned sequence of regular
jobs. Furthermore, it is often necessary to preserve the original machine-tool assignments for operations
that have already been scheduled but not yet executed. These operations are partially committed to the
production plan, and reassigning them may trigger additional tool changeovers, increased idle time,
or setup errors. To address this challenge, the scheduling system must simultaneously consider both
incoming expedited jobs and unfinished tasks from the existing schedule, while accounting for due
dates, job priorities, and machine-tool constraints. Let J′i be a new job and o′i, j be the jth operation of J′i .
The formulation of FSSP considering expedited orders uses the following notations.

• toi, j: remaining time to complete operation oi, j of job Ji in the on-going schedule.

• t′i, j,k, s′i, j,k: processing and start time for o′i, j on Mk.

• d′i , e′i , p′i : due date, profit, and penalty of new job J′i .

• ts: time point of expedited insertion.

The remaining time for ongoing operations is

toi, j =


si, j,k + ti, j,k, si, j,k > ts

ti, j,k − ts, si, j,k ≤ ts ≤ si, j,k + ti, j,k

0, si, j,k < ts

(3.7)

Accordingly, the objective for completion time becomes

Cmin = min
{
max(Ci,C′i )

}
, (3.8)

where

Ci = max
1≤ j≤h

 h∑
j=1

toi, j

 (3.9)

C′i = max
1≤ j≤h

 h∑
j=1

(s′i, j,k + t′i, j,k) +
n∑

i=1

tci · tt

 (3.10)

The updated machine wear objective becomes

Mmin = min

 m∑
k=1

(Wok +Wo′k +Wsk) +
∑

i

Wt · tci

 , (3.11)
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where Wok =

n∑
i=1

h∑
j=1

toi, j ·wok is the machine wear for the remaining operations and Wo′k =
n∑

i=1

h∑
j=1

t′i, j,k ·

wok is the machine wear for the inserted jobs. Finally, the objective for profit is updated as

Emax = max

 n∑
i=1

(Ei + E′i )

 , (3.12)

where E′i = e′i − ( f ′i × p′i), and the definition of f ′i is the same as fi but for J′i .
The three objectives, C′min, E′max, and Mmin, used in this study were identified through discussions

with practitioners in precision screw and fastener manufacturing and reflect the main concerns of
small and medium factories. Expedited order handling involves not only short-term profit, but also
long-term reputation, which cannot be quantified but remains vital. The framework, therefore, allows
users to adjust weights so that scheduling decisions reflect practical priorities. The objectives are
combined through a weighted sum rather than a Pareto-based MOO approach that demands heavy
computation and specialized personnel, which are rarely available in small and medium factories. In
contrast, the weighted-sum approach is simple, transparent, and adjustable, enabling users to balance
cost, efficiency, and reputation in line with real industrial needs. In this context, generating a full Pareto
front through MOO methods is unnecessary, since managers require workable solutions rather than
exhaustive trade-off sets.

4. The proposed method

4.1. Chromosome encoding

The first step to implementing GA-based problem-solving is to design an appropriate encoding
method. Solving FJSSP requires satisfying the sequential processing of job operations and their
assignment to suitable machines. Therefore, the chromosome encoding must account for these two
factors simultaneously. This study adopts a chromosome design inspired by the method proposed
in [35]. Following the notations given in Section 3, a chromosome ξ for the n × m FJSSP consists of
two parts, OS and MS, each having

∑n
i=1 Ki integers. The OS part describes the processing sequence

of all subtasks, oi,1, oi,2, . . . , oi,Ki , 1 ≤ i ≤ n, wherein each integer i, 1 ≤ i ≤ n, represents a subtask of
job Ji to be processed and each integer i appears for Ki times. The jth occurrence of i, 1 ≤ j ≤ Ki,
denotes the jth subtask oi, j of Ji. The MS part is a task-machine assignment for the subtask of OS
to m machines. Each integer j, 1 ≤ j ≤ m, represents a machine in M. The kth integer j of MS
indicates that machine M j is assigned to process the kth subtask in OS. For example, a 3 × 4 FJSSP
is considered, as shown in Figure 2. In Figure 2(a), three jobs are to be processed by four machines,
where the integers in each row denote the operation time of the machine for completing the subtask,
and ‘-’ denotes that the machine is inapplicable for the subtask. Figure 2(a) presents a job-machine
schedule arranged by a chromosome of length 2 × 12. Four 2’s appear in the 1st, 5th, 9th, and 12th
position of OS = [2,3,1,3,2,1,3,1,2,3,1,2], respectively, denoting that the J2’s subtasks o2,1, o2,2, o2,3,
and o2,4 are processed by the machine represented by the 1st (M2), 5th (M4), 9th (M4), and 12th (M2)
integer of MS = [2,4,4,3,4,3,4,2,4,1,2,2], respectively. The same job-machine assignment rule applies to
all jobs. A job-machine schedule can be derived from this chromosome by utilizing the processing time
information given in Figure 2(a), with the resulting timeline illustrated in the time table of Figure 2(b).
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This encoding method directly maps jobs to machines, thereby capturing machine-selection decisions in
the scheduling process. It also preserves solution feasibility during GA operations and allows task- or
machine-specific information to be embedded, which facilitates the incorporation of tool constraints
and expedited orders.

Tasks M1 M2 M3 M4

Job1 O1,1 2 3 - 1
O1,2 5 - 3 -
O1,3 - 5 7 6
O1,4 6 2 - 3

Job2 O2,1 - 3 6 -
O2,2 3 - 4 5
O2,3 2 3 - 5
O2,4 - 2 6 8

Job3 O3,1 1 - 5 7
O3,2 - 6 3 5
O3,3 6 2 - 4
O3,4 4 - 6 3

(a) Processing time of job-task-machine (b) Chromosome vs. job schedule

Figure 2. Chromosome encoding for FJSSP.

4.2. Fitness function

As mentioned in Section 3.1, the objectives of the FJSSP include the minimization completion time
Cmin, and machine wear Mmin, and the maximization of profit Emax, as defined in Eqs (3.1), (3.3), and
Eq. (3.4), respectively. The fitness function for evaluating a chromosome ξ can be defined directly as
follows:

Ftotal = α1 × Norm(
1

Cmin
) + α2 × Norm(

1
Mmin

) + α3 × Norm(Emax), (4.1)

where Norm(·) is a normalization function that re-scales the input value to [0,1] so that Cmin, Mmin, and
Emax are comparable. Moreover, the symbol αi, i = 1, 2, 3 in Eq. (4.1), is the user-defined importance
(weight) associated with Cmin, Mmin, and Emax,

∑
i αi = 1, 0 ≤ αi ≤ 1. A larger weight presents much

importance. With Eq. (4.1), a chromosome with a higher fitness value presents a better FJSSP schedule.

4.3. The Genetic Operators

Typical genetic operators such as mutation, crossover, and reproduction are also applied to the
proposed chromosomes for the FJSSP. However, the task sequence for completing a job and the
job-machine assignment must be kept.

• Selection (Reproduction): Chromosomes are ranked by descending fitness, and top individuals are
selected using a hybrid of elitism and tournament selection. Elitism retains the top
(population size × probability) chromosomes to preserve high-quality solutions. Tournament
selection forms a mating pool by favoring fitter chromosomes, thereby preserving critical tasks
during crossover and improving solution quality.
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• Crossover: Crossover is applied to chromosomes in the mating pool to generate offspring. In
the OS part, the precedence operation crossover (POX) is utilized, as shown in Figure 3(a). The
crossover preserves task precedence while incorporating ω parameters to adjust task positions
based on priority. Tasks with higher priority are more likely to retain their positions. In the MS
part, two-point crossover is applied to exchange gene segments between parents, ensuring offspring
remain valid solutions. This method enhances diversity by exploring a broader solution space
(Figure 3(b)).

• Mutation: Mutation is applied separately for operation sequencing and machine assignment to
increase diversity. In the OS part, multi-point mutation randomly alters selected gene positions to
adjust task processing orders, as illustrated in Figure 4. In the MS part, a new processing machine
is randomly selected from the set of feasible machines for the task.

(a) POX crossover (J1={2,4}, J2={1,3,5}) (b) Two-point crossover

Figure 3. Chromosome crossover.

Figure 4. Mutation process illustration.

4.4. Tool constraints

The chromosome representation defined in Section 4.1 does not consider machine-tool constraints;
any available machines can process jobs. This study retains the aforementioned chromosome
representation and designs a tool-constraint (TC) template to check the job-machine assignment in the
chromosome with tool constraints. A TC template has the same structure and length as a chromosome.
Each element in the OS part of a TC template is the tool which must be used by task oi, j. Each element
in the MS part is a link to the machine-tool availability table, denoting the tool provided by the machine.
Suppose the machines in Figure 2(a) provide two types of tools, A and B. The example given in
Figure 5 presents a TC-template for the job-task-machine status of Figure 2. Referring to the
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chromosome of Figure 2(b), Task o1,1 is assigned to M4, which provides both Tool A and Tool B, and is
capable of processing o1,1. Task o3,2 needs to be processed by Tool A; however, it is assigned to M3,
which provides Tool B only, and cannot process o3,2. By referring to the TC-template, the feasibility of
a job-machine assignment can be checked. A chromosome with a feasible job-machine assignment is
reserved; otherwise, it is discarded.

Figure 5. A TC template example

4.5. Re-Scheduling with expedited orders

the typical FJSSP starts with all jobs without being machined, and when using GA for the FJSSP, all
chromosomes are initialized randomly. However, expedited orders are considered when the factory is
running a determined job-machine assignment/schedule wherein assigned jobs occupy some machines,
and the machined tasks can not be suspended or stopped. To make the proposed GA-based method
workable for both the FJSSP with typical orders as well as with expedited orders, the following
mechanisms are designed.

4.5.1. Job priority

Suppose that the regular orders are scheduled as Figure 2 and an expedited order containing two jobs,
J4 and J5, is inserted at time 4. When the expedited order is considered, the completed tasks, o1,1, o2,1,
o3,1, and o3,2, can be ignored in the re-scheduling process. The working-on tasks, o1,2, o2,2, and o3,3, are
currently being machined on M3, M4, and M1, respectively. These tasks can be suspended or abandoned
to increase the availability of machines.

However, suspending or abandoning working-on tasks may increase cost. Scheduled and waiting-for
processing tasks can be re-scheduled, and their assigned machines can be reassigned. Notice that a
working-on task that is partially completed does not allow for being interrupted or transferred to another
machine, because mid-task transfers would require re-fixturing, recalibration, and additional quality
checks and introduce significant costs, delays, and risks of defects. The proposed GA framework
only adjusts tasks that have not yet started, while allowing on-going operations to finish uninterrupted.
This design is consistent with industrial practice and avoids impractical assumptions about mid-task
migration.

In this study, the chromosome considering expedited orders is of the same form as Figure 2. The
length of such a chromosome is twice the length of all uncompleted tasks, including those that are
being worked on, waiting for, and expedited. Assume that J4 and J5 both consist of three tasks. The
chromosome for describing such a situation is depicted in Figure 6(a). The locked part is working-on
tasks and machines, the regular part is scheduled waiting for tasks and machines, and the expedited part
is for expedited tasks.
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For scheduling a regular FJSSP, all jobs are assumed to be of equal importance. Expedited orders,
which are typically rushed, may be more critical than regular tasks and should be completed as soon as
possible. To distinguish the importance of jobs, a weight ωi is assigned to each job Ji. The value of
ωi is defined by [0,1], with 1 as the most important and 0 the least. Additionally, tasks and machines
that are currently in use are possibly locked and should not be changed unless absolutely necessary. In
practical applications, some machines may be suspended for maintenance or other purposes. The study
considers all these factors by introducing the job-priority (JP) template of chromosomes.

A JP template has the same structure and length as a chromosome. Each element in the OS part of a
JP template is the weight ωi, j of each task oi, j, and by default, the subtasks of Job Ji have an equal weight,
ωi, j = ωi. INF means the task is locked and can not be re-scheduled. The MS part of a JP template
presents the availability of machines. An element in the MS part is 0, which means the machine is
assigned to a working-on job; 1 means the job-machine assignment is not decided. Figure 6(b) presents
a JP-template for the job-task-machine status of Figure 6(a).

(a) Regular and expedited jobs (b) JP-template

Figure 6. Chromosome encoding for expedited orders.

4.5.2. Fitness adjustment

When the expedited orders are considered in the GA-encoded JFSSP, several factors are affected
by the insertion of new jobs, such as the availability of machines, the delays caused to pre-scheduled
jobs, and the impact on profits (or penalties). Due to the occupation of workable machines by scheduled
jobs, the availability of machine resources is reduced, and the completion of some jobs may be delayed,
resulting in profit loss or penalties. These factors correspond to constraints or adjustments in the
GA operations, mainly including job completion time (Cmin) and profit (Emax) in the fitness function
(Eq. (4.1)). For machine wear (Mmin), as it inevitably increases with the addition of more jobs, the
original objective function can still be used without modification.

According to the definition of expedited orders, critical jobs should be completed sooner. Thus,
jobs with higher importance completed quickly will yield higher fitness values, while those completed
more slowly will result in lower fitness values. Based on these characteristics, the design of the two
affected objective functions in Eq. (3.8) is tailored accordingly. The job completion time (Cmin) is first
considered if it is affected by the expedited order. If the expedited order does not cause any delays, the
original schedule can proceed without modifications. However, if delays occur, the completion time
must be extended accordingly.

Let wi be the priority (weight) associated with job Ji’s completion time. The objective function,
considering the new completion time, is modified as follows:

C′min =
1

Cmin
+

n∑
i=1

fi × (ωi ×
1

Cmin
×

TCi

Ci
) (4.2)
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= (1 +
n∑

i=1

fi × ωi ×
TCi

Ci
)/Cmin, (4.3)

where fi is a selection function, as used in Eq. (3.4). The value TCi
Ci

is the ratio of Ji’s ideal (shortest)
competing time, i.e., without any delays or time-waste in waiting for available machines for completing
all oi, j. TCi=

∑
j(mink{ti, j,k}) denotes the ideal total time required to complete all operations of job Ji.

For example, in Figure 2, Job1 can theoretically be completed in 11 units of time if each operation is
processed consecutively without delays: O1,1 on M4 (1 unit), O1,2 on M3 (3 units), O1,3 on M2 (5 units),
and O1,4 on M2 (2 units). This yields TC1 = 11. However, in actual scheduling, the preferred machine
may not always be available for a given operation, and waiting times inevitably occur. For instance, O1,2

experiences a 2-unit waiting time after O1,1, resulting in an actual completion time C1 = 13. The ratio
TCi/Ci is therefore used to indicate whether a job is executed with high priority and minimal delay; a
higher ratio reflects a schedule that more closely respects the job’s priority. The fraction 1

Cmin
is for the

adjustment of consistency with other factors.
Expedited orders usually come with higher profits. Thus, the fitness function considers maximizing

all profits gained from the completion of all jobs, including the expedited ones. The weighted profit
objective E′max is considered, as shown in Eq. (4.4).

E′max = Emax +

n∑
i=1

fi × (ωi × ei ×
TCi

Ci
) (4.4)

Notice that the proposed method can be used directly for regular job scheduling by setting the
chromosome and the fitness functions. For example, Eq. (4.3) and Eq. (4.4) can be reduced to Eq. (3.1)
and Eq. (3.4), respectively, by setting the parameters associated with expedited jobs, such as C′i and
W ′ok, as 0. The proposed fitness function can be used for scheduling both regular and expedited jobs.

4.6. Processing flow

Our proposed method for the FJSSP, considering expedited orders and tool constraints, is depicted in
Figure 7 and Algorithm Our Proposed GA Framework “Our Proposed GA Framework”. The method
can be used for regular job scheduling as well as for expedited orders. For scheduling regular jobs,
chromosomes are encoded as OS and MS parts, and GA optimizes schedules based on minimizing
makespan, machine wear, and maximizing profit, guided by the TC template to ensure feasibility.
Regular jobs are initially treated equally in the same priority in the JP template. Chromosomes are
initialized randomly and processed by a regular GA. Upon completion, this phase yields a baseline
optimized schedule for regular jobs.

When expedited orders arrive, the scheduling system dynamically adjusts by classifying jobs into
completed, on-going, unprocessed, and expedited categories. Completed tasks are locked, on-going
tasks are minimally adjusted, and new expedited orders are prioritized explicitly by setting the JP
template that assigns higher weights. Chromosomes are extended by considering the on-going and
new expedited jobs, and initialized with on-going tasks assigned to the machines in the insertion time
and expedited tasks assigned to workable machines randomly. The schedule is then re-evaluated using
updated fitness criteria, explicitly incorporating job priority and tool constraints. The genetic operators
are applied as regular GA for re-optimizing the schedule, balancing high-priority expedited orders with
minimal disruptions, resulting in an integrated, feasible, and optimized production schedule.
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Algorithm Our Proposed GA Framework
1: function GA-FJSSP-Expedited-Order-Tool-Constrains(J, M, TC, α1, α2, α3, e, S , ts)
2: if e then
3: Classify tasks in S at ts (completed, ongoing toi, j > 0, waiting); Extend J with unfinished + expedited;
4: Create JP with ωi, j (high for expedited), machine availability; ▷ Adjust for expedited mode
5: else
6: Set equal ωi, j = 1 in JP; ▷ Regular mode
7: end if
8: Encode chromosomes ξ as OS +MS;
9: for i = 1 to popsize do

10: if e then
11: ξ ← Extend S + random for expedited (feasible with respect to TC/JP);
12: else
13: ξ ← Random feasible OS/MS;
14: end if
15: end for ▷ Initialize population
16: repeat
17: for each ξ do
18: Decode to compute Cmin, Mmin, Emax;
19: if e then
20: Adjust C′min (Eq.15), E′max (Eq.16) with ωi;
21: end if
22: Ftotal ←

∑
αi · Norm(ob ji) (Eq.13);

23: end for ▷ Fitness evaluation
24: Select elites + tournament pairs;
25: for each pair do
26: if rand < pr(x) then
27: Crossover: POX(OS, ω) + two-point(MS);
28: end if
29: if rand < pr(m) then
30: Mutate: Multi-point swaps (feasible w.r.t. TC/JP);
31: end if
32: end for ▷ Genetic operators
33: until max generations or convergence;
34: return Best schedule from top ξ;
35: end function
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Figure 7. The processing flow of the proposed method

5. Experiments

The following section introduces the experimental environment and the datasets used in this study.
Various combinations of GA parameters, fitness function parameters, and the proposed designs from
this research were tested to conduct experiments.

5.1. Datasets and test environments

This study addresses a specialized scheduling problem that involves both expedited order insertion
and tool change constraints. However, there are currently no publicly available benchmark datasets
that reflect these requirements. Existing test instances for the FJSSP are not applicable to this research.
Therefore, this study conducts experiments using real-world scheduling data obtained from a precision
screw manufacturing factory specializing in aerospace components. The dataset has been sanitized to
remove proprietary business information, and has been appropriately transformed for research purposes.
Table 2 presents each machine’s processing cost along with the set of processes it can perform under
different tool types. The factory operates 21 machining units (M1–M21), each capable of performing
different types of processes. These machines support various tool configurations and allow for tool
changes depending on the processing requirements. Each machine can handle unique processes using
the different tools, depending on its configuration. The processing time and operation cost of each
machine vary accordingly. For example, machine-1 (M1) has a processing cost of 100, and can perform
process P11 using Tool A in 22 time-units, and process P11 using Tool B in the same processing time.
M1, M2, and M3 are similar machines for handling tools and processes, but vary in operation costs.
Similarly, M14 supports only the process P15 using Tool A in 57 time-units.
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Table 2. Machine operational cost and tool constraints.

Machine (Cost) Tool A (Process, Time) Tool B (Process, Time)
M1(100), M2(110), M3(120) (P11, 22) (P11, 22)
M4(150), M5(155), M6(160) (P12, 36) (P12, 36)
M7(165), M8(160), M9(165) (P12, 36) (P12, 36)
M10(350) (P13, 6), (P15, 57) (P13, 6), (P14, 27)
M11(400) (P13, 6), (P14, 27), (P15, 57) (P13, 6), (P14, 27)
M12(450), M13(450) (P13, 6), (P14, 27), (P15, 57) (P13, 6), (P14, 27), (P15, 57)
M14(250) (P15, 57) –
M15(350), M16(300) (P35, 6), (P45, 6) (P13, 6)
M17(220), M18(230) (P45, 6), (P55, 6) –
M19(300), M20(280), M21(285) (P16, 30) (P16, 30)

Table 3 summarizes the job list used in this experiment. A total of ten jobs are included, each
defined by its machining type, a sequence of required operations (denoted as OP-1 through OP-6), and
parameters such as due date, profit, and late penalty. For example, Job 3 requires being processed by
Tool A and must undergo the process sequence, P11, P12, P14, P55, and P16. The job has a due date of
218 time units, yields a profit of 160 if completed on time, and incurs a penalty of 16 if delayed.

Table 3. The test job set.

Job Type OP-1 OP-2 OP-3 OP-4 OP-5 OP-6 Tasks Due Profits Penalty
Job1 A P11 P12 P35 P14 P55 P16 6 169 300 30
Job2 A P11 P12 P13 P14 P55 P16 6 222 330 33
Job3 A P11 P12 – P14 P55 P16 5 218 160 16
Job4 B P11 P12 P13 P14 P15 P16 6 349 250 25
Job5 A P11 P12 P35 P45 P55 – 5 99 210 21
Job6 B P11 P12 P13 P14 P15 P16 6 215 340 34
Job7 A – P12 P35 P45 P55 P16 5 162 240 24
Job8 A P11 P12 P13 P14 P55 P16 6 214 300 30
Job9 A P11 P12 P35 P45 P55 P16 6 189 350 35
Job10 A P11 P12 P35 P14 P15 P16 6 243 310 31
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All experiments were conducted on a 12-core computer equipped with an Intel(R) Core(TM) i7-
12700 CPU@2.30GHz running Windows 11. The proposed methods were implemented in Python in a
virtual environment created using pipenv and the Matplotlib library.

5.2. Experiment A: determining GA parameters

Genetic-based methods work with many parameters. For determining an effective set of GA parameters,
thoroughly conducting experiences with all combinations of parameters and weights may be helpful but
impractical. In this experiment, various combinations of probabilities of generic operators, pr(m) and
pr(x), are used to evaluate the performance of regular scheduling. The length of the chromosome is
57 × 2 = 114, which describes the job-machine assignment for the 57 tasks associated with the ten jobs.
Each gene in the OS part represents a job, i.e., 1–10, and the one in the MS part represents a machine, i.e.,
1–21. According to the tool constraints, job-machine assignments with improper tools are discarded. The
time delays and wear cost caused by tool changes are considered in the fitness function, as denoted in
Eq. (3.5)–Eq. (3.6). The importance of all tasks is set as 1 in the JP template, as they are considered of
equal importance. The time and wear cost for tool changes are set as 2 and 1, respectively.

In the following experiments, PG (performance gain) evaluates the improvement of a schedule
against a reference schedule.

PG(a, f ) =
a − f

a
, (5.1)

where a is a reference value and f is the performance to be compared, and both are for the same
object. PG can be applied for Cmin, Emax, and Mmin as PGC, PGM, and PGE , respectively, and the overall
performance gain is denoted as T PG, as shown in Eq. (5.2).

T PG = α1 × (−1 × PGC) + α2 × (−1 × PGM) + α3 × PGE (5.2)

The test dataset listed in Table 3 was evaluated for regular scheduling (no expedited orders) with α1 =

0.3, α2 = 0.3, α3 = 0.4, and 100 populations of chromosomes for 10,000 generic iterations. Each test is
repeated 10 times with the same parameter settings. The evaluation results are shown in Table 4. The
experimental results show that the best pr(x) is 0.85, and pr(m) is 0.30.
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Table 4. Performance evaluation with various pr(x) and pr(m).

(a) pr(m)=0.50 and various pr(x)

pr(x) Cmin Mmin Emax PGC PGM PGE T PG
*1.00 300 419 1580 0.000 0.000 0.000 0.000
0.60 352 465 1448 0.173 0.111 -0.084 -0.123
0.65 343 454 1340 0.143 0.085 -0.152 -0.127
0.70 328 426 1480 0.093 0.018 -0.063 -0.058
0.75 335 436 1635 0.117 0.041 0.035 -0.041
0.80 319 402 1786 0.063 -0.039 0.130 0.035
0.85 292 402 2020 -0.027 -0.039 0.278 0.115
0.90 297 405 1956 -0.010 -0.034 0.238 0.094

*: the reference experiment
(b) pr(x)=0.85 and various pr(m)

pr(m) Cmin Mmin Emax PGC PGM PGE T PG
*0.50 292 402 2020 0.000 0.000 0.000 0.000

0.05 305 424 1580 0.045 0.053 -0.218 -0.105
0.10 313 422 1495 0.072 0.049 -0.260 -0.127
0.15 297 437 1950 0.017 0.086 -0.035 -0.046
0.20 299 428 1856 0.024 0.063 -0.081 -0.056
0.25 300 402 1756 0.027 -0.002 -0.131 -0.052
0.30 292 400 2220 0.000 -0.005 0.100 0.035
0.35 303 426 2018 0.038 0.058 -0.001 -0.032

Figure 8. Job-machine schedule generated for the jobs in Table 3.
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Figure 8 illustrates the scheduling result for regular orders under the best parameter settings. The
earliest completed job was J1 (at time 146), while the latest was J4 (at time 237). Machines M4 and M5

were the most heavily utilized due to their relatively low operating costs (150 and 155, respectively),
while M7 and M9, with the highest cost (165), remained idle to minimize total machine expenses.
Among machines with similar cost levels, M17 (cost 220) received a higher workload than M18 (cost
230), reflecting cost-sensitive scheduling behavior. Job J5, which had the tightest due date (99), was
completed at time 159 without delay, and all other jobs were also completed on time. Job J6 exhibited
the highest continuity in processing, with no idle gaps between its operations. A total of 12 tool changes
occurred during the schedule at M1(2), M2(2), M5(1), M8(1), M12(1), M13(1), M15(1), M16(1), M20(1),
and M21(1), including both transitions from tool type A to B and vice versa.

5.3. Experiment B: inserting expedited orders

This experiment is designed to validate the proposed method’s capability in handling expedited orders
and to evaluate its robustness under different levels of job importance. The scheduling is conducted
using the optimal GA parameters identified in Section 5.2. Three expedited jobs are assumed to arrive
during an ongoing production schedule. The detailed job definitions, including their process routes, due
dates, profits, and penalties for lateness, are summarized in Table 5.

Suppose that the insertion of the expedited jobs occurs at time point 50 in the schedule presented in
Figure 8. At that moment, some operations (e.g., o10,1, o9,1, o1,1, o6,1, o8,1, o5,1, o7,1) have already been
completed, while others (e.g., o4,1, o3,1, o10,2, o8,2, o1,2, o6,2) are currently in progress. The remaining
tasks are scheduled but have not yet started processing.

Table 5. Expedited orders: Three jobs inserted into the schedule.

Job Type OP-1 OP-2 OP-3 OP-4 OP-5 OP-6 Tasks Due Profits Penalty
Job11 A P11 P12 P35 P45 P55 P16 6 116 250 25
Job12 B P11 P12 P13 P14 P15 – 5 158 240 24
Job13 B P11 P12 – P14 P15 P16 5 182 190 19

To accommodate the expedited jobs, the chromosome structure must be expanded. Originally, there
were 57 tasks, of which seven had been completed. The insertion adds 16 new tasks, while the number
of machines remains unchanged at 21. Thus, the new chromosome length becomes 66 × 2 = 132.
Tasks currently in progress (i.e., o4,1, o3,1, o10,2, o8,2, o1,2, o6,2) are preserved as locked operations in the
chromosome. Each gene in the OS part represents a job identifier from 1 to 13, while each gene in the
MS part denotes one of the 21 available machines. Assignments for completed tasks are removed, as are
infeasible machine-tool pairings. Also, the time and wear cost of tool changes are considered as those
in Experiment A. Based on the JP-template design, the importance of in-progress tasks is set to infinity
to prevent re-scheduling. The priority values of tasks that have been scheduled but not yet started, as
well as newly inserted expedited jobs, can be adjusted by the user.

The goal of this experiment is to assess the effectiveness of the proposed priority mechanism ω
for expedited orders. The fitness function uses α1 = 0.4, α2 = 0.3, and α3 = 0.3, assigning slightly
higher weight to minimizing makespan (Cmin), while still considering machine wear (Mmin) and overall
profit (Emax). Three levels of importance are evaluated for the expedited jobs: ω = 1 (very important),
ω = 0.5 (equally important to regular jobs), and ω = 0.1 (less important than regular jobs). These weight
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combinations are assigned to Job11–Job13. The results are summarized in Table 6. For comparison, the
case where ω = 0, meaning that all expedited jobs are ignored until all regular jobs are completed, is
treated as the baseline.

Table 6. Priority combinations for expedited orders: ω=1, 0.5, 0.1.

Job importance Fitness values Completing time
ω11 ω12 ω13 Cmin Mmin Emax Job11 Job12 Job13

0.0 0.0 0.0 227 340 2271 222 185 227
1.0 0.5 0.1 227 340 2271 134 172 227
1.0 0.1 0.5 211 336 2415 158 195 185
0.5 1.0 0.1 227 323 2613 164 134 186
0.5 0.1 1.0 272 327 2181 182 173 158
0.1 1.0 0.5 257 341 2334 172 135 154
0.1 0.5 1.0 271 346 2163 271 176 135

The results demonstrate that assigning ω = 1 leads to significantly earlier completion times for
expedited jobs, confirming the effectiveness of high-priority insertion under the condition α1 > α2 = α3.
When ω = 0.5, the expedited jobs are still effectively prioritized, with completion times falling between
those of regular jobs. In contrast, when ω = 0.1, only a slight improvement is observed, and job
completion becomes more influenced by other factors. Notice that job priorities (ωi) guide but do not
solely determine execution order. In Table 6, Job 12 finishes before Job 11 because it could be processed
immediately with the required tool, while scheduling Job 11 first would have caused extra tool changes
and idle time. The method provides scheduling recommendations rather than fixed rules, and decision
makers can adjust weights to enforce different trade-offs, demonstrating the flexibility of the fitness
function design. Due to space limitations, only the scheduling result when ω11 = 1.0, ω12 = 0.5, and
ω13 = 0.1 is presented in Figure 9.
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Figure 9. Scheduling for the expedited orders with ω11 = 1.0, ω12 = 0.5, ω13 = 0.1.
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Figure 9 presents the scheduling result after expedited orders are inserted, with the re-scheduling
process initiated at time 50. As shown on the x-axis, ongoing operations at the moment of insertion-
such as O4,1, O3,1, O10,2, O8,2, O1,2, and O6,2 remain unchanged in the revised schedule, reflecting the
algorithm’s ability to preserve in-process tasks. The insertion of expedited orders led to notable changes
in machine utilization and job completion performance. Machines M7 and M9, previously unused due
to their high operating costs, were activated to ensure overall feasibility and profitability, despite their
expense. M12 became the most heavily utilized, while M6 (idle after 160), M15 (idle after 350), and
M18 (idle after 230) remained largely unused. The earliest completed job after re-scheduling was J8

(at time 147), while the latest were J12 and J13 (both at time 274). Job J5, with the shortest due date
(99), was completed at time 208, indicating a delay caused by the prioritization of expedited orders.
Several jobs (J1, J4, J5, J7, J11, J12, and J13) originally completed on time were delayed, while the rest
remained unaffected. A comparison between Table 3 and Table 6 reveals that jobs remaining on time
generally had higher penalty weights (over 30) than those that were delayed, suggesting the algorithm’s
implicit bias toward minimizing total penalty rather than strictly minimizing lateness. Moreover, the
completion sequence of the expedited orders (J11 → J12 → J13) corresponds precisely with their
priority weights (1 > 0.5 > 0.1), validating the effectiveness of the job priority template. From a
resource perspective, the expedited orders increased demand for B-type operations, leading to higher
utilization of machines equipped for B-type tooling and a total of 16 tool changes across the schedule.
Conversely, A-type machines such as M17 received more A-type workloads to accommodate the shifted
task distribution. These changes highlight the system’s flexibility in adapting resource allocation to
accommodate high-priority orders under tool constraints.

5.4. Experiment C: decision-making for re-scheduling

The decision to insert expedited orders is context-dependent and influenced by multiple factors.
Before such orders are accepted into an existing schedule, it is important to evaluate whether their
inclusion may degrade overall performance, such as reducing total profit, increasing task delays, or
overloading resources. For this purpose, the TPG metric defined in Eq. (5.2) is adopted as the primary
evaluation criterion to assist users in making informed re-scheduling decisions.

To demonstrate the decision-making process, the three expedited jobs in Table 5 are considered
again for insertion into the existing schedule in Figure 8 (regular job scheduling only). Depending on
the decision-making objectives, two sets of weight combinations for TPG are examined: (α1, α2, α3) =
(0.6, 0.1, 0.3) and (0.3, 0.1, 0.6), corresponding respectively to scheduling preferences focused on
minimizing makespan and maximizing profit. This experiment uses the job priority weightsω introduced
in Experiment B, and tests all expedited job combinations, as listed in Table 7. The check-mark denotes
that the job is considered in the job configuration. The original schedule without any expedited orders
serves as the baseline for comparison. The impact of each combination on the TPG value is analyzed,
and the results are shown in Figures 10–12.

Table 7. Expedited job insertion combinations.

Jobs cfg-1 cfg-2 cfg-3 cfg-4 cfg-5 cfg-6 cfg-7
Job11 ✓ ✓ ✓ ✓
Job12 ✓ ✓ ✓ ✓
Job13 ✓ ✓ ✓ ✓
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Re-scheduling: Scenario-A

Figure 10(a) presents the comparative results of different scheduling configurations (cfg-1 to cfg-
7) in terms of makespan (Cmin), machine wear (Mmin), and profit (Emax). Among all configurations,
the baseline schedule without expedited orders achieved the highest profit Emax while maintaining
competitively low values for both Cmin and Mmin. Figure 10(b) shows the overall performance index
(TPG), which aggregates the weighted contributions of all three objectives. The TPG values for
configurations cfg-1 through cfg-7 were consistently lower than the baseline, with differences ranging
from −0.043 to −0.246. The results indicate that inserting the three expedited orders lowers overall
scheduling performance. The optimizer consistently scheduled them after all regular jobs, suggesting
that this sequence yields the greatest system-level benefit. These findings highlight the framework’s
effectiveness as a decision-support tool for assessing alternative scheduling strategies across multiple
objectives.
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Figure 10. Decision-making for re-scheduling with α1 = 0.6, α2 = 0.1, and α3 = 0.3, and
ω11 = 1.0, ω12 = 0.5, and ω13 = 0.1. The best result is the baseline model, no expedited jobs
allowed.

Re-scheduling: Scenario-B

Figure 11 presents the experimental results using the weight setting α1 = 0.3, α2 = 0.1, and α3 = 0.6
(emphasizing profit), and job priorities ω1 = 0.5, ω2 = 1.0, and ω3 = 0.1, where Job 12 is considered
more important. As shown in Figure 11(a), configuration cfg-5 achieved the highest profit and the lowest
machine wear, with a makespan comparable to other configurations. In the overall TPG performance shown
in Figure 11(b), cfg-5 was the only configuration that outperformed the baseline (no expedited orders),
indicating that selectively inserting only Job12 is a favorable scheduling strategy under this setting. The
Gantt chart in Figure 11(c) further reveals that Job12, due to its long processing sequence, was completed
last. Operation O12,5 was assigned to M12 instead of M13 to avoid interfering with O4,5 and ensure the timely
completion of Job4. As a result, M12 became the busiest resource in the schedule. In contrast, M7, M15, and
M18 were left idle, likely due to their higher operational costs compared to equivalent machines. The total
number of tool changes was 11, identical to the baseline schedule, indicating that this configuration did not
incur additional tool-switching overhead. These results suggest that selectively inserting only Job12, while
deferring Job11 and Job13, yields the best trade-off across objectives under profit-prioritized conditions.
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Figure 11. Decision-making for re-scheduling with α1 = 0.3, α2 = 0.1, and α3 = 0.6, and
ω11 = 0.5, ω12 = 1.0, ω13 = 0.1. The best result is the cfg-5 model-insert Job12 only.

Re-scheduling: Scenario-C

Figure 12 presents the experimental results under the same weight setting as in Scenario-B (α1 = 0.3,
α2 = 0.1, α3 = 0.6), but with a new job priority: ω11 = 0.1, ω12 = 0.5, and ω13 = 1.0, indicating that
Job13 is now considered the most important. As shown in Figure 12(a), multiple configurations (cfg-2,
cfg-5, cfg-6, and cfg-7) outperformed the baseline in terms of combined scheduling objectives. Notably,
cfg-6 achieved the highest overall performance, with a TPG value of 0.150, as shown in Figure 12(b).
The configuration cfg-6 recommends inserting both Job12 and Job13. Although this configuration results
in a longer makespan, it yields the highest profit while maintaining similar levels of machine wear
compared to other configurations. The Gantt chart in Figure 12(c) shows that Job12 was completed
last due to its longer sequence. Machine M7 remained idle in this schedule, and a total of 12 tool
changes occurred, only one more than in the baseline case, indicating efficient tool usage despite the
additional workload. Since both Job12 and Job13 require B-type tools, machines equipped for B-type
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operations exhibited more continuous utilization than in previous scenarios. These results show that,
depending on user priorities, several configurations offer better performance than the baseline. For
instance, inserting only Job12 (cfg-5) or both Job12 and Job13 (cfg-6) are viable strategies that balance
profitability and resource efficiency. The framework thus provides flexible decision-support for selecting
the most suitable expedited order insertion plan under varying job importance settings.
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Figure 12. Decision-making for re-scheduling with α1 = 0.3, α2 = 0.1, and α3 = 0.6, and
ω11 = 0.1, ω12 = 0.5, and ω13 = 1.0. The best result is the cfg-6 model-insert Job12 and Job13.

6. Conclusion and future work

6.1. Conclusion

This study presents a GA-based scheduling framework that simultaneously addresses two critical and
often overlooked challenges in flexible job shop scheduling: expedited order insertion and tool change
constraints. By incorporating a job priority (JP) template and a tool constraint (TC) template into the
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GA processing flow, the proposed method enables dynamic adjustment of schedules to accommodate
expedited orders while ensuring tooling feasibility and minimizing disruptions to in-progress operations.
Few studies have simultaneously considered both expedited orders and tool constraints in the context
of the FJSSP. The value of our study lies in integrating these two practical factors into a unified GA-
based framework and demonstrating its applicability through validation with real industrial data. The
approach was evaluated using real-world scheduling data from a precision screw manufacturing plant,
rather than synthetic benchmarks, thereby demonstrating its practical relevance and robustness under
realistic production conditions. The results confirm that the method can flexibly integrate dynamic job
requirements while maintaining schedule efficiency, highlighting its potential as a reliable decision-
support tool for real-world production environments.

In practical manufacturing settings, job, machine, and tool requirements are often complex and
interrelated. Due to the absence of publicly available benchmark datasets, the test data used in this
study were simplified and de-identified for confidentiality. However, the proposed method is inherently
adaptable, allowing practitioners to adjust input parameters and formats without modifying the core
algorithm. Moreover, the combination of job priority weights (ω) and objective weights (α1, α2, α3)
effectively guides re-scheduling decisions. The ω values influence the selection of expedited jobs during
chromosome evolution and are embedded in the fitness function, while the α weights control trade-offs
among makespan, machine wear, and profit. This integration enables adaptive determination of both
the timing and number of inserted jobs, providing a flexible and extensible framework for real-time
scheduling adjustments.

6.2. Discussions and future work

Discussions

This study contributes not only by proposing a scheduling algorithm with strong optimization
performance, but also by addressing two practical challenges often overlooked in existing literature:
dynamic expedited job handling and tool changeover coordination. This study adopts a single-objective
fitness function that linearly combines multiple objectives using user-defined weights. While this
approach is straightforward and computationally efficient, making it suitable for responsive scheduling
environments, it inherently simplifies the trade-offs among objectives. Although multi-objective
optimization methods [36] are well-suited for capturing Pareto-optimal trade-offs, our tests revealed that
their longer computational time is less compatible with the rapid decision-making needs of real-world
production. Additionally, hybrid tabu search (TS) and simulated annealing (SA) have been applied to
the FJSSP; Kacem et al. [37] showed that GA outperforms both in multi-objective contexts. Recent
evidence confirms that GA-based methods remain among the most effective and practical approaches
for solving the FJSSP [37–39]. Compared with traditional scheduling methods and advanced
optimization approaches, GA-based frameworks are easier to implement while still delivering
high-quality solutions. Based on this established result and the scope of this work, we omit redundant
comparisons and focus instead on real-time, tool-aware scheduling under dynamic conditions.

Although optimization-based methods such as MILP and CP [40] can provide optimal solutions for
small and static problems, their applicability is limited in the present context. The NP-hard nature of
FJSSP makes exact methods impractical for producing timely solutions for the underlying applications.
The objective function used here combines multiple dimensions, including makespan, tool-related costs,
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and profit, with dynamic priority adjustments for expedited orders. Translating these non-linear and
conditional components into a linear MILP or CP model would be prohibitively complex. In contrast,
exact optimization often requires long computation times that are not acceptable in practice. Besides, it
is easier to expand the objective function when new scheduling factors arise. For these reasons, GA
offers a practical balance between solution quality and computational efficiency in real factory settings.

Table 8. Qualitative comparison of different scheduling approaches in the context of the FJSSP
with expedited orders and tooling constraints

Aspect Manual Typical MOO DL/RL Ours

Decision
basis

Experience Exact models or
simple rules

Evolutionary
Pareto search

Trained policies Evolutionary
search with
priorities

Expedited
orders

Manual insert,
delays others

Fast but static and
shortsighted

Possible but slow Retraining often
needed

Dynamic
insertion,
minimal
disruption

Tool
changes

By judgment,
frequent

Modelable but
complex, ignore

Modelable but
costly

Rarely modeled Explicitly
minimized in
fitness

Reaction
time

About 8H
reschedule

Minutes to hours,
for small jobs,
low quality

Hours+ Long training
time, fast
inference

Minutes, revised
schedule

Stability Large rework Disrupts plan,
local only

Pareto front
selection

Stability unclear Preserves
ongoing jobs

Scalability Poor Exponential time Grows rapidly
with size

Heavy compute Effective for
medium/large
jobs

Adoption Common,
inconsistent

MILP rare in
SMEs; Rules
used simply

Mostly academic Few pilot cases Lightweight,
practical in SMEs

SME: Small and Medium-sized Enterprises

The tool-aware genetic encoding and dynamic insertion mechanism together allow the system to
preserve in-process schedules, avoid unnecessary tool switches, and accommodate urgent orders without
complete re-scheduling. These characteristics are crucial for deployment in real-world factories, where
stability, reactivity, and transparency are equally important as solution quality. Our industrial partners
also indicate that methods that are simple, fast, and responsive are preferable in practical applications.
Feedback from field engineers further confirms the model’s usability and adaptability in production
scenarios with fluctuating priorities and tooling limitations. Table 8 provides a qualitative comparison
of different scheduling approaches to clarify their relative strengths and limitations.
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Future work

The crossover and mutation rates in this study were chosen based on preliminary tests (e.g., Table 4)
to ensure stable results within short computation times. Although effective for the industrial case,
fixed settings may not be optimal. Future work will explore adaptive or learning-based tuning, such
as reinforcement learning or Bayesian optimization [41], to enhance robustness in larger or more
dynamic environments. As scheduling is an NP-hard problem, its combinatorial complexity renders
exact methods impractical for industrial-scale instances, making metaheuristic approaches an effective
alternative for efficiently navigating the vast solution space. As stated in Section 2, DRL is a state-of-
the-art framework showing significant promise in dynamic scheduling by learning complex, adaptive
policies from data [17, 19, 34]. While powerful, its practical application in many manufacturing settings,
especially small and medium-sized enterprises, is hindered by substantial requirements for large-scale
data, long training times, and high computational cost.

However, recent developments in DRL-based metaheuristics have shown promising results for
complex scheduling problems. In particular, proximal policy optimization (PPO) [42, 43] has been
effectively combined with variable neighborhood search (VNS) [44] in population-based frameworks
to improve search efficiency. PPO serves as a learning agent that guides the neighborhood selection
or switching process in VNS, using feedback from the search trajectory to balance exploration and
exploitation dynamically. Such hybrid DRL-VNS mechanisms have demonstrated faster convergence
and better adaptability in stochastic and dynamic environments. A potential direction for future research
is to explore hybrid DRL-heuristic strategies that reduce these burdens while retaining adaptability,
making them more practical for resource-constrained manufacturing environments. Similar learning-
guided strategies could be integrated into the proposed GA framework to adjust search parameters or
insertion weights in real time, improving responsiveness for expedited orders and tool change scenarios
in flexible job-shop scheduling.

In scheduling, “nervousness” refers to situations where small changes can lead to large disruptions.
Our GA mitigates this effect by incorporating tool-change costs into the fitness function and restricting
changes to jobs that have not yet commenced. This design lowers unnecessary re-scheduling and
improves stability. A full treatment of nervousness would require additional factors, such as labor and
material costs and organizational aspects. However, our proposed GA framework can flexibly integrate
these factors if they can be quantitatively defined. These will be addressed in our future research.
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