Research article

Optimal control of persuasive communication for emergency management

  • Published: 17 November 2025
  • 37N35, 37N40

  • Following emergencies, related information rapidly spreads online, and persuasive communication is essential for reducing negative effects. Based on the elaboration likelihood model (ELM) and observation of real-world cases, there are several heterogeneous cognitive routes among netizens, each with distinct information-processing mechanisms and associated persuasion costs. Thus, the selection of persuasion strategies can be formulated as a constrained optimization problem. To the best of our knowledge, this study is the first to integrate ELM-based cognitive heterogeneity into opinion dynamics modeling and to design the optimal persuasive communication strategy through dynamic optimal control. It was found that the effectiveness of persuasive communication depends on how well the strategy aligns with the major cognitive routes of netizens. Under more complex and dynamic settings, the optimal control solutions indicate that persuasion resource allocation should be adjusted according to the number of netizens and the route-specific persuasion costs. By integrating psychological insights with dynamic modeling and optimal control, this study improves the theoretical rigor and practical applicability of public opinion persuasion.

    Citation: Wanglai Li, Hanzhe Yang, Huizhang Shen, Zhangxue Huang. Optimal control of persuasive communication for emergency management[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 148-181. doi: 10.3934/jimo.2026006

    Related Papers:

  • Following emergencies, related information rapidly spreads online, and persuasive communication is essential for reducing negative effects. Based on the elaboration likelihood model (ELM) and observation of real-world cases, there are several heterogeneous cognitive routes among netizens, each with distinct information-processing mechanisms and associated persuasion costs. Thus, the selection of persuasion strategies can be formulated as a constrained optimization problem. To the best of our knowledge, this study is the first to integrate ELM-based cognitive heterogeneity into opinion dynamics modeling and to design the optimal persuasive communication strategy through dynamic optimal control. It was found that the effectiveness of persuasive communication depends on how well the strategy aligns with the major cognitive routes of netizens. Under more complex and dynamic settings, the optimal control solutions indicate that persuasion resource allocation should be adjusted according to the number of netizens and the route-specific persuasion costs. By integrating psychological insights with dynamic modeling and optimal control, this study improves the theoretical rigor and practical applicability of public opinion persuasion.



    加载中


    [1] X. Wang, N. Zhang, Uncertain spreading model of internet rumors on social media platforms, J. Ind. Manag. Optim., 20 (2024), 1–14. https://dx.doi.org/10.3934/jimo.2023066 doi: 10.3934/jimo.2023066
    [2] E. Bakshy, S. Messing, L. A. Adamic, Exposure to ideologically diverse news and opinion on Facebook, Science, 348 (2015), 1130–1132. https://dx.doi.org/10.1126/science.aaa1160 doi: 10.1126/science.aaa1160
    [3] Z. S. Dong, L. Meng, L. Christenson, L. Fulton, Social media information sharing for natural disaster response, Nat. Hazards, 107 (2021), 2077–2104. https://dx.doi.org/10.1007/s11069-021-04528-9 doi: 10.1007/s11069-021-04528-9
    [4] L. Luo, F. Nian, Cascading propagation of events in hierarchical supply chain networks, Nonlinear Dyn, 113 (2025), 17057–17080. https://dx.doi.org/10.1007/s11071-025-10881-2 doi: 10.1007/s11071-025-10881-2
    [5] W. Wood, Attitude change: Persuasion and social influence, Annu. Rev. Psychol., 51 (2020), 539–570. https://dx.doi.org/10.1146/annurev.psych.51.1.539 doi: 10.1146/annurev.psych.51.1.539
    [6] T. Ghofrani, The impact of new media technologies on persuasive communication in the time of global crisis, Int. J. Technol. Manage., 94 (2024), 419–435. https://dx.doi.org/10.1504/IJTM.2024.136420 doi: 10.1504/IJTM.2024.136420
    [7] F. Nian, X. Guo, J. Li, The model of information dissemination on social networks under epidemic-related panic, Int. J. Mod. Phys. B, 36 (2022), 2250005. https://dx.doi.org/10.1142/S0217979222500059 doi: 10.1142/S0217979222500059
    [8] J. Jia, X. Liu, Y. Zhang, Z. Li, Y. Xu, J. Yan, Rumor propagation controlling based on finding important nodes in complex network, J. Ind. Manag. Optim, 16 (2020), 2521–2529. https://dx.doi.org/10.3934/jimo.2019067 doi: 10.3934/jimo.2019067
    [9] D. Centola, How Behavior Spreads: The Science of Complex Contagions, Princeton University Press, 2018. https://dx.doi.org/10.2307/j.ctvc7758p.4
    [10] D. J. Daley, D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118–1118. https://dx.doi.org/10.1038/2041118a0 doi: 10.1038/2041118a0
    [11] D. J. Daley, D. G. Kendall, Stochastic rumours, IMA J. Appl. Math., 1 (1965), 42–55. https://dx.doi.org/10.1093/imamat/1.1.42 doi: 10.1093/imamat/1.1.42
    [12] S. Hosseini, M. Abdollahi Azgomi, A. Torkaman Rahmani, Dynamics of a rumor‐spreading model with diversity of configurations in scale-free networks, Int. J. Commun. Syst., 28 (2015), 2255–2274. https://dx.doi.org/10.1002/dac.3016 doi: 10.1002/dac.3016
    [13] Y. Dong, L. Huo, L. Zhao, An improved two-layer model for rumor propagation considering time delay and event-triggered impulsive control strategy, Chaos Solitons Fractals, 164 (2022), 112711. https://dx.doi.org/10.1016/j.chaos.2022.112711 doi: 10.1016/j.chaos.2022.112711
    [14] B. Gürbüz, H. Mawengkang, I. Husein, G. W. Weber, Rumour propagation: an operational research approach by computational and information theory, Cent. Europ. J. Oper. Res., 30 (2022), 345–365. https://dx.doi.org/10.1007/s10100-020-00727-0 doi: 10.1007/s10100-020-00727-0
    [15] G. Liu, F. Nian, Impact of peer pressure on higher-order network dynamics, Chaos Solitons Fractals, 200 (2025), 116958. https://dx.doi.org/10.1016/j.chaos.2025.116958 doi: 10.1016/j.chaos.2025.116958
    [16] R. Qiao, Y. Hu, Dynamic analysis of a SI 1 I 2 AD information dissemination model considering the word of mouth, Nonlinear Dyn, 111 (2023), 22763–22780. https://dx.doi.org/10.1007/s11071-023-09021-5 doi: 10.1007/s11071-023-09021-5
    [17] M. Pazoki, H. Samarghandi, Word-Of-Mouth and estimating demand based on network structure and epidemic models, Eur. J. Oper. Res., 291 (2021), 323–334. https://dx.doi.org/10.1016/j.ejor.2020.09.004 doi: 10.1016/j.ejor.2020.09.004
    [18] L. Zhu, W. Zheng, X. Zhang, Bifurcation Analysis of a Reaction–Diffusion Rumor Spreading Model with Nonsmooth Control, Int. J. Bifurcation Chaos, 32 (2022), 2250109. https://dx.doi.org/10.1142/S0218127422501097 doi: 10.1142/S0218127422501097
    [19] Q. Ge, C. Huang, H. Xu, J. Zhang, H. Wang, A Novel SIR Model-Based Public Opinion Propagation and Optimal Control, In 2024 China Automation Congress (CAC), IEEE, 2024. https://dx.doi.org/10.1109/CAC63892.2024.10865290
    [20] S. Bidah, O. Zakary, M. Rachik, Modeling and Control of the Public Opinion: An Agree‐Disagree Opinion Model, Int. J. Differ. Equat., 2020 (2020), 5864238. https://dx.doi.org/10.1155/2020/5864238 doi: 10.1155/2020/5864238
    [21] Y. Cheng, L. Huo, L. Zhao, Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination, Chaos Solitons Fractals, 157 (2022), 111931. https://dx.doi.org/10.1016/j.chaos.2022.111931 doi: 10.1016/j.chaos.2022.111931
    [22] S. Kang, X. Hou, Y. Hu, H. Liu, Dynamical analysis and optimal control of the developed information transmission model, PLoS One, 17 (2022), e0268326. https://dx.doi.org/10.1371/journal.pone.0268326 doi: 10.1371/journal.pone.0268326
    [23] B. Li, H. Li, Q. Sun, R. Lv, H. Yan, Dynamics analysis and optimal control study of uncertain information dissemination model triggered after major emergencies, Front. Physics, 12 (2024), 1349284. https://dx.doi.org/10.3389/fphy.2024.1349284 doi: 10.3389/fphy.2024.1349284
    [24] S. Dong, L. Xu, Z. Lan, Y. A, F. Bu, W. Hua, Q. Chunlai, L.Yifei, G. Minjie, G. Kai, Multilingual SEIR public opinion propagation model with social enhancement mechanism and cross transmission mechanisms, Sci Rep, 14 (2024), 31081. https://dx.doi.org/10.1038/s41598-024-82024-3 doi: 10.1038/s41598-024-82024-3
    [25] Q. Zhang, L. Wang, X. Wang, G. Chen, Optimal Selection of Intervention Timing in Opinion Dynamics, IEEE Trans. Autom. Control, 70 (2025), 4392–4407. https://dx.doi.org/10.1109/TAC.2025.3528350 doi: 10.1109/TAC.2025.3528350
    [26] L. Luo, F. Nian, F. Li, Y. Cui, Information dissemination and phase transition in fractal social networks, Commun. Nonlinear Sci. Numer. Simul., 146 (2025), 108812. https://dx.doi.org/10.1016/j.cnsns.2025.108812 doi: 10.1016/j.cnsns.2025.108812
    [27] F. Nian, X. Liu, Y. Zhang, X. Yu, Human flesh search based on information coupling, Int. J. Mod. Phys. B, 36 (2022), 2250025. https://dx.doi.org/10.1142/S0217979222500254 doi: 10.1142/S0217979222500254
    [28] H. Cheng, C. Tan, C. Chiu, H. Huang, Y. Lee, Using the ELM to Explore the Impact of Fake News on Panic Vaccination Intention: Taiwan's COVID-19 Vaccination Phenomenon, J. Glob. Inf. Manag., 32 (2024), 1–39. https://dx.doi.org/10.4018/JGIM.335487 doi: 10.4018/JGIM.335487
    [29] H. A. Syrdal, S. Myers, S. Sen, P. J Woodroof, W. C. McDowell, Influencer marketing and the growth of affiliates: The effects of language features on engagement behavior, J. Bus. Res., 163 (2023), 113875. https://dx.doi.org/10.1016/j.jbusres.2023.113875 doi: 10.1016/j.jbusres.2023.113875
    [30] V. Saini, L. L. Liang, Y. C. Yang, H. M. Le, C. Y. Wu, The association between dissemination and characteristics of pro-/anti-COVID-19 vaccine messages on Twitter: application of the elaboration likelihood model, JMIR infodemiology, 2 (2022), e37077. https://dx.doi.org/10.2196/37077 doi: 10.2196/37077
    [31] B. Yang, C. Liu, X. Cheng, X. Ma, Understanding users' group behavioral decisions about sharing articles in social media: An elaboration likelihood model perspective, Group Decis. Negot., 31 (2022), 819–842. https://dx.doi.org/10.1007/s10726-022-09784-z doi: 10.1007/s10726-022-09784-z
    [32] X. Y. Xu, Q. D. Jia, A new exploration of signaling theory in social commerce facilitated cross-border retailing: A four-stage approach, Inf. Manage., 62 (2025), 104154. https://dx.doi.org/10.1016/j.im.2025.104154 doi: 10.1016/j.im.2025.104154
    [33] Y. Zhang, Q. Li, J. Yan, Exploring multimodal factors in online reviews: A machine learning approach to evaluating content effectiveness, J. Retail. Consum. Serv., 84 (2025), 104261. https://dx.doi.org/10.1016/j.jretconser.2025.104261 doi: 10.1016/j.jretconser.2025.104261
    [34] T. Wu, G. Yu, Persuasive Effects of Crisis Communication during Public Health Emergency Outbreaks in China, Behav. Sci., 14 (2024), 885. https://dx.doi.org/10.3390/bs14100885 doi: 10.3390/bs14100885
    [35] C. Yang, M. Chen, W. Zhou, X. Zhang, D. Zhang, The role of online consumer reviews in shaping Chinese consumers' purchase intentions for energy-saving household appliances: a social communication theory perspective, Discov. Sustain., 5 (2024), 440. https://dx.doi.org/10.1007/s43621-024-00669-6 doi: 10.1007/s43621-024-00669-6
    [36] R. E. Petty, J.T. Cacioppo, The Elaboration Likelihood Model of Persuasion. In: Communication and Persuasion. Springer Series in Social Psychology, Springer, New York, NY, 1986. https://dx.doi.org/10.1007/978-1-4612-4964-1_1
    [37] M. B. Ferreira, L. Garcia-Marques, S. J. Sherman, J. W. Sherman, Automatic and controlled components of judgment and decision making, J. Pers. Soc. Psychol., 91 (2006), 797–813. https://dx.doi.org/10.1037/0022-3514.91.5.797 doi: 10.1037/0022-3514.91.5.797
    [38] M. Z. Al-Taie, S. Kadry, Information Diffusion in Social Networks. In: Python for Graph and Network Analysis. Advanced Information and Knowledge Processing, Springer, Cham, 2017. https://dx.doi.org/10.1007/978-3-319-53004-8_8
    [39] F. Nian, R. Liu, A. Cong, An incentive mechanism model based on the correlation between neighbor behavior and distance, Int. J. Mod. Phys. C, 31 (2020), 2050161. https://dx.doi.org/10.1142/S0129183120501612 doi: 10.1142/S0129183120501612
    [40] W. Li, H. Shen, Z. Huang, H. Yang, J. Zhao, Research on the Dynamics of Word-of-Mouth Influencing Stock Prices, Systems, 12 (2024), 344. https://dx.doi.org/10.3390/systems12090344 doi: 10.3390/systems12090344
    [41] C. Ding, W. Liu, Y. Sun, Y. Zhu, A delayed Schistosomiasis transmission model and its dynamics, Chaos Solitons Fractals, 118 (2019), 18–34. https://dx.doi.org/10.1016/j.chaos.2018.11.005 doi: 10.1016/j.chaos.2018.11.005
    [42] F. Nian, J. Feng, Phase transition in infection scale and the impact of user characteristics under the herd effect in information propagation, Eur. Phys. J. Plus, 140 (2025), 380. https://dx.doi.org/10.1140/epjp/s13360-025-06330-z doi: 10.1140/epjp/s13360-025-06330-z
    [43] S. Li, Z. Liu, Y. Li, Temporal and spatial evolution of online public sentiment on emergencies, Inf. Process. Manage., 57 (2020), 102177. https://dx.doi.org/10.1016/j.ipm.2019.102177 doi: 10.1016/j.ipm.2019.102177
    [44] W. Li, H. Yang, H. Shen, Z. Huang, BNTree for Predicting Persuasion Effect in Digital Era Crisis Communication, J. Theor. Appl. Electron. Commer. Res., 20 (2025), 276. https://dx.doi.org/10.3390/jtaer20040276 doi: 10.3390/jtaer20040276
    [45] R. E. Petty, J. T. Cacioppo, Issue involvement can increase or decrease persuasion by enhancing message-relevant cognitive responses, J. Pers. Soc. Psychol., 37 (1979), 1915. https://dx.doi.org/10.1037/0022-3514.37.10.1915 doi: 10.1037/0022-3514.37.10.1915
    [46] J. C. Hu, M. S. Modi, B. K. Szymanski, Using LLMs to Infer Non-Binary COVID-19 Sentiments of Chinese Microbloggers, Entropy, 27 (2025), 290. https://dx.doi.org/10.3390/e27030290 doi: 10.3390/e27030290
    [47] J. Song, Y. Li, X. Guo, K. N. Shen, X. Ju, Making mobile health information advice persuasive: an elaboration likelihood model perspective, J. Organ. End User Comput., 34 (2022), 1–22. https://dx.doi.org/10.4018/JOEUC.287573 doi: 10.4018/JOEUC.287573
    [48] Y. Li, M. Zhang, G. A. Wang, N. Zhang, The effect of different types of comparative reviews on product sales, Decis. Support Syst., 184 (2024), 114287. https://dx.doi.org/10.1016/j.dss.2024.114287 doi: 10.1016/j.dss.2024.114287
    [49] L. A. Huo, C. Ma, Dynamical analysis of rumor spreading model with impulse vaccination and time delay, Phys A, 471 (2017), 653–665. https://dx.doi.org/10.1016/j.physa.2016.12.024 doi: 10.1016/j.physa.2016.12.024
    [50] C. Wu, X. Wang, J. Lin, Optimizations in Project Scheduling: A State-of-Art Survey, In: Xu, H., Wang, X. (eds) Optimization and Control Methods in Industrial Engineering and Construction. Intelligent Systems, Control and Automation: Science and Engineering, vol 72, Springer, Dordrecht, 2014. https://dx.doi.org/10.1007/978-94-017-8044-5_10
    [51] M. McAsey, L. Mou, W. Han, Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53 (2012), 207–226. https://dx.doi.org/10.1007/s10589-011-9454-7 doi: 10.1007/s10589-011-9454-7
    [52] S. Ben Rhila, M. Karim, M. Rachik, Three Measures to Control a Spatiotemporal Epidemic Model: An Optimal Control Approach, Optim. Control Appl. Methods, 46 (2025), 937–947. https://dx.doi.org/10.1002/oca.3239 doi: 10.1002/oca.3239
    [53] M. Moradi, F. Zihagh, A meta‐analysis of the elaboration likelihood model in the electronic word of mouth literature, Int. J. Consum. Stud., 46 (2022), 1900–1918. https://dx.doi.org/10.1111/ijcs.12814 doi: 10.1111/ijcs.12814
    [54] A. Degan, M. Li, Persuasion with costly precision. Econ. Theory, 72 (2021), 869–908. https://dx.doi.org/10.1007/s00199-021-01346-9 doi: 10.1007/s00199-021-01346-9
    [55] F. Nian, Z. Zhang, The influence of opinion leaders on public opinion spread and control strategies in online social networks, In: IEEE Transactions on Computational Social Systems, Ahead-of-print. https://dx.doi.org/10.1109/TCSS.2025.3537701
  • jimo-22-01-006-Supplementary.pdf
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(532) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog