In this paper, we examined the optimal investment strategy in green technology for a monopolist manufacturer under a cap-and-trade mechanism, incorporating demand inertia and market uncertainty. Using a continuous-time stochastic dynamic programming framework, we modeled green technology investment as an irreversible singular control process, with demand following a mean-reverting Ornstein-Uhlenbeck process. Through singular control analysis and free boundary theory, we derived a state-dependent investment threshold that revealed the optimal strategy as sequential rather than a one-off decision. Key findings showed that manufacturers delay investment until carbon emission pressures exceed a critical threshold, emphasizing the "option value of waiting". Numerical simulations, calibrated with data from an electric vehicle manufacturer and China's carbon market, identified factors such as consumer green awareness, carbon price, and emission reduction efficiency as accelerators of investment, while high costs and demand volatility cause delays. We contribute by (1) introducing a dynamic investment threshold strategy for multi-period decisions under uncertainty, (2) quantifying the option value of waiting, and (3) providing actionable insights for policymakers and managers on carbon market design and green technology investment planning.
Citation: Fanyi Peng, Ruoying Shi, Zhipeng Zhang, Shuhua Zhang. The irreversible green technology investment strategy of manufacturers under the Cap-and-Trade mechanism[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 100-147. doi: 10.3934/jimo.2026005
In this paper, we examined the optimal investment strategy in green technology for a monopolist manufacturer under a cap-and-trade mechanism, incorporating demand inertia and market uncertainty. Using a continuous-time stochastic dynamic programming framework, we modeled green technology investment as an irreversible singular control process, with demand following a mean-reverting Ornstein-Uhlenbeck process. Through singular control analysis and free boundary theory, we derived a state-dependent investment threshold that revealed the optimal strategy as sequential rather than a one-off decision. Key findings showed that manufacturers delay investment until carbon emission pressures exceed a critical threshold, emphasizing the "option value of waiting". Numerical simulations, calibrated with data from an electric vehicle manufacturer and China's carbon market, identified factors such as consumer green awareness, carbon price, and emission reduction efficiency as accelerators of investment, while high costs and demand volatility cause delays. We contribute by (1) introducing a dynamic investment threshold strategy for multi-period decisions under uncertainty, (2) quantifying the option value of waiting, and (3) providing actionable insights for policymakers and managers on carbon market design and green technology investment planning.
| [1] |
B. Shi, N. Li, Q. Gao, G. Li, Market incentives, carbon quota allocation and carbon emission reduction: Evidence from China's carbon trading pilot policy, J. Environ. Manag, 319 (2022), 115650. https://doi.org/10.1016/j.jenvman.2022.115650 doi: 10.1016/j.jenvman.2022.115650
|
| [2] |
S. Du, L. Zhu, L. Liang, F. Ma, Emission-dependent supply chain and environment-policy-making in the "cap-and-trade" system, Energy Econ., 57 (2013), 61–67. https://doi.org/10.1016/j.enpol.2012.09.042 doi: 10.1016/j.enpol.2012.09.042
|
| [3] |
J. Li, L. Wang, X. Tan, Sustainable Design and Optimization of Coal Supply Chain Network under Different Carbon Emission Policies, J. Clean Prod., 250 (2019), 119548. https://doi.org/10.1016/j.jclepro.2019.119548 doi: 10.1016/j.jclepro.2019.119548
|
| [4] | B. Lin, Z. Jia, What will China's carbon emission trading market affect with only electricity sector involvement? A CGE based study, Energy Econ., 78 (2018) 301-311. https://doi.org/10.1016/j.eneco.2018.11.030 |
| [5] |
W. Yang, Y. Pan, J. Ma, M. Zhou, Z. Chen, W. Zhu, Optimization on emission permit trading and green technology implementation under cap-and-trade scheme, J. Clean Prod., 194 (2018), 288–299. https://doi.org/10.1016/j.jclepro.2018.05.123 doi: 10.1016/j.jclepro.2018.05.123
|
| [6] |
X. Chen, X. Wang, V. Kumar, N. Kumar, Low carbon warehouse management under cap-and-trade policy, J. Clean Prod., 139 (2016), 894–904. https://doi.org/10.1016/j.jclepro.2016.08.089 doi: 10.1016/j.jclepro.2016.08.089
|
| [7] |
Q. Ma, M. Tariq, H. Mahmood, Z. Khan, The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development, Technol. Soc., 68 (2022), 101910. https://doi.org/10.1016/j.techsoc.2022.101910 doi: 10.1016/j.techsoc.2022.101910
|
| [8] |
T. Sueyoshi, D. Wang, Radial and non-radial approaches for environmental assessment by Data Envelopment Analysis: Corporate sustainability and effective investment for technology innovation, Energy Econ., 45 (2014), 537–551. https://doi.org/10.1016/j.eneco.2014.07.024 doi: 10.1016/j.eneco.2014.07.024
|
| [9] |
Z. Hong, X. Guo, Green product supply chain contracts considering environmental responsibilities, Omega, 83 (2019), 155–166. https://doi.org/10.1016/j.omega.2018.02.010 doi: 10.1016/j.omega.2018.02.010
|
| [10] |
S. Xu, K. Govindan, W. Wang, W. Yang, Supply chain management under cap-and-trade regulation: A literature review and research opportunities, Int. J. Prod. Econ., 271 (2024), 109199. 10.1016/j.ijpe.2024.109199 doi: 10.1016/j.ijpe.2024.109199
|
| [11] | Ford Media Center, Ford Takes Next Steps Towards Carbon Neutrality in Europe by 2035, 2022. Available from: https://media.ford.com/content/fordmedia/feu/en/news/2022/10/25/ford-takes-next-steps-towards-carbon-neutrality-in-europe-by-203.html. |
| [12] | Climate Transition Action Plan, Bloomberg Philanthropies, 2022. Available from: https://downloads.ctfassets.net/wul6e2smi4bn/2fvZcWcdwlq3gjBQq8IbHF/643821cf330d4babc1526111cc51ed86/PG_CTAP.pdf. |
| [13] |
Z. Li, Y. Pan, W. Yang, J. Ma, M. Zhou, Effects of government subsidies on green technology investment and green marketing coordination of supply chain under Cap-and-trade mechanism, Energy Econ., 101 (2021), 105426. https://doi.org/10.1016/j.eneco.2021.105426 doi: 10.1016/j.eneco.2021.105426
|
| [14] |
X. Xu, P. He, H. Xu, Q. Zhang, Supply chain coordination with green technology under cap-and-trade regulation, Int. J. Prod. Econ., 183 (2017), 433–442. https://doi.org/10.1016/j.ijpe.2016.08.029 doi: 10.1016/j.ijpe.2016.08.029
|
| [15] |
T. Ji, X. Xu, X. Yan, Y. Yu, The production decisions and cap setting with wholesale price and revenue sharing contracts under cap-and-trade regulation, Int. J. Prod. Res., 58 (2019), 128–147. https://doi.org/10.1080/00207543.2019.1641239 doi: 10.1080/00207543.2019.1641239
|
| [16] |
L. Liu, Z. Zhang, Z. Wang, Two-sided matching and game on investing in carbon emission reduction technology under a cap-and-trade system, J. Clean Prod., 282 (2021), 124436. https://doi.org/10.1016/j.jclepro.2020.124436 doi: 10.1016/j.jclepro.2020.124436
|
| [17] |
Q. Chai, Z. Xiao, K. Lai, G. Zhou, Can carbon cap and trade mechanism be beneficial for remanufacturing?, Int. J. Prod. Econ., 203 (2018), 311–321. https://doi.org/10.1016/j.ijpe.2018.07.004 doi: 10.1016/j.ijpe.2018.07.004
|
| [18] |
M. Yang, X. Chen, Green Technology Investment Strategies Under Cap-and-Trade Policy, IEEE Trans. Eng. Manage., 71 (2024), 3867–3880. https://doi.org/10.1109/TEM.2022.3213947 doi: 10.1109/TEM.2022.3213947
|
| [19] |
Y. Pan, H. Jafar, X. Liang, J. Ma, A duopoly game model for pricing and green technology selection under cap-and-trade scheme, Comput. Ind. Eng., 153 (2021), 705. https://doi.org/10.3390/su10030705 doi: 10.3390/su10030705
|
| [20] |
J. Liu, J. Wu, X. Fu, P. Kort, Timing and size decisions of green technology investment for competitive ocean carriers under green regulations, Transp. Res. Part B, 193 (2025), 103160. https://doi.org/10.1016/j.trb.2025.103160 doi: 10.1016/j.trb.2025.103160
|
| [21] |
U. Pathak, R. Kant, R. Shankar, Analytics of cap-and-trade policy for dual supply chain network structures, Clean Techn Environ Policy, 22 (2020), 1999–2021. https://doi.org/10.1007/s10098-020-01937-5 doi: 10.1007/s10098-020-01937-5
|
| [22] |
S. Ebrahimi, S. Hosseini-Motlagh, M. Nematollahi, L. E. Cardenas-Barron, Coordinating double-level sustainability effort in a sustainable supply chain under cap-and-trade regulation, Expert Syst. Appl., 207 (2022), 117872. https://doi.org/10.1016/j.eswa.2022.117872 doi: 10.1016/j.eswa.2022.117872
|
| [23] |
C. Li, J. Wang, Y. Shi, The Impact of Government Intervention and Cap-and-Trade on Green Innovation in Supply Chains: A Social Welfare Perspective, Sustainability, 14 (2022), 7941. 10.3390/su14137941 doi: 10.3390/su14137941
|
| [24] |
S. Zhang, C. Wang, C. Yu, The evolutionary game analysis and simulation with system dynamics of manufacturer's emissions abatement behavior under cap-and-trade regulation, Appl. Math. Comput., 355 (2019), 343–355. https://doi.org/10.1016/j.amc.2019.02.080 doi: 10.1016/j.amc.2019.02.080
|
| [25] |
K. Cao, X. Xu, Q. Wu, Q. Zhang, Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies, J. Clean Prod., 167 (2017), 505–513. https://doi.org/10.1016/j.jclepro.2017.07.251 doi: 10.1016/j.jclepro.2017.07.251
|
| [26] |
W. Yang, Y. Pan, J. Ma, T. Yang, X. Ke, Effects of allowance allocation rules on green technology investment and product pricing under the cap-and-trade mechanism, Energy Policy, 139 (2020), 111333. https://doi.org/10.1016/j.enpol.2020.111333 doi: 10.1016/j.enpol.2020.111333
|
| [27] | X. Fan, K. Chen, Y. Chen, Is Price Commitment a Better Solution to Control Carbon Emissions and Promote Technology Investment? Manage. Sci., 69 (2022), 325–341. https://doi.org/10.1287/mnsc.2022.4365 |
| [28] |
Q. Wu, C. Chiu, The impacts of carbon insurance on supply chain and environment considering technology risk under cap-and-trade mechanism, Transport. Res. Part E: Log. Transport. Rev., 180 (2023), 103334. https://doi.org/10.1016/j.tre.2023.103334 doi: 10.1016/j.tre.2023.103334
|
| [29] |
C. P. Su, L. Wang, J. C. Ho, The impacts of technology evolution on market structure for green products, Math. Comput. Model., 55 (2012), 1381–1400. https://doi.org/10.1016/j.mcm.2011.10.017 doi: 10.1016/j.mcm.2011.10.017
|
| [30] |
D. Krass, T. Nedorezov, A. Ovchinnikov, Environmental taxes and the choice of green technology, Prod. Oper. Manag., 22 (2013), 1035–1055. 10.1111/j.1937-5956.2012.01423.x doi: 10.1111/j.1937-5956.2012.01423.x
|
| [31] |
A. Bensoussan, B. Chevalier-Roignant, Sequential Capacity Expansion Options, Oper. Res., 67 (2018), 1–25. https://doi.org/10.1287/opre.2018.1752 doi: 10.1287/opre.2018.1752
|
| [32] |
T. Koch, T. Vargiolu, Optimal Installation of Solar Panels with Price Impact: A Solvable Singular Stochastic Control Problem, SIAM J. Control Optim., 59 (2021), 3068–3095. https://doi.org/10.1137/19M1300972 doi: 10.1137/19M1300972
|
| [33] | G. Vinten, C. Guilding, C. Drury, M. Tayles, An empirical investigation of the importance of cost-plus pricing, Manag. Audit. J., 20 (2005). https://doi.org/10.1108/02686900510574548 |
| [34] |
K. Indounas, Successful industrial service pricing, J. Bus. Ind. Mark., 24 (2009), 86–97. https://doi.org/10.1108/08858620910931703 doi: 10.1108/08858620910931703
|
| [35] |
K. Indounas, G. Avlonitis, New industrial service pricing strategies and their antecedents: empirical evidence from two industrial sectors, J. Bus. Ind. Mark., 26 (2011), 26–33. https://doi.org/10.1108/08858621111097184 doi: 10.1108/08858621111097184
|
| [36] | R. Guerreiro, J. Amaral, Cost-based price and value-based price: Are they conflicting approaches? J. Bus. Ind. Mark., 33 (2018), 390–404. https://doi.org/10.1108/JBIM-04-2016-0085 |
| [37] |
J. Bather, H. Chernoff, Sequential decisions in the control of a space-ship (finite fuel), J. Appl. Probab., 4 (1967), 584–604. https://doi.org/10.1017/S0021900200025560 doi: 10.1017/S0021900200025560
|
| [38] |
R. Aid, S. Federico, H. Pham, B. Villeneuve, Explicit Investment Rules with time-to-build and Uncertainty, J. Econ. Dyn. Control, 51 (2015), 240–256. https://doi.org/10.1016/j.jedc.2014.10.010 doi: 10.1016/j.jedc.2014.10.010
|
| [39] |
M. B. Chiarolla, G. Ferrari, Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem, SIAM J. Control Optim., 52 (2014), 1048–1070. https://doi.org/10.48550/arXiv.1108.4886 doi: 10.48550/arXiv.1108.4886
|
| [40] |
M. B. Chiarolla, U. G. Haussmann, Explicit Solution of a Stochastic, Irreversible Investment Problem and its Moving Threshold, Math. Oper. Res., 30 (2005), 91–108. https://doi.org/10.1287/moor.1040.0113 doi: 10.1287/moor.1040.0113
|
| [41] |
G. Ferrari, P. Salminen, Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary, Adv. Appl. Probab., 48 (2015), 298–314. https://doi.org/10.1017/apr.2015.18 doi: 10.1017/apr.2015.18
|
| [42] |
A. Lokka, M. Zervos, Long-term Optimal Investment Strategies in the Presence of Adjustment Costs, SIAM J. Control Optim., 51 (2013), 996–1034. https://doi.org/10.1137/110845471 doi: 10.1137/110845471
|
| [43] |
T. Yan, K. Park, H. Y. Wong, Irreversible reinsurance: A singular control approach, Insurance Math. Econom., 107 (2022), 326–348. https://doi.org/10.1016/j.insmatheco.2022.09.004 doi: 10.1016/j.insmatheco.2022.09.004
|
| [44] |
H. Al Motairi, M. Zervos, Irreversible capital accumulation with economic impact, Appl. Math. Optim., 75 (2017), 521–551. https://doi.org/10.1007/S00245-016-9341-9 doi: 10.1007/S00245-016-9341-9
|
| [45] |
S. Federico, M. Rosestolato, E. Tacconi, Irreversible investment with fixed adjustment costs: a stochastic impulse control approach, Math. Financ. Econ., 13 (2019), 579–616. https://doi.org/10.1007/s11579-019-00238-w doi: 10.1007/s11579-019-00238-w
|
| [46] |
S. Federico, G. Ferrari, P. Schuhmann, A singular stochastic control problem with interconnected dynamics, SIAM J. Control Optim., 58 (2020), 2821–2853. https://doi.org/10.48550/arXiv.1909.12045 doi: 10.48550/arXiv.1909.12045
|
| [47] |
I. Karatzas, Probabilistic Aspects of Finite-Fuel Stochastic Control, Proceedings of the National Academy of Sciences of the United States of America, 82 (1985), 5579–5581. https://doi.org/10.1073/pnas.82.17.5579 doi: 10.1073/pnas.82.17.5579
|
| [48] |
D. F. Drake, P. R. Kleindorfer, L. N. Van Wassenhove, Technology Choice and Capacity Portfolios under Emissions Regulation, Prod. Oper. Manag., 25 (2016), 1006–1025. https://doi.org/10.1111/poms.12523 doi: 10.1111/poms.12523
|
| [49] |
A. Hassan, S. Mujahid, M. Naqeebuddin, F. Selim, Z. Shokri, Multi-period planning of closed-loop supply chain with carbon policies under uncertainty, Transport. Res. Part D: Transp. Environ., 51 (2017), 146–172. https://doi.org/10.1016/j.trd.2016.10.033 doi: 10.1016/j.trd.2016.10.033
|
| [50] |
N. Turken, J. Carrillo, V. Verter, Strategic Supply Chain Decisions Under Environmental Regulations: When to Invest in End-of-Pipe and Green Technology, Eur. J. Oper. Res., 283 (2019), 601–613. https://doi.org/10.1016/j.ejor.2019.11.022 doi: 10.1016/j.ejor.2019.11.022
|
| [51] |
C. Amina, I. Nouira, A. Hadj-Alouane, Y. Frein, A comparative study of progressive carbon taxation strategies: impact on firms' economic and environmental performances, Int. J. Prod. Res., 60 (2021), 3476–3500. https://doi.org/10.1080/00207543.2021.1924410 doi: 10.1080/00207543.2021.1924410
|
| [52] |
S. Jiang, F. Ye, Q. Lin, Managing green innovation investment in a Co-opetitive supply chain under capital constraint, J. Clean Prod., 291 (2021), 125254. https://doi.org/10.1016/j.jclepro.2020.125254 doi: 10.1016/j.jclepro.2020.125254
|
| [53] |
V. Hagspiel, C. Nunes, C. Oliveira, M. Portela, Green investment under time-dependent subsidy retraction risk, J. Econ. Dyn. Control, 126 (2020), 103936. https://doi.org/10.1016/j.jedc.2020.103936 doi: 10.1016/j.jedc.2020.103936
|
| [54] | A. K. Dixit, R. S. Pindyck, Investment under uncertainty, Princeton university press, 1994. http://dx.doi.org/10.2307/1909571 |
| [55] | T. H. Tietenberg, Emissions Trading: Principles and Practice, Future Survey, 2006. https://doi.org/10.4324/9781936331284 |
| [56] |
A. D. Ellerman, B. K. Buchner, Over-Allocation or Abatement? A Preliminary Analysis of the EU ETS Based on the 2005-06 Emissions Data, Environ. Resour. Econ., 41 (2008), 267–287. https://doi.org/10.1007/s10640-008-9191-2 doi: 10.1007/s10640-008-9191-2
|
| [57] |
B. Hintermann, Market Power, Permit Allocation and Efficiency in Emission Permit Markets, Environ. Resour. Econ., 49 (2010), 327–349. https://doi.org/10.1007/s10640-010-9435-9 doi: 10.1007/s10640-010-9435-9
|
| [58] |
J. Bian, G. Zhang, G. Zhou, Manufacturer vs Consumer Subsidy with Green Technology Investment and Environmental Concern, Eur. J. Oper. Res., 287 (2020), 832–843. https://doi.org/10.1016/j.ejor.2020.05.014 doi: 10.1016/j.ejor.2020.05.014
|
| [59] |
P. Fader, B. Hardie, K. Lee, "Counting Your Customers" the Easy Way: An Alternative to the Pareto/NBD Model, Mark. Sci., 24 (2005), 275–284. https://doi.org/10.1287/mksc.1040.0098 doi: 10.1287/mksc.1040.0098
|
| [60] |
X. Zhuo, F. Wang, B. Niu, Brand-owners' Vertical and Horizontal Alliance Strategies Facing Dominant Retailers: Effect of Demand Substitutability and Complementarity, Omega, 103 (2021), 102449. https://doi.org/10.1016/j.omega.2021.102449 doi: 10.1016/j.omega.2021.102449
|
| [61] |
M. Keane, Modeling Heterogeneity and State Dependence in Consumer Choice Behavior, J. Bus. Econ. Stat., 15 (1997), 310–337. https://doi.org/10.1080/07350015.1997.10524709 doi: 10.1080/07350015.1997.10524709
|
| [62] |
T. Zhang, L. Peimiao, N. Wang, Multi-period price competition of blockchain-technology-supported and traditional platforms under network effect, Int. J. Prod. Res., 61 (2021), 1–15. 10.1080/00207543.2021.1884308 doi: 10.1080/00207543.2021.1884308
|
| [63] |
L. Xu, Y. Li, K. Govindan, X. Yue, Return policy and supply chain coordination with network-externality effect, Int. J. Prod. Res., 56 (2018), 1–19. 10.1080/00207543.2017.1421786 doi: 10.1080/00207543.2017.1421786
|
| [64] |
Z. Michna, S. Disney, P. Nielsen, The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts, Omega, 93 (2020), 102033. https://doi.org/10.1016/j.omega.2019.02.002 doi: 10.1016/j.omega.2019.02.002
|
| [65] |
S. Lenhard, Imperfect Competition with Costly Disposal, Int. J. Ind. Organ., 82 (2022), 102842. https://doi.org/10.1016/j.ijindorg.2022.102842 doi: 10.1016/j.ijindorg.2022.102842
|
| [66] |
S. Ambec, M. A. Cohen, S. Elgie, P. Lanoie, The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?, Rev. Env. Econ. Policy, 7 (2013), 1. https://doi.org/10.1093/reep/res016 doi: 10.1093/reep/res016
|
| [67] |
S. Swami, J. Shah, Channel Coordination in Green Supply Chain Management, J. Oper. Res. Soc., 64 (2013), 336–351. https://doi.org/10.1057/jors.2012.44 doi: 10.1057/jors.2012.44
|
| [68] |
G. Bi, M. Jin, L. Ling, F. Yang, Environmental subsidy and the choice of green technology in the presence of green consumers, Ann. Oper. Res., 255 (2017), 547–568. https://doi.org/10.1007/s10479-016-2106-7 doi: 10.1007/s10479-016-2106-7
|
| [69] |
C. Guilding, C. Drury, M. Tayles, An empirical investigation of the importance of cost-plus pricing, Manag. Audit. J., 20 (2005), 1–23. https://doi.org/10.1108/02686900510574548 doi: 10.1108/02686900510574548
|
| [70] |
C. Drury, M. Tayles, Profitability analysis in UK organizations: An exploratory study, Br. Account. Rev., 38 (2006), 405–425. https://doi.org/10.1016/j.bar.2006.05.003 doi: 10.1016/j.bar.2006.05.003
|
| [71] |
P. Brockwell, J. P. Kreiss, T. Niebuhr, Bootstrapping continuous-time autoregressive processes, Ann. Inst. Stat. Math., 66 (2014), 75–92. https://doi.org/10.1007/s10463-013-0406-0 doi: 10.1007/s10463-013-0406-0
|
| [72] |
F. Black, M. S. Scholes, The Pricing of Options and Corporate Liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
|
| [73] |
M. Yang, W. Blyth, R. Bradley, D. Bunn, C. Clarke, T. Wilson, Evaluating the Power Investment Options with Uncertainty in Climate Policy, Energy Econ., 30 (2008), 1933–1950. https://doi.org/10.1016/j.eneco.2007.06.004 doi: 10.1016/j.eneco.2007.06.004
|
| [74] |
G. Unruh, Understanding Carbon Lock In, Energy Policy, 28 (2000), 817–830. https://doi.org/10.1016/S0301-4215(00)00070-7 doi: 10.1016/S0301-4215(00)00070-7
|
| [75] |
S. Davis, K. Caldeira, H. D. Matthews, Future CO2 Emissions and Climate Change from Existing Energy Infrastructure, Science, 329 (2010), 1330–1333. https://doi.org/10.1126/science.1188566 doi: 10.1126/science.1188566
|
| [76] |
A. Dechezleprêtre, M. Sato, The Impacts of Environmental Regulations on Competitiveness, Rev. Env. Econ. Policy, 11 (2017), 183–206. https://doi.org/10.1093/reep/rex013 doi: 10.1093/reep/rex013
|
| [77] |
E. Cagno, E. Worrell, A. Trianni, G. Pugliese, A novel approach for barriers to industrial energy efficiency, Renew. Sust. Energ. Rev., 19 (2013), 290–308. https://doi.org/10.1016/j.rser.2012.11.007 doi: 10.1016/j.rser.2012.11.007
|
| [78] |
A. Atasu, L. Van Wassenhove, An Operations Perspective on Product Take-Back Legislation for E-Waste: Theory, Practice, and Research Needs, Prod. Oper. Manag., 21 (2012), 407–422. https://doi.org/10.1111/j.1937-5956.2011.01291.x doi: 10.1111/j.1937-5956.2011.01291.x
|
| [79] |
A. Revell, D. Stokes, H. Chen, Small Businesses and the Environment: Turning Over a New Leaf?, Bus. Strateg. Environ., 19 (2009), 273–288. https://doi.org/10.1002/bse.628 doi: 10.1002/bse.628
|
| [80] | International Energy Agency, Net Zero by 2050: A Roadmap for the Global Energy Sector, 2021. Available from: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf. |
| [81] |
A. B. Abel, Optimal Investment Under Uncertainty, Am. Econ. Rev., 73 (1983), 228–233. https://doi.org/10.2307/2329279 doi: 10.2307/2329279
|
| [82] |
G. Ferrari, T. Koch, An Optimal Extraction Problem with Price Impact, Appl. Math. Optim., 83 (2021), 1951–1990. https://doi.org/10.48550/arXiv.1812.01270 doi: 10.48550/arXiv.1812.01270
|
| [83] | A. Borodin, P. Salminen, Handbook of Brownian Motion-Facts and Formulae, Birkhäuser Verlag, 1996. https://doi.org/10.1007/978-3-0348-7652-0 |
| [84] | P. Dupuis, H. Ishii, SDEs with Oblique Reflection on Nonsmooth Domains, Ann. Probab., 21 (1993). https://doi.org/10.1214/aop/1176989415 |
| [85] |
M. Neugebauer, A. Zebrowski, O. Esmer, Cumulative Emissions of CO2 for Electric and Combustion Cars: A Case Study on Specific Models, Energies, 15 (2022), 2703. https://doi.org/10.3390/en15092703 doi: 10.3390/en15092703
|
| [86] | Annual Results Announcement for the year ended December 31, 2022, ZHEJIANG LEAPMOTOR TECHNOLOGY CO., LTD., 2023. Available from: https://static.cninfo.com.cn/finalpage/2023-03-21/1216179878.PDF. |
| [87] | Carbon Trust, Consumer demand for lower-carbon lifestyles is putting pressure on business, 2011. Available from: https://www.carbontrust.com/news-and-events/insights/consumer-demand-for-lower-carbon-lifestyles-is-putting-pressure-on. |
| [88] | IPCC, Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022. Available from: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf. |