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1. Introduction

Environmental pollution has emerged as a critical global challenge, driving the adoption of market-
based mechanisms such as cap-and-trade (C&T) to reduce carbon emissions [1]. Carbon trading markets,
including the European Climate Exchange and the Chicago Climate Exchange, have been established
worldwide to incentivize emissions reduction. As a key participant in the Paris Agreement, China
launched seven carbon trading pilot programs in 2011 and established a national carbon market in
2017, positioning itself as a leader in global carbon mitigation efforts. Under the C&T mechanism,
manufacturers exceeding government-allocated emission quotas must purchase additional allowances,
while those with surplus allowances can monetize them [2]. This mechanism imposes significant cost
pressures on manufacturers while motivating them to adopt greener technologies [3, 4].

The C&T mechanism imposes carbon emission caps and trading allowances, significantly increasing
manufacturers’ production costs and emission reduction pressure. In response, green technology
investment has emerged as a critical strategy for manufacturers under the C&T mechanism [5–7]. Green
technology investments not only reduce emission costs but also enhance market influence by attracting
green-conscious consumers [8, 9]. However, for many manufacturers, especially those in traditional
heavy industries and energy-intensive enterprises, the high costs and uncertain future returns of green
technology investments pose significant challenges. As a result, they often adopt a “wait-and-see”
strategy, valuing the flexibility to delay investments until market conditions are more favorable. A
notable example is NTPC, India’s largest power generation company, which once rejected an order
worth approximately $2 billion to install emission reduction technologies in its coal-fired power plants.
While NTPC cited technical incompatibility, the fundamental reason was the prohibitive cost. In 2016,
NTPC estimated that equipping its power plant network with emission reduction technologies would
cost $2.4 billion. Even with a potential 25% cost reduction, the expense remains substantial, prompting
India to postpone its emission reduction deadlines. Similarly, leading East Asian technology companies,
such as Samsung Electronics and Xiaomi, have been criticized for inadequate climate commitments,
data disclosure, and actions, with some labeling their efforts as “lacking strong climate actions”. These
companies operate in the highly competitive consumer electronics market, where cost control and rapid
product iteration are paramount, making immediate large-scale investments to transform their supply
chains and energy structures unlikely. These cases indicate that manufacturers face numerous challenges
when balancing high upfront costs with uncertain returns, which often prompts them to adopt a more
cautious and sequential strategy in green technology investments [10]. An example is Ford, which plans
to gradually introduce green hydrogen and renewable energy into its new production processes, aiming
to reduce carbon dioxide emissions in stages [11]. Similarly, Procter & Gamble is investing in green
technology in a phased manner, targeting net-zero greenhouse gas emissions across its product lifecycle,
operations, and supply chain by 2040 [12]. Such long-term, sequential investment strategies are favored
for their advantages in risk diversification and operational efficiency improvement.

This sequential strategy underscores the role of the “option to wait” in green technology investment, as
manufacturers invest only when the marginal benefit exceeds the value of delay. However, the literature
has predominantly examined green technology investment through the lenses of supply chain coordination
or competitive behaviors under the C&T mechanism [13–16]. Consequently, whether manufacturers
should postpone green technology investments and how to plan multi-period investment paths, have
received insufficient attention. To address this gap, we investigate the following key questions:
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1. What are the structural characteristics of an enterprise’s optimal green technology investment
strategy under the C&T mechanism and market fluctuations? Is it a multi-period progressive
investment or a lump-sum decision?

2. Which key exogenous factors influence the optimal investment threshold and investment value,
leading manufacturers to postpone green technology investment?

3. To what extent would neglecting the waiting value, i.e., the option value, of green technology
investment lead to decision-making deviation?

We employ singular control analysis, which is well-suited for capturing dynamic decision-making
under uncertainty, to investigate the manufacturer’s green technology investment strategy under the C&T
mechanism. To model demand inertia, we use a first-order autoregressive (AR(1)) process, which is
transformed into a mean-reverting Ornstein-Uhlenbeck (O-U) stochastic process for continuous analysis.
This approach enables us to capture short-term fluctuations and long-term trends in market demand.
Furthermore, we model green technology investment as a dynamic irreversible process, enabling the
manufacturer to dynamically adjust investments in response to uncertainties in market demand and
carbon emissions. By developing a stochastic dynamic programming model and applying free boundary
analysis, we derive the optimal threshold strategy for green technology investment. In the numerical
simulation section, we estimate model parameters using Leapmotor’s electric vehicle sales data and
carbon price data from China’s carbon market, further validating the effectiveness of the theoretical
results. Additionally, we conduct a static sensitivity analysis for key parameters.

The contributions of this paper are threefold. First, we reveal that manufacturers’ green technology
investment behavior exhibits an “option to wait” value, enabling them to postpone investment until
carbon emission pressure reaches a critical threshold. This strategy mitigates risks stemming from
market and regulatory uncertainties, offering a robust framework for risk management. Second, we
introduce a dynamic investment threshold strategy grounded in the C&T mechanism, which can guide
manufacturers in making decisions regarding multi-period or lump-sum investments under uncertain
market conditions. We not only provide a theoretical foundation for corporate managers to formulate
green technology investment plans but also offer practical insights for policymakers to design more
effective carbon market mechanisms, fostering sustainable economic growth. Third, we identify key
factors influencing manufacturers’ green technology investment decisions. Our numerical analysis
shows that consumer green preferences, carbon prices, and emission reduction efficiency accelerate
investment timing, while investment costs and demand volatility delay it.

The rest of the paper is organized as follows. In section 2, we review the relevant literature, followed
by the problem formulation in Section 3. In section 4, we present preliminary results and a verification
theorem, while in section 5, we analyze the free boundary of green technology investment. Finally, in
section 6, we conduct numerical experiments and static analysis based on actual data.

2. Literature review

2.1. Green technology investment

Many researchers have extensively explored strategies for implementing green technology within
the C&T mechanisms, with the primary objective of achieving profit and emission targets at the lowest
possible cost. We classify these studies into three distinct streams.
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In the first stream, we focus on analyzing how the decision to adopt green technology influences
the production and carbon trading strategies of monopolistic manufacturers. These researchers explore
the implementation of green technology as a multi-period project [17, 18], investigate the dynamics
of Stackelberg games [5], evaluate the impact of government low-carbon subsidies [19], and examine
the interaction between manufacturers, suppliers, and retailers in a game-theoretic framework [16].
However, these researchers typically assume a static decision-making framework, ignoring the dynamic
nature of investment decisions under market uncertainty. In contrast, we incorporate stochastic dynamic
programming to capture the evolving market conditions and the option value of waiting, providing a
more realistic representation of green technology investment strategies. Compared to researchers [20]
who employ real options analysis to examine the timing of green technology investments, we advance
this line of research by incorporating the irreversibility of green technology investments and modeling
them as a singular control process. This approach enables our analysis to further explore the optimal
timing of progressive green technology investments, which aligns more closely with the decision-making
practices of real-world managers.

The second stream focuses on analyzing how the implementation of green technology influences
the production and sales strategies of supply chain members under different coordinate rules and
carbon regulations. These researchers examine the impact of carbon quotas [15], the effects of cost-
sharing mechanisms [14], the implications of dual-channel supply chains [21], the concept of green
supply chains [22], and the dynamics influenced by different supply chain power structures [16, 23].
However, a common limitation across this stream is the treatment of investment strategies as continuous
decision variables, which fails to capture the discrete, lump-sum nature of real-world green technology
investments. Our paper addresses this gap by modeling investment decisions as irreversible singular
control processes. The third stream focuses on analyzing the effect of government decisions on the
production strategies of manufacturers implementing green technology. These researchers employ
evolutionary game theory to assess the influence of government carbon pricing policies [24], examine
the impacts of government low-carbon subsidies [13,25], and explore the effects of diverse carbon quota
regulations [26, 27].

Overall, researchers have mostly examined investment strategies in green technology within a static
decision framework [26]. However, when addressing dynamic investments, research typically treats the
strategy as a continuous decision variable, which may not align with practical applications [5, 29, 30].
Therefore, we model the investment strategy for green technology as a time-varying decision variable
with singularity and we incorporate the often-neglected aspect of the irreversibility of green technology
investments. This enables us to study discrete green technology investment decisions in a dynamic
manner, and can also be interpreted as a form of impulse control [31, 32], determining the timing and
magnitude of adjustments to the dynamic system.

On the other hand, we find that most researchers consider the product price as a primary decision
variable [18, 27]. However, empirical findings suggest that the “cost-plus margin” method is predomi-
nantly deployed by firms [33–35]. This method involves establishing the selling price by adding the
production costs plus a targeted profit margin, thereby ensuring that enterprises remain profitable while
recouping expenses. In aligning with these findings, we also adopt the cost-plus margin approach to
pricing products. The efficacy and prevalence of this pricing model have furthermore been the subject
of extensive discussion [36].
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2.2. Irreversible investment problem

The singular control framework is a suitable approach for addressing the problem of irreversible
green technology investment. This framework has been extensively studied within the context of
real options and optimal capacity expansion. It was initially introduced in the finite fuel problem,
which involved determining the optimal strategy for controlling a spaceship’s movement toward a
target under the constraint of limited fuel [37]. In the context of singular stochastic control problems,
the control strategy is often non-continuous. The strategy is partitioned into regions of waiting and
action, and the shape of the value function at different stages is described using variational inequalities.
Additionally, within this framework, the admissible cumulative investment level typically has an upper
bound. Therefore, understanding the admissible upper limits for each investment decision becomes
crucial, leading to the central role of the free boundary problem in such problems [38–42]. In terms
of solution approaches, there are generally two options. The first approach is the guess-and-verify
approach, where candidate value functions are empirically guessed to obtain a solution for the value
function [32, 43, 44]. The second approach involves the use of the viscosity solution approach to obtain
some meaningful properties of the value function [45, 46].

In our paper, we model the problem as a two-dimensional degenerate singular stochastic control
problem, taking into account the upper bound on the cumulative level of green technology investment.
Similar model setups can be found in [47]. One state variable represents the demands of the manufacturer,
which are directly linked to production and demand, and follow an O-U process. The other state variable
represents the cumulative level of green technology investment. It should be noted that in our model,
higher levels of cumulative green technology investment correspond to lower carbon emission levels.
To gain further insights into the results, we reference [32] as the main theoretical framework, as it can
provide an explicit solution to such a two-dimensional degenerate singular stochastic control problem.

2.3. Summary

Despite the rich insights provided by existing research, such studies exhibits two major limitations.
First, most research is confined to static decision frameworks, failing to capture the dynamics and
uncertainties inherent in real-world investment decisions. Second, when addressing dynamic investments,
researchers typically treat investment strategies as continuous decision variables, contradicting the
discrete, phased nature of significant investment decisions in practice. Consequently, these studies
cannot accurately reflect the value of “wait-and-see” strategies and the impact of market inertia.

To address these limitations, we employ stochastic dynamic programming to investigate the green
technology investment decisions of manufacturers under uncertain market condition. For our model, we
aim to explain why manufacturers might delay investments and how they can flexibly plan multi-period
investments. Our approach quantifies the option value of waiting and captures the continuous evolution
of market states. Additionally, we emphasize the irreversibility of green technology investments as a
critical feature. To this end, we model the investment process as a monotonically increasing càdlàg
process. This modeling approach treats discrete investment decisions as impulse controls on a dynamic
system, thereby enabling the simultaneous determination of optimal investment timing and scale. In
summary, the core distinctions between this study and previous literature are: (1) Replacing static
models with multi-period dynamic models to capture the waiting value and market inertia. This
approach provides a more realistic framework for understanding how manufacturers can strategically
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delay investments in response to market uncertainty. (2) Treating investment decisions as irreversible
singular control processes rather than continuous adjustments. This modeling choice reflects the practical
reality of discrete, phased investments in green technology, offering new insights into the timing and
scale of such investments. (3) Utilizing stochastic dynamic programming and singular control theory
to solve this two-dimensional degenerate stochastic control problem. This methodological innovation
enables us to derive optimal investment strategies under dynamic and uncertain conditions, contributing
to theoretical and practical advancements in green technology investment research. To more clearly
illustrate the similarities and differences between this paper and the literature, we summarize the core
features of relevant papers in Table 1.

Table 1. Summary of literature on green technology investment
Model Dynamics Influencing Factors

Papers Single-period Multi-period Dynamic Market uncertainty Cost pass-through Consumer green awareness Modelling approach
Du et al. [2] × × Game theory

Profit max.
Social welfare

Krass et al. [30] × × Game theory
Profit max.

Drake et al. [48] × × Profit max.
Cap et al. [25] × × × Game theory

Profit max.
Social welfare

Xu et al. [14] × Profit max.
Hassan et al. [49] × × Integer prog.

Profit max.
Yang et al. [5] × Integer prog.

Nonlinear prog.
Li et al. [3] × Profit max.
Turken et al. [50] × Profit max.
Yang et al. [26] × × Nonlinear prog.

Profit max.
Amina et al. [51] × × Integer prog.

Profit max.
Multi-criteria

Jiang et al. [52] × × × Profit max.
Optimal control

Fan et al. [27] × × Profit max.
Stochastic prog.

Wu and Chiu [28] × × Game theory
Profit max.

Yang and Chen [18] × × × Profit max.
Social welfare

Liu et al. [20] × × Game theory
Profit max.
Real options

Our papers × × × × × Dynamic stochastic prog.
Profit max.
Singular control
Real options

3. Problem formulation

In this paper, we focus on a monopolist manufacturer’s irreversible green technology (GT) investment
strategy in a direct channel under the C&T mechanism. We abstract away from strategic interactions
with rivals, such as supply chain coordination or competitive games [5, 14, 30]. This focus on a
monopolistic setting is a classic approach in operations management and economics for studying
investment timing under uncertainty [53, 54], as it enables us to isolate the intrinsic investment problem
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from the confounding effects of strategic competition. Consequently, we can precisely examine the
interaction between the manufacturer’s internal cost structure (including production and investment
costs) and the external, market-mediated incentives created by the C&T mechanism.

3.1. Emission costs under the C&T mechanism

Following [15] and [17], we assume that under the C&T mechanism, the government allocates a
fixed amount of carbon emission allowances (or quotas), denoted by Q, to the manufacturer for each
compliance period t. This approach belongs to a type of “grandfathering” allocation method, where
the permit allocation is based on historical emissions [55]. The manufacturer’s production activities
generate carbon emissions. If the manufacturer’s total emissions exceed the quota allocated, it must
purchase additional allowances from the carbon trading market at the emission allowances price, which
we call carbon price a. Conversely, if the manufacturer’s emissions fall below Q, it can sell its surplus
allowances on the market, generating additional revenue at the same price a.

Furthermore, while grandfathering is a common initial allocation method, it has been associated with
challenges such as over-allocation and weakened abatement incentives in practice [56]. Consequently,
alternative schemes such as benchmarking are increasingly employed. Under a benchmarking rule,
allowances are allocated based on a sector-specific emissions benchmark and the manufacturer’s output
level rather than historical emissions. This could fundamentally alter the manufacturer’s incentive
structure, as the marginal benefit of GT investment becomes more directly tied to production volume
to mitigate carbon leakage risks [57]. However, to maintain analytical focus and isolate the intrinsic
investment problem from the complexities of dynamic allocation rules, we retain the grandfathering
assumption in this paper. This provides a clear baseline understanding, and exploring the implications
of benchmarking allocation remains a valuable direction for future research.

The net carbon trading cost (or revenue) becomes an integral part of the profit function. Specifically,
without any GT, for a given production quantity qt, the net carbon trading cost in period t can be
formulated as

Lt := a(Eqt − Q), (3.1)

where Eqt represents the total emissions from producing qt units, and E represents the emission intensity.
The manufacturer can reduce the emission intensity of product production by implementing GT

investment [58]. If the level of GT owned by the manufacturer is y, then the emissions per unit of
product are E(1−ry), where r represents the relationship between the investment in GT and the emission
reduction ratio [30]. The net carbon trading cost in period t can be rewritten as

Lt(y) = a(E(1 − ry)qt − Q). (3.2)

Equation (3.2) indicates that investing in GT can reduce the costs incurred by emissions during the
production process.

3.2. Uncertain market demand and consumer behavior

Next, we model the demand function faced by the monopolist manufacturer. In the real world,
consumers’ consumption habits usually have dynamic inertia or stickiness. For example, consumers’
brand loyalty makes it highly likely that customers with high purchase volumes in the previous period
will continue to make purchases in the current period [59–61]. Or the network effect of products enables

Journal of Industrial and Management Optimization Volume 22, Issue 1, 100–147.



107

a large user base from the previous period to drive a further increase in current period demand [62, 63].
This also leads manufacturers to typically predict future demand based on historical data, providing
a basis for their operational strategies. In terms of pricing decisions, although the core goal of the
manufacturer is to maximize profits, when demand is not only affected by the current period price
but also depends on its past values through word-of-mouth effects and habit formation, the decision
making becomes more complex. At this time, the manufacturer must take this dynamic of demand into
account. This means that the optimal pricing strategy needs to be determined within an inter-temporal
framework, that is, the price setting in each period will affect the future demand state, and thus affect
long-term profits. Therefore, we consider the temporally-dependent demands, where the manufacturer
monitors periodic customer demands. Following [64], these demands follow a stationary first-order
autoregressive (AR(1)) process and are given by

Dt = µD + ρD(Dt−1 − µD) + εt, (3.3)

where |ρD| < 1 ensures a stationary demand process and {εt}
∞
t=−∞ is a sequence of independent and

identically distributed random variables with E[εt] = 0 and Var[εt] = σ2, indicating that current demand
is influenced by the prior period’s demand. The long-term mean µD is regarded as a fixed parameter
determined by the external market. Next, we expand this fixed parameter by taking into account the
manufacturer’s current GT level to capture the impact of GT investment on the manufacturer’s supply
and demand. It should be noted that due to the normal distribution property of (3.3), the value of Dt

may be negative in some cases. Negative values of Dt reflect scenarios where market conditions (e.g.,
oversupply or economic shocks) temporarily reduce the effective demand below zero, which implies
costly inventory disposal [65].

Next, we consider the impact of GT on the long-term demand mean faced by the manufacturer.
First, the adoption of GT enhances the environmental-friendly attributes of the product, which can
attract environmentally-conscious consumers [9, 14]. Second, the R&D and application of GT are often
accompanied by an increase in production costs. This part of the cost is usually transferred to consumers
in the form of a green premium, leading to an increase in the product price and thus having a dampening
effect on the long-term demand mean [66, 67]. The net effect of these opposing factors may have an
impact on the long-term average market demand for the product. Therefore, to capture the net effect of
GT investment on the long-term demand mean, we define µD as a function of the manufacturer’s current
GT level y:

µD(y) = µ̂ − dp(y) + sy, (3.4)

where µ̂ represents the long-term demand mean, d > 0 represents the consumers’ price sensitivity
coefficient, and s > 0 represents the consumers’ green awareness. The function p(y) represents the unit
price of the product and is related to y.

Regarding the setting of p(y), referring to [68], we assume that the unit cost of the product is cp + by.
This indicates that the manufacturer’s current GT level will lead to an increase in the unit price of the
product. Here, by represents the increase in unit production cost, where the increase ratio is related to
the coefficient b and cp is the cost of a unit product. This setup is also commonly observed in practice,
as evidenced by instances where organic agricultural products are often priced higher than conventional
ones, and electric vehicles are more expensive than traditional gasoline-powered cars. Additionally, it is
noteworthy that price-makers heavily rely on cost information to determine the prices of their goods and
services [69]. The researchers in [70] argued that cost information plays a pivotal role in setting prices
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for companies that are unable to employ a competition-based approach. Following this line of thought,
we assume that manufacturers typically adhere to the prevalent guideline of seeking to recoup all costs
and achieve the desired margin. Therefore, we express the cost-based price as the retail price, denoted as

p(y) = (cp + by)πp, (3.5)

where πp represents the mark-up rate over cost [36]. Consequently, equation (3.4) shows that the
long-term demand mean faced by the manufacturer is not only affected by the unit price of the product
but also by the manufacturer’s current GT level y. Although an increase in the GT level will lead to an
increase in the unit price of the product and reduce consumers’ willingness to purchase the product, it
will also attract an additional group of environmentally conscious consumers to purchase the product.
These two effects will jointly affect the long-term demand mean.

3.3. Demand dynamics and production

We assume the manufacturer adopts a make-to-order strategy. This implies that in each period
t, the manufacturer can flexibly and promptly adjust its production plan according to the observed
current-period demand Dt, and set the production volume qt to exactly meet the observed demand level
in that period, and

qt = Dt. (3.6)

Therefore, by combining equations (3.3), (3.4), and (3.5), the demand dynamic process can be expressed
as a function of the manufacturer’s GT level y. Moreover, the production quantity qt is endogenously
determined by this demand process and will be directly substituted into the carbon trading cost function
(3.2) and the profit function. We now transition to a continuous-time framework and denote the demand
state variable as Xt:

∆Xt = (1 − ρD)(µ̂ − d(cp + by)πp + sy − Xt−1) + εt, (3.7)

where ∆Xt = Xt − Xt−1.
It is a well-established fact that the regularly sampled stationary O-U process, also known as a

continuous-time autoregressive process of the first order (CAR(1)), can be represented as a discrete-time
autoregressive model (AR(1)) with independent and identically distributed (i.i.d.) noise [71]. Based on
the assumption of |ρD| < 1 and i.i.d of {εt}

∞
t=−∞, we approximate the discrete-time difference equation

(3.7) by a continuous-time differential equation to model the evolution of the variable of interest over
time.

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space with a filtration F satisfying the usual
conditions, and with a standard one-dimensional F-Brownian motion W. We take the infinitesimal limit
as the time step approaches zero, replacing discrete changes in X with the differential dXt, leading to the
stochastic differential equation (SDE):

dXt = k(µ̂ − d(cp + by)πp + sy − Xt)dt + σdWt, X0− = x, (3.8)

where k = 1 − ρD, dXt represents an infinitesimal change in X during an infinitesimal change in time dt,
and σdWt signifies a continuous-time stochastic process with dWt denoting the increment of a Wiener
process (also known as a Brownian motion), capturing the random fluctuations in continuous time. This
transition assumes that the discrete random shocks εt correspond to the increments of the continuous

Journal of Industrial and Management Optimization Volume 22, Issue 1, 100–147.



109

stochastic process σ, dWt in their impact on X, with σ representing the intensity of the continuous-time
random fluctuations. This approximation of discrete systems with continuous-time models is widely
adopted, as seen in the pricing of options using the Black-Scholes equations [72].

3.4. Irreversible green technology investment

Next, we introduce the dynamics of the GT level. This means that the manufacturer’s GT level is
no longer fixed but will increase with GT investment. However, we note that in the real world, GT
investment is usually irreversible. As GT investment is typically accompanied by high capital input, its
sunk cost is substantial, which means that once GT is implemented, it is usually not dismantled [73].
In addition, the irreversibility of GT investment not only stems from the fact that the technology itself
cannot be cancelled, but also from the path-dependence formed by the economic, industrial, and social
awareness changes after the successful deployment and operation of GT. This makes it difficult and
even undesirable for society to return to the previous state, which is known as the technology lock-in
effect [74, 75]. Therefore, manufacturers will demonstrate the “option value of waiting”, that is, they
will postpone GT investment and take action after the market risks are reduced (refer to [31, 32]). The
irreversible GT level is modeled by the process Yy,I(t), which can correspond to the manufacturer’s
emission reduction skill. It is given by

Yy,I
t = y + It, (3.9)

where y = Y(0) is the initial GT level, and It is defined as the amount of GT investment. According to
the irreversibility of investment, we assume that I(t) is an F-adapted, nonnegative, and increasing càdlàg
process representing the total GT investment over the interval [0, t]. When the manufacturer invests It in
GT at time t, the GT level will accumulate to Yy,I

t . Equation (3.9) describes an investment process where
GT investment occurs at specific points in time and is irreversible. This better aligns with real-world
decision-making.

Regarding the cost of GT investment, we make the following considerations. The implementation
of GT typically requires substantial capital expenditure [76–78]. For instance, installing photovoltaic
arrays is a typical example. These costs occur at the beginning of the investment and are the major
financial hurdles that manufacturers face when considering GT [79]. Referring to the framework of
static analysis [50], we set the initial investment cost of GT as a constant, c. The investment cost is
linear in the amount of GT implemented. Thus, increasing the technology level by an amount It incurs a
cost of cIt.

Additionally, we assume Yy,I
t ≤ ȳ, indicating that the GT adoptable by manufacturers is limited, and

the upper bound of the initial investment for GT is cȳ. Yy,I
t = ȳ represents that the manufacturer’s GT

level has reached 100%, and it is no longer possible to continue investing in GT. This consideration
is based on the following reasons: In general, the production process has physical or chemical “rigid”
links. Therefore, it is impossible to completely eliminate the emissions from the consumption of fossil
energy through GT [80, 88]. We define the set of admissible GT investment strategies as

I(y) =
{
I : Ω × [0,∞)→ [0,∞) : (It)t≥0 is F-adapted,

t 7→ It is increasing, càdlàg, with I0− = 0, 0 ≤ It ≤ ȳ − y a.s.
}
.

(3.10)

Therefore, after introducing (3.9), the demand process Xx,y,I
t faced by the manufacturer follows

dXx,y,I
t = k

(
µ̂ − d(cp + bYy,I

t )πp + sYy,I
t − Xx,y,I

t

)
dt + σdWt, Xx,y,I

0− = x. (3.11)
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Setting µ = µ̂ − dcpπp and β = dbπp − s, we reformulate (3.11) as

dXx,y,I
t = k((µ − βYy,I

t ) − Xx,y,I
t )dt + σdWt, Xx,y,I

0− = x, (3.12)

and the uncontrolled demand function that does not invest in GT is defined as Xx, with dynamics given
by

dXx
t = k(µ − Xx

t )dt + σdWt, Xx
0− = x. (3.13)

We assume that µ = µ̂ − dcpπp > 0 and β = dbπp − s > 0. The condition µ > 0 indicates that the
long-term demand is positive, and β > 0 implies that the act of passing on costs to consumers always
reduces consumer demand.

3.5. Profit function and optimization problem

We assume the manufacturer is a rational, risk-neutral decision-maker whose objective is to maximize
the expected present value of all future cash flows net of the cost of investment, which we call expected
profit here. Without considering the manufacturer’s survival duration or exit mechanism, the expected
profit is given by

J(x, y, I)

= E
[ ∫ ∞

0
e−ρt

( (
p(Yy,I

t ) − (cp + bYy,I
t )

)
Xx,y,I

t − Lt(Y
y,I
t )

)
dt − c

∫ ∞

0
e−ρtdIt

]
= E

[ ∫ ∞

0
e−ρt

(
π(cp + bYy,I

t ) Xx,y,I
t − a

(
E(1 − rYy,I

t )Xx,y,I
t − Q

) )
dt − c

∫ ∞

0
e−ρtdIt

]
,

(3.14)

where ρ is the discount factor and π := πp − 1 represents the profit margin rate. The expected profit
consists of three components: The integrated instantaneous profit,

(
p(Yy,I

t ) − (cp + bYy,I
t )

)
Xx,y,I

t , which
is revenue from product sales net of production cost; the integrated instantaneous carbon emission cost,
a
(
E(1 − rYy,I

t )Xx,y,I
t − Q

)
, which represents the net cost (or revenue if negative) from trading emission

allowances under the C&T mechanism; and the total discounted cost of GT investment, defined as:

c
∫ ∞

0
e−ρtdIt :=

∑
t≥0,∆It,0

ce−ρt∆It + c
∫ ∞

0
e−ρtdIc

t . (3.15)

Here, ∆It := It − It− and Ic
t denote the discrete and continuous components of It, respectively. To

ensure model realism, we assume πcp − aE > 0 and 1 − rȳ > 0. The first assumption implies that
the gross profit per unit product exceeds its associated emission cost, ensuring basic profitability. The
second assumption implies that GT investment cannot reduce emissions to zero, which is consistent
with physical limitations.

The manufacturer’s optimization problem is thus

V(x, y) = max
I∈I(y)

J(x, y, I), (x, y) ∈ R × [0, ȳ]. (3.16)

We note that the optimal strategies I∗(t) derived from (3.16) form a state-feedback control law. That is,
they are functions of the current demand shock X(t) and the existing technological level Y(t) observed by
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the manufacturer. This implies that the strategies are essentially non-pre-determined and are dynamically
adjusted as the uncertainties are gradually revealed, which is consistent with the adaptive behavior
of decision-makers in the real world. However, our model implicitly rests on the pre-commitment
assumption, which is usual in stochastic optimal control theory [81]. This assumes the manufacturer has
the ability and commitment to implement throughout the entire planning horizon the feedback strategy
that was optimal at time zero. While this approach yields a time-consistent policy (i.e., the future
actions remain optimal when viewed from the future), it precludes the possibility of the decision-maker
deviating from the pre-specified plan upon re-evaluating the optimization problem at a later date. The
purpose of this approach is not to perfectly replicate reality, but to provide a normative benchmark. This
benchmark reveals the optimal action rules that a manufacturer should follow when fully considering all
possible future risks and values.

3.6. Summary of Model Assumptions

The core assumptions underpinning this framework are summarized as follows:

(A1) We consider a profit-maximizing monopolist, which allows us to isolate the investment timing prob-
lem from competitive dynamics, focusing squarely on the interplay between the C&T mechanism
and the firm’s internal cost structure.

(A2) The manufacturer is a rational, risk-neutral agent that operates with perfect information regarding
the model’s parameters and dynamics. While the optimal strategy is derived under pre-commitment,
it yields a time-consistent feedback control law.

(A3) The product is priced using a cost-plus methodology (p(y) = (cp +by)πp). This is a highly common
practice in industry, supported by extensive managerial accounting literature [36, 69, 70], and it
simplifies the pricing decision to focus on the core investment problem.

(A4) Market demand is modeled by a continuous-time O-U process, an approximation of a discrete-time
AR(1) process. This captures key empirical features such as demand inertia and mean-reversion
to a level µD(y) that is endogenously shifted by the manufacturer’s GT level y and consumer
preferences, s.

(A5) A make-to-order strategy is employed, meaning production exactly matches demand in every
period (qt = Xt). This abstracts away from inventory management and enables us to focus solely
on the investment and emission trading decisions.

(A6) GT investment is fully irreversible. The control process I(t) is non-decreasing, reflecting the
sunk costs and path dependency (e.g., technological lock-in) associated with major environmental
upgrades.

(A7) We model the C&T mechanism with a fixed, grandfathered emission quota Q allocated at the
beginning of each compliance period and a fixed carbon price a. We abstract from potential policy
uncertainties (e.g., changing caps or prices) to establish a clear baseline understanding of firm
behavior under a stable regulatory regime.

All parameters associated with these assumptions, along with their economic interpretations, are
summarized in Table 2.
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Table 2. Model parameters

Parameters Description Range
ρ Discount factor ρ > 0
k The rate of reversion 0 < k < 1
µ The composite long-term demand parameter µ > 0
σ The volatility of demand σ > 0
c The green technology investment cost c > 0
E Emission intensity E > 0
a Carbon price a > 0
ȳ Green technology investment cap ȳ > 0
d The consumers’ sensitivity to price d > 0

b
The additional production cost per unit resulting
from green technology investment

b > 0

s The green awareness of consumers s > 0
r The emission reduction rate 0 < r < 1
πp The mark-up rate over cost πp > 1
cp The unit production cost cp > 0

4. Dynamic programming approach

In this section, we employ the dynamic programming approach to characterize the manufacturer’s
value function and optimal GT investment strategy I∗. We first derive the associated Hamilton-Jacobi-
Bellman (HJB) equation. Then, a verification theorem establishes that the solution to the HJB equation
indeed equals the value function defined in (3.16), and the corresponding strategy I∗ is optimal.

We now derive the HJB equation heuristically by considering the manufacturer’s marginal decisions
in continuous time [32]. The manufacturer continuously monitors demand, deciding at each moment
whether to invest immediately or wait. If investing in GT cannot increase the expected profit, the
manufacturer will choose to wait for a short period of time ∆t. Therefore, the following inequality is
satisfied

V(x, y) ≥ E
[ ∫ ∆t

0
e−ρs

(
π(cp + by)Xx,y

s − a
(
Xx,y

s (1 − ry)E − Q
))

ds + e−ρ∆tV(Xx,y
∆t , y)

]
, (4.1)

for (x, y) ∈ R × [0, ȳ). If investing in GT can increase the expected profit, the manufacturer will invest
an increment of ε in GT to ensure that the expected profit is optimized, and we have

V(x, y) ≥ V(x, y + ε) − cε. (4.2)

We define the second-order differential operator as

Lyu(x, y) :=
1
2
σ2 ∂

2

∂x2 u(x, y) + k ((µ − βy) − x)
∂

∂x
u(x, y). (4.3)

Applying Itô’s formula to the last term on the right-hand side of (4.1). Then we divide the result by ∆t,
and letting ∆t → 0, we obtain

Lyw(x, y) − ρw(x, y) + π(cp + by)x − a (x(1 − ry)E − Q) ≤ 0,
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for (x, y) ∈ R × [0, ȳ), which represents the manufacturer’s expected profit when waiting is the optimal
strategy. By dividing (4.2) by ε and letting ε ↓ 0, we have

Vy(x, y) − c ≤ 0,

which represents the manufacturer’s marginal expected profit regarding GT investment. Therefore, the
expected profit V should be consistent with the solution w of the following HJB equation

max
{
Lyw(x, y) − ρw(x, y) + π(cp + by)x

−a (x(1 − ry)E − Q) ,wy(x, y) − c
}

= 0.
(4.4)

The HJB equation (4.4) partitions the feasible domain of the optimization problem (3.16) into two
subsets: The waiting region

W :=
{
(x, y) ∈ R × [0, ȳ) : Lyw(x, y) − ρw(x, y) + P(x, y) = 0,wy(x, y) − c < 0

}
, (4.5)

and the investment region

I :=
{
(x, y) ∈ R × [0, ȳ) : Lyw(x, y) − ρw(x, y) + P(x, y) ≤ 0,wy(x, y) − c = 0

}
, (4.6)

where we denote
P(x, y) = π(cp + by)x − a (x(1 − ry)E − Q)

for simplicity.
Although the proof of the verification theorem follows ideas similar to [32], the specific form of our

value function and state dynamics necessitates adjustments to the analysis. An appropriate solution to
the HJB equation (4.4) corresponds to the value function, provided that there exists an admissible GT
investment strategy that keeps the state process (X,Y) within the waiting regionW with minimal effort.
This is achieved by increasing the level of GT whenever (X,Y) enters the investment region I. Here,W
denotes the closure ofW. Before presenting the Verification Theorem, we provide some preliminary
results.

We denote a non-investment strategy by the function I0 ≡ 0, and denote the GT process implied by
I0 as (Xx,y

t )t≥0, where Xx,y
t ≡ Xx,y,I0

t and Xx,y,I0

0− = x ∈ R. This represents the manufacturer’s strategy of not
investing in any GT. In this case, the expected profits of the manufacturer following a non-investment
strategy are described by the function R : R × [0, ȳ] 7→ R. We can obtain

R(x, y) = J(x, y, I0)

=
x

ρ + k
(πcp − aE) +

xy(πb + arE)
ρ + k

+
k(µ − βy)(πcp − aE)

ρ(ρ + k)

+
k(πb + arE)(µ − βy)y

ρ(ρ + k)
+

aQ
ρ
.

(4.7)

The following results provide a growth condition and a monotonicity property of the value function
V and establishes its connection to the function R.
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Lemma 4.1. For any initial condition (x, y) ∈ R × [0, ȳ], admissible control I ∈ I(y) and integer C ≥ 0,
for any ρ̂ > 0,

E
[
sup
t≥0

e−ρ̂t|Xx
t |

]
≤ C(1 + |x|). (4.8)

Proof. See Appendix A. �

Proposition 4.2. There exist a constant K > 0 such that for all (x, y) ∈ R × [0, ȳ] one has

|V(x, y)| ≤ K(1 + |x|). (4.9)

Moreover, V(x, ȳ) = R(x, ȳ), and V is increasing in x.

Proof. See Appendix B. �

Next comes the verification theorem.

Theorem 4.3. (Verification Theorem). Suppose there exists a function w : R × [0, ȳ] 7→ R such that
w ∈ C2,1(R × [0, ȳ]) solves the HJB equation (4.4) with boundary condition w(x, ȳ) = R(x, ȳ), and
satisfies the growth condition

|w(x, y)| ≤ K(1 + |x|), (4.10)

for a constant K > 0. Then w ≥ V on R × [0, ȳ]. Moreover, suppose that for all initial values
(x, y) ∈ R × [0, ȳ), there exists a process I∗ ∈ I(y) such that

(Xx,y,I∗
t ,Yy,I∗

t ) ∈W, ∀t ≥ 0, P-a.s., (4.11)

I∗t =

∫ t

0−
1{

(Xx,y,I∗
s ,Yy,I∗

s )∈I
}dI∗s , ∀t ≥ 0, P-a.s., (4.12)

then we have

V(x, y) = w(x, y), (x, y) ∈ R × [0, ȳ], (4.13)

and I∗ is optimal; that is, V(x, y) = J(x, y, I∗).

Proof. See Appendix C. �

5. Optimal solution to the green technology investment problem

5.1. Free boundary of green technology investment

In this section, we examine the conditions under which a manufacturer will invest in GT and obtain
the manufacturer’s profit function, i.e., the value function.

The HJB equation (4.4) implies that the manufacturer’s optimal decision is characterized by a free
boundary F(y), which separates the state space into a waiting regionW and investment region I. Hence,
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we hypothesize the existence of a boundary F : [0, ȳ] → R that distinguishes the regions where a
manufacturer invests in GT and waits, such that

W :=
{
(x, y) ∈ R × [0, ȳ) : x < F(y)

}
, (5.1)

I :=
{
(x, y) ∈ R × [0, ȳ) : x ≥ F(y)

}
. (5.2)

Next, we provide the explicit form of this free boundary, the functional form of the manufacturer’s
expected profit, and how the manufacturer intervenes in the carbon emission process by investing in GT.

In the following, we present the key steps to solve this problem. As the well-posedness of this type
of singular control problem is thoroughly discussed in [32] and the verification theorem is provided in
Section 4, we omit a repetitive analysis here. We first introduce the following lemma.

Lemma 5.1. Let L denote the infinitesimal generator of the uncontrolled O-U process (3.13), that is
L ≡ L0, where Ly, for y ≥ 0 be given and fixed, is the generator from (4.3). Then the following results
hold. (1) The strictly increasing positive fundamental solution ψ(·), and the strictly decreasing positive
fundamental solution φ(·) to the ordinary differential equation (L − ρ)u = 0 are given by

ψ(x) = e
k(x−µ)2

2σ2 D− ρk

(
−

x − µ
σ

√
2k

)
, (5.3)

φ(x) = e
k(x−µ)2

2σ2 D− ρk

( x − µ
σ

√
2k

)
, (5.4)

where

Da(x) :=
e−

x2
4

Γ(−a)

∫ ∞

0
t−a−1e−

t2
2 −xtdt, a < 0, (5.5)

is the cylinder function of order a and Γ(·) is the Euler’s Gamma function.
(2) Denoting by ψ( j) and φ( j) the j-th derivative of ψ and φ, j ∈ N0, one has that ψ( j) and φ( j) are strictly
convex and ψ( j) (φ( j) respectively) identifies with the strictly increasing positive (strictly decreasing
positive respectively) fundamental solution (up to a positive constant) to (L − (ρ + k j))u = 0. In
particular, it holds

σ2

2
ψ( j+2)(x + βy) + k((µ − βy) − x)ψ( j+1)(x + βy)

−(ρ + k j)ψ( j)(x + βy) = 0,
(5.6)

for any x ∈ R and y ≥ 0.
(3) For any j ∈ N0, ψ( j)(x)ψ( j+2)(x) − ψ( j+1)(x)2 > 0, for all x ∈ R.
(4) For any j ∈ N0, the function Ψ j : R 7→ R defined as

Ψ j(x) =
ψ( j+1)(x)2

ψ( j)(x)ψ( j+2)(x)
, (5.7)

is strictly increasing.
(5) Denote by ψ(·; y) (φ(·; y) respectively) the strictly increasing (strictly decreasing respectively) positive
fundamental solution to (Ly − ρ)u = 0 for y ≥ 0. Then, one can identify

ψ(x; y) = ψ(x + βy), φ(x; y) = φ(x + βy). (5.8)
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Proof. Please see [82] for details. �

We consider all (x, y) ∈W. The candidate value function w should satisfy the equation:

Lyw(x, y) − ρw(x, y) + P(x, y) = 0. (5.9)

Equation (4.7) shows that R is a particular solution to (5.9). The homogeneous part of (5.9) is

Lyw(x, y) − ρw(x, y) = 0, (5.10)

which admits two fundamental strictly positive solutions. These are given by ψ(x + βy) and φ(x + βy),
with ψ(·) strictly increasing and φ(·) strictly decreasing, cf. Lemma 5.1-(1),(5). Therefore, the solution
to (5.9) can take the following form

w(x, y) = A(y)ψ(x + βy) + B(y)φ(x + βy) + R(x, y), (x, y) ∈W, (5.11)

for some functions A, B : [0, ȳ]→ R to be found. Given a fixed y ≥ 0, φ(x − βy) grows exponentially to
+∞ as x approaches −∞, as shown in Appendix 1 of [83]. Considering the linear growth condition in
(4.2) and the structure of the waiting regionW, we conclude that B(y) = 0 for all y ∈ [0, ȳ]. Consequently,
the candidate value function w can take the following form

w(x, y) = A(y)ψ(x + βy) + R(x, y), for (x, y) ∈W. (5.12)

Next, by the smooth-fit condition

(wy(x, y) − c)|x=F(y) = 0,
(wxy(x, y))|x=F(y) = 0.

(5.13)

We can obtain the following equations

A′(y)ψ(F(y) + βy) + βA(y)ψ′(F(y) + βy) + Ry(F(y), y) − c = 0, (5.14)

and

A′(y)ψ′(F(y) + βy) + βA(y)ψ′′(F(y) + βy) + Rxy(F(y), y) = 0. (5.15)

Here, Ry and Rxy are the partial derivative of the function R with respect to y and the mixed partial
derivative of the function R with respect to y and x, respectively. These derivatives can be obtained from
equation (4.7) as follows:

Ry(x, y) =
x(πb + arE)

ρ + k
−
βk(πcp − aE)
ρ(ρ + k)

+
k(πb + arE)(µ − 2βy)

ρ(ρ + k)
, (5.16)

and

Rxy(x, y) =
πb + arE
ρ + k

. (5.17)

Before solving for A(y), we first define the auxiliary function

F̃(y) = F(y) + βy. (5.18)

The following Lemma gives the form and monotonicity of A(y).
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Lemma 5.2. The function A is strictly positive and strictly decreasing. Additionally, A(y) can be
expressed by

A(y) =
πb + arE
βρ(ρ + k)

σ2

2 ψ
′′(F(y) + βy) + Myψ′(F(y) + βy)

ψ′2(F(y) + βy) − ψ′′(F(y) + βy)ψ(F(y) + βy)
, (5.19)

where

My = (ρ + k)
[
βk
ρ + k

y +
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

− F(y)
]
. (5.20)

Furthermore

F(y) >
βk
ρ + k

y +
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

≥
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

,

(5.21)

for all y ∈ [0, ȳ].

Proof. See Appendix D �

Next, we provide the explicit form of the free boundary through the following proposition:

Proposition 5.3. Define the functions Q j : R 7→ R, j ∈ N0, and their first derivatives as

Q j(z) = ψ( j)(z)ψ( j+2)(z) − ψ( j+1)(z)2, (5.22)
Q′j(z) = ψ( j)(z)ψ( j+3)(z) − ψ( j+1)(z)ψ( j+2)(z). (5.23)

There exists a unique solution x̃ ∈ R to the equation H(x) = 0 given by

H(x) :=
πb + arE
ρ + k

ψ(x) + (c − R̃(x, ȳ))ψ′(x). (5.24)

Furthermore, the function F̃(y) satisfies the ordinary differential equation

F̃′(y) = G(y, F̃(y)), (5.25)

with the boundary condition F̃(ȳ) = x̃, where G : (R × R) \ {(y, z) ∈ R2 : D(y, z) = 0} → R is given by

G(y, z) := β
N(y, z)
D(y, z)

, (5.26)

with

N(y, z) = Q0(z)
[
2(k + ρ)

ρ
ψ′(z) +

ρ + k
πb + arE

(
c − R̃(z, y)

)
ψ′′(z)

]
, (5.27)

D(y, z) = ψ(z)
(

ρ + k
πb + arE

)
(c − R̃(z, y))Q1(z) + ψ(z)Q′0(z), (5.28)

where R̃ : R2 → R is defined as

R̃(x, y) =
(x − βy)(πb + arE)

ρ + k
−
βk(πcp − aE)
ρ(ρ + k)

+
k(πb + arE)(µ − 2βy)

ρ(ρ + k)
. (5.29)
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Proof. See Appendix E. �

Proposition 5.3 establishes that the free boundary F(y) is characterized by the ODE (5.25), where the
boundary condition is specified by the solution to the equation H(x) = 0 defined in (5.24). Consequently,
from the boundary condition F̃(ȳ) = x̃, we can obtain the explicit form of the free boundary

F(y) = x̃ − βy −
∫ ȳ

y
G(u, F̃(u))du.

5.2. Value function and optimal green technology investment strategy

The initial demand is denoted by x0 := F(0). Once the manufacturer observes that the current
demand exceeds the free boundary F(y), it will consider investing in GT. At this point, until the available
GT investment is exhausted (i.e., Yy,I

t = ȳ), the manufacturer’s profit needs to take into account the cost
of investing in GT. Therefore, we present the candidate value function w : R × [0, ȳ] 7→ R as

w(x, y) =


A(y)ψ(x + βy) + R(x, y), if (x, y) ∈W ∪ ((−∞, x) × {ȳ}),
A(F−1(x))ψ(x + βF−1(x))
+R(x, F−1(x)) − c(F−1(x) − y), if (x, y) ∈ I1,
R(x, ȳ) − c(ȳ − y), if (x, y) ∈ I2 ∪ ([x,∞) × {ȳ}),

(5.30)

where
I1 := {(x, y) ∈ R × [0, ȳ) : x ∈ [F(y), x)} ,

I2 := {(x, y) ∈ R × [0, ȳ) : x ≥ x} .

The manufacturer’s optimal strategy is characterized by the candidate value function w(x, y) defined
over three regions, reflecting different investment behaviors based on current demand x and existing GT
level y.

In the waiting regionW∪((−∞, x)×{ȳ}), the manufacturer optimally postpones any further investment
in GT. When demand x remains below an endogenously determined investment threshold F(y), the
scale of production is sufficiently low that the associated carbon emissions, and thus the corresponding
carbon price burden remain manageable. Under these conditions, the substantial sunk cost of a new GT
investment cannot be justified by the relatively modest reduction in future emission expenses, rendering
the net present value of the investment negative. Alternatively, waiting is also optimal when the GT level
has reached its maximum capacity, ȳ. In this boundary case, the marginal benefit of any additional GT
investment is zero, as no further reductions in emissions are feasible. Thus, in both scenarios, insufficient
demand pressure or a binding technological constraint, the value of the option to wait outweighs the
benefits of immediate action, leading to a period of optimal inactivity.

The partial investment region I1, defined by x ≥ F(y), represents a state where demand pressures
have become significant enough to warrant action, but not so extreme as to justify a full GT investment.
Here, the manufacturer adopts a strategy of sequential investment. Rising demand increases the marginal
cost of operations via higher emission costs, making sequential GT investments profitable. However,
given the uncertainty about future demand paths, a lump-sum investment would carry significant risk.
The optimal response is a gradual, piecemeal adoption of GT. This strategy strikes a balance: It provides
immediate relief from the high marginal cost of emissions while preserving production flexibility. By
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investing sequentially, the manufacturer retains the option to cease further investment if demand falls or
to accelerate it if demand rises.

The manufacturer’s strategy shifts to immediate and full investment upon entering the full investment
region I2 ∪ ([x,∞) × {ȳ}). This action is triggered by one of two scenarios. The first occurs when
demand x exceeds a upper threshold x. At such high demand levels, the marginal cost of emissions
becomes so punitive that it severely erodes profitability. The benefit of immediately eliminating this
cost through a comprehensive GT upgrade, achieving economies of scale in emission reduction, dwarfs
the investment’s costs. The opportunity cost of delaying, i.e., continuing to incur prohibitive emission
fees, becomes unbearable, and the value of the option to wait diminishes to zero. The second scenario is
the attainment of the technological limit ȳ again. However, the implication here differs from that in the
waiting region. On the boundary {y = ȳ}, the decision problem regarding GT investment is effectively
terminated. Since no further technological improvements are available, the manufacturer’s optimal
course of action on the interval [x,∞) is to invest fully in the best available GT if they have not done so,
after which the emission reduction potential is maximized and no further decisions on GT investment
remain.

The following lemma illustrates how manufacturers make investments in GT.

Lemma 5.4. Recall w from (5.30) and let ∆ := (ȳ − y)1{x≥x} + (F−1(x) − y)1{x>x>F(y)}, Kt =

min{sup0≤s≤t{F̄
−1(Xs)}, ȳ − (y + ∆)}, τ := inf {t ≥ 0 : Kt = ȳ − (y + ∆)}, and (X,K) defined on [0, τ]

such that

Xt ≤ F(y + ∆ + Kt),
dXt = k (µ − β(y + ∆ + Kt) − Xt) dt + σdWt,

dKt = {Xt=F(y+∆+Kt)}dKt,

(5.31)

with increasing K, and starting point (X0,K0) = (x, 0), where F̄−1 is such that

F̄−1(x) :=


0, if x < x0

F−1(x), if x ∈ [x0, x]
ȳ, if x > x.

(5.32)

Then, the function w identifies with the value function V from (3.16), and the optimal investment strategy,
denoted by I∗, is given by 

I∗0− = 0

I∗t =

∆ + Kt, t ∈ [0, τ),
∆ + Kτ, t ≥ τ.

(5.33)

Proof. The proof of this Lemma essentially relies on the existence and uniqueness results for the
Skorokhod reflection problem, as established by the researchers in [84]. After integrating the necessary
symbols, the proof proceeds similarly to that of Theorem 4.8 in [32]. For brevity, we refer the reader to
the detailed proof provided in that reference. �

Lemma 5.4 provides a formal characterization of the manufacturer’s optimal GT investment strategy.
The strategy unfolds in two distinct phases:
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The process begins with an initial adjustment ∆, the size of which is determined by the observed
demand x relative to the endogenous threshold F(y). This threshold represents the demand level at which
emission costs begin to outweigh the investment costs given the GT level y. If demand is insufficient,
x < F(y), the emission cost burden remains manageable, and the manufacturer optimally chooses to
wait. This inaction embodies the value of the option to delay, which avoids incurring irreversible sunk
costs in the face of uncertainty. Conversely, if demand is high, the initial investment is executed, yet its
magnitude is capped by the available GT investment ȳ − y.

Following this initial phase, the strategy transitions into a boundary-triggered investment regime.
Subsequent investments are not made continuously but are discretely triggered only when the demand
process Xt hits a moving boundary F(y+∆+ Kt). The economic interpretation of this boundary is central
to the strategy: it dynamically recalibrates to represent the critical demand level at which emission
costs become prohibitively expensive given the cumulative technology stock y + ∆ + Kt. The process
Kt captures the cumulative investment made during this phase, increasing solely when necessary to
maintain the inequality Xt ≤ F(y + ∆ + Kt), ensuring that every unit of capital is deployed precisely
when the marginal benefit demonstrably outweighs its marginal cost. This mechanism enforces strict
cost-effectiveness by preventing premature and excessive investment.

This investment process continues until time τ, when the available GT capacity is exhausted, i.e., Kt

reaches the limit ȳ − (y + ∆). Beyond this point, no further GT investment is possible, and the GT level
is permanently fixed at I∗t = ∆ + Kτ, representing the maximum achievable emission reduction under the
technological constraint.

6. Numerical experiments

Figure 1. Leapmotor’s sales disclosure data from 2021 to 2022.
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In this section, we numerically examine the relationship between model parameters and the boundary
of GT investment. To ground our model in empirical reality and facilitate numerical illustration, we
calibrate a subset of parameters using data from a case: The monthly sales data of electric vehicles from
Leapmotor Technology Co., Ltd., a company based in Zhejiang, China, from January 2021 to December
2022, and carbon price data from Beijing’s carbon market. This calibration is an illustrative example,
while the model is general and can be applied to various manufacturing contexts under C&T mechanism.
The core theoretical insights and managerial implications are not limited to this case.

Figure 1 illustrates the monthly sales data of Leapmotor from 2021 to 2022. The demand demon-
strates fluctuations within the chosen timeframe, and our empirical analysis indicates a statistically
significant mean-reverting characteristic. To estimate the demand process, we employ a discrete
approximation method. The approximation is essentially a linear model using the sales data:

∆X̃t = k̃(µ̃ − Xt) + σ̃ε̃t

for t = 1, 2, ..., 24, where ∆Xt = Xt+1 − Xt and {ε̃t}t=1,2,... is a sequence of independent standard normal
variables.

Table 3. Parameter estimation for the sales data

Estimate p-Value
µ̃k̃ 1263.3239 8.07542351 × 10−2

1 − k̃ 0.8857 2.82596522 × 10−11

Table 3 shows the estimates and p-values for the parameters. Both parameters of the mean-reverting
rate and level are statistically significant. We rescale the parameters using a linear transformation
X(t) = X̃(t)/µ̃ and regard Xt as the demand of vehicles.

We refer to empirical research [85] to estimate the carbon emissions produced by the production
of electric vehicles, and set the carbon emission intensity as E = 12.446/tCO2e per unit. Based on
the average selling price of Leapmotor, which is (1 + π)cp = 17869.979$ per unit, and a profit margin
of π = 1.2%, we can calculate the production cost per unit as cp ≈ 17658.0820$ [86]. According to
the carbon price in Beijing’s carbon emission trading market, which is a = 1.3(×10$/tCO2e). Next,
we scale the production cost and carbon price by a factor of 1 × 105. We can obtain cp = 0.1765
and a = 1.3 × 10−4. Based on the carbon trust surveys, about 20% of consumers prefer to buy green
products [87], it is set that s = 0.2. According to the IPCC report, for many industrial sub-sectors,
the maximum economic emission reduction potential achievable through energy efficiency measures
and the extensive deployment of the best available technologies (BAT) is typically between 10% and
30%. Therefore, we set the upper limit parameter for emission reduction from GT investment at 20%,
implies r = 0.2 [88]. We refer to [68] for the coefficient of the increase in the unit production cost due
to investment in GT, and set it as b = 0.2. The other parameters in the objective function as ρ = 0.050,
d = 2.5 and c = 2.5 × 10−2. The corresponding parameters are shown in Table 4.
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Table 4. Notation summary

ρ k µ σ c E a
0.05 0.1143 1.0 0.1891 2.5 × 10−2 12.446 1.3 × 10−4

ȳ d b s r π cp

1 2.5 0.2 0.2 0.2 0.012 0.1765

6.1. The impact of free boundary and carbon emission threshold on green technology investment
strategy

In the subsequent proposition, we elucidate the relationship between the demand threshold that
triggers GT investment and the average demand. Here, the average demand can be represented by
the so-called “mean line” of the O-U process, denoted as M(y) = µ − βy, with the mapping of
M : [0,∞)→ (−∞, µ], which represent that the demand deviating from the mean will move toward this
line.

Proposition 6.1. Given the upper bound ȳ for the GT investment cumulative level, and the corresponding
free boundary F(y) starting from (x, ȳ), the line of means M(y) = µ − βy:

(1) Has no intersection with the investment region I if F(0) > µ;

(2) Intersects the boundary of I in the free boundary F(y) if F(0) ≤ µ and ȳ ≥ y∗, where

y∗ =
1

β(2k + ρ)

(
µ(ρ + k) −

cρ(ρ + k)
πb + arE

−
βk(πcp − aE)
πb + arE

− ρ
ψ(µ)
ψ′(µ)

)
, (6.1)

(3) Intersects the boundary of I in its upper bound y = ȳ if ȳ ≤ y∗.

Proof. See Appendix F. �

In Proposition 6.1, y∗ reflects the manufacturer’s willingness to invest in GT, and M represents the
average level of demand. The closer y∗ is to M, the greater the probability that the manufacturer will
invest in GT. As can be seen from Figure 2, if condition (1) holds, the dashed sloped red line, which
represents the plot of the function M, does not intersect with F and lies within the waiting regionW.
Since the demand is highly likely to fluctuate around the sloped red line, it is difficult for the demand to
reach the threshold that triggers GT investment. This also indicates that the manufacturer’s willingness
to invest in GT is low at this time.
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Figure 2. The functions F−1 and M−1 with µ = 0.65.

If condition (2) holds, as can be seen from Figure 3, the mean line M intersects with the boundary F
and lies in the waiting regionW. Moreover, M(y) to the right of the intersection point enters the I1 region.
Since the demand is more likely to move towards the mean line, it is highly possible that the demand
will reach the manufacturer’s GT investment threshold. This also indicates that the manufacturer has a
relative strong willingness to invest in GT at this time, and the manufacturer will invest in part of GT to
reduce investment risks.

Figure 3. The functions F−1 and M−1 with µ = 1.0.

Finally, if condition (3) holds, as can be seen from Figure 4, the mean line M not only intersects with
F but also lies entirely within the investment region I2. At this time, there is a very high probability that
the demand will reach threshold x, which will cause the manufacturer to invest in all GTs due to the
excessively high emission reduction costs. Moreover, the high demand causes the carbon emission fine
cost to far exceed the GT investment cost, and the manufacturer has a strong willingness to make lump
sum investments to minimize the total cost.
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Figure 4. The functions F−1 and M−1 with µ = 1.35.

6.2. Simulation

In this section, referring to the simulation method in [43], we conduct a simulation to illustrate how
manufacturers determine the investment strategy in GT under stochastic emission. Figure 5 presents
two simulation results. In both scenarios, the initial GT level for manufacturers is y = 0, and the initial
demand is x = 0.60. The time horizon is T = 24 (2 years). All the figures share a time axis, and other
parameters are consistent with Table 4.

The top graph simulates the carbon emission process of manufacturers, as well as the effectiveness
of implementing GT in reducing carbon emissions. The solid line indicates the carbon emission process
under the optimal GT investment strategy, while the dashed line represents the uncontrolled carbon
emission process. The area between the dashed line and the solid line represents the cumulative
reduction in carbon emissions achieved through the investment of GT. The middle graph simulates
the inverse function of the boundary F, illustrating the emission threshold at different GT levels. By
comparing the top and middle graphs, we can observe that once the emission reaches the threshold
indicated by the middle graph, the manufacturer will invest in GT, which results in reduced emissions in
subsequent periods. Moreover, each investment in GT leads to an increase in the investment threshold.
This is because when manufacturers invest in GT, it enhances their emission reduction capabilities. As a
result, they can produce fewer emissions at the same production level. This enables manufacturers to
more easily achieve their emission reduction targets, thereby weakening their willingness to continue
investing in GT. The bottom graph simulates the process of investment in GT. As long as the emissions
do not reach the specified threshold, the manufacturer will choose to wait for a better time to invest
in GT. Notably, we observe some singularities and an upward trend in the investment strategy for GT.
This is because GT investment is irreversible, which is more in line with the real world situation. GT
implementation requires substantial financial, resource, and time investments, along with contractual
agreements and supplier partnerships, making these commitments difficult to reverse.

As the demand involves stochasticity, we simulate two scenarios. In the first scenario shown in
Figure 5a, the cumulative GT investment does not reach the upper limit ȳ as the emission remains below
the threshold after several investment rounds. This enables the manufacturer to cease GT investment
once it achieves its emission reduction target. In Figure 5b, the cumulative GT investment reaches
the upper limit ȳ at time τ. Consequently, even if the emission level exceeds the threshold after τ, the
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additional investment is constrained by the upper limit. The threshold then becomes irrelevant, as shown
in the upper graph of Figure 5b. Although the emission exceeds the emission reduction target after τ,
the manufacturer is unable to invest in GT. Nevertheless, the previously implemented GT persists and
continues to reduce emissions throughout the production process.

The numerical solutions obtained from our simulation include a series of timing and numerical
values for system adjustments, which can be regarded as impulse control [31]. Our findings demonstrate
that decision-makers can determine investment timing and adjustment amounts at discrete time points
(every month), enabling manufacturers to adjust their GT strategy in a controlled manner to manage
their emissions.

(a) τ > 24 (b) τ = 10

Figure 5. Simulated results are obtained using the optimal GT investment rules I∗t . We
generate sample paths, including the optimal carbon emission process Xx,y,I∗

t (1 − rYy,I∗)E,
the uncontrolled carbon emission process Xx

t E, the free boundary process F−1(Yy,I∗
t ), and the

optimal accumulated GT investment process Yy,I∗
t under two scenarios.
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6.3. Static analysis of the green technology investment boundary

In this section, we conduct a static analysis of the sensitivity of the GT investment boundary using
the parameters in Table 4. We first examine parameters whose increase shifts the boundary leftward,
indicating enhanced willingness to invest in GT. Figures 6 and 7 illustrate how emission reduction
cost parameters affect the investment threshold. An increase in the carbon trading permit price a
raises emission reduction costs, while an increase in the GT efficiency parameter r improves the cost-
effectiveness of investment. Higher r values indicate better emission reduction per unit of GT investment.
These results align with those in [18], confirming that cost pressures and efficiency gains stimulate GT
investment. Although our static analysis yields consistent expectations, the dynamic boundary allows
real-time strategy adjustments based on market feedback.

Figure 6. The functions F−1 with a. Figure 7. The functions F−1 with r.

Figures 8 and 9 show demand related parameters’ effects. Increases in average demand µ and
consumer green awareness s prompt higher production, raising emission costs and strengthening GT
investment incentives. However, when initial GT levels are low, this incentive is attenuated as emission
reduction needs only become significant at high production volumes. These findings are consistent with
those in [18] regarding consumer sensitivity to carbon emissions. Compared with Figures 6 and 7, direct
cost pressures and efficiency gains produce more uniform leftward shifts across scenarios.

Figure 8. The functions F−1 with µ. Figure 9. The functions F−1 with s.
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Figure 10 shows the impact of the profit margin set by the manufacturer for the product on the
threshold. It can be seen that the higher the profit margin is set, the higher the willingness to invest in
GT. This result seems counterintuitive because a higher profit margin raises the price, which reduces
demand and undermines the effectiveness of emission reduction. However, a higher profit margin also
increases the profit per unit. This means that when demand is low, the manufacturer can boost profits by
reducing emission costs, which encourages GT investment.

Figure 10. The functions F−1 with π.

Next, we present the results for parameters whose increase raises the investment threshold. As shown
in Figure 11, an increase in the GT investment cost c reduces manufacturers’ willingness to invest, which
aligns with our expectations. This situation can be inversely applied to model the effect of government
subsidies, because the result of government subsidies for GT is the same as that of a reduction in GT
investment costs. This result implies that well-designed subsidies can counteract investment inertia
and accelerate GT adoption by triggering the investment decision at lower levels of demand or carbon
price pressure. Conversely, in Figure 12, an increase in consumers’ price sensitivity d also reduces
the manufacturers’ willingness to invest in GT. This is because manufacturers pass on a portion of the
investment cost to consumers, leading some price-sensitive customers to abandon the product, thereby
reducing the benefits of GT investment.

Figure 11. The functions F−1 with c. Figure 12. The functions F−1 with d.
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The results presented in Figure 13 are also in line with expectations. That is, environmental
uncertainty generates a value of waiting [54], which leads to a decrease in the manufacturers’ willingness
to invest in GT. This result aligns with [27] and [20], showing that high volatility in carbon trading
policy can reduce the willingness to invest in GT. Similar, our results show that manufacturers will
postpone their GT investment due to this. Figure 14 shows the impact of the GT investment cap ȳ on
the boundary. It is noteworthy that a higher investment cap corresponds to a higher threshold. Due to
carbon quotas, manufacturers aim to meet a baseline emission level rather than minimize emissions.
Therefore, with a low GT investment cap, they tend to invest earlier to comply with the quota.

Figure 13. The functions F−1 with σ. Figure 14. The functions F−1 with ȳ.

Finally, we present the results for the parameter effects on the threshold are uncertain, as shown in
Figure 15. An increase in the unit cost b shifts the boundary left under low demand and right under high
demand. Our explanation is that GT investment raises production costs, leading manufacturers to raise
prices, which in turn reduces demand. Nevertheless, when the external demand is low, the impact of
this demand reduction is mitigated. Hence, the manufacturer intends to invest in GT to increase profits.
When demand is low, this is achieved by reducing emission costs. Conversely, when demand is high,
the resulting price increase can suppress demand so much that it outweighs the benefits of emission
reduction, thus discouraging investment.

Figure 15. The functions F−1 with b.
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Remark 6.2. The sensitivity analysis conducted above demonstrates that while the GT investment
threshold vary with parameters, the qualitative insights derived from the model are robust. Specifically,
the existence of a dynamic investment threshold and its systematic dependence on key factors, where the
increase of carbon price, emission reduction efficiency, and consumer green awareness will encourage
the manufacturers’ GT investment willing, while investment costs and demand volatility delay GT
investment, remains consistent across a wide range of parameter values. This robustness suggests that
the core decision-making mechanism uncovered in this paper extends beyond the specific calibration to
Leapmotor and the Beijing carbon market, offering general insights for manufacturers operating under
C&T mechanisms in diverse industrial contexts.

Remark 6.3. The calibration of our model using Leapmotor data is an illustrative case study rather
than a restrictive application. Under the modeling framework defined by assumptions A1-A7 in
Section 3, re-calibrating the O-U process with data from other manufacturing firms would not alter the
fundamental qualitative results. The sensitivity analysis demonstrates that while parameter variations
affect the specific numerical values of the investment threshold F(y), they do not change the structural
characteristics of the optimal strategy. Specifically:

• Parameter changes primarily cause translational shifts or scaling adjustments of the free boundary
F(y).
• The distance between the upper and lower bounds of F(y) may narrow or widen, but no fundamen-

tally new regions emerge in the state space.
• The core insights regarding the existence of a dynamic threshold and the sequential investment

pattern remain robust across parameter variations.

As illustrated in Figure 2-4, the partition of the state space into waiting, partial investment, and full
investment regions is structurally stable. Therefore, we select a single representative case to illustrate
these robust mechanisms, without loss of generality regarding the theoretical insights. Regarding the
reasons leading to this result, we recommend readers refer to the well-posedness study of such models
in [32].

6.4. Static analysis of the value function

In this section, we demonstrate how the value function (manufacturer’s expected profit) is influenced
by the GT level y and other parameters, under the initial time t = 0 and a fixed demand x = 2.0. Figure
16 shows the impact of the carbon price and the available GT investment ȳ on the firm’s profit. First, at
a low carbon price, GT investment actually reduces profit because the low emission cost offers little
benefit from reducing emissions. Furthermore, if consumers lack environmental awareness, the higher
price of green products further undermines profitability. Moreover, we also find that an increase in the
carbon price actually raises the manufacturer’s expected profit, especially when the manufacturer’s GT
level is high. This seemingly counterintuitive result reflects a realistic market dynamic, a higher carbon
price increases the value of the limited emission quota. For manufacturers with mature GT, effective
emission control converts their saved quotas into a valuable asset, offsetting the initial cost pressure.
By selling these quotas, manufacturers can directly raise their expected profits. This result is similar to
that in [27], which shows that under the carbon trading policy, although an increase in the carbon price
may increase risks, it may also bring profit opportunities as firms can obtain higher expected profits
by controlling production. This finding reveals a firm-level mechanism that contributes to a systemic
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“lock-in” effect: A manufacturer may perceive high carbon prices not as an investment signal but as a
cost burden, leading to investment postponement and prolonged use of polluting technologies. While
rational at the firm level, this results in a suboptimal technology mix overall.

Figure 16. The functions V with a and ȳ.

As illustrated in Figure 17, the manufacturer’s expected profits increase with rising consumer green
awareness, a result that aligns with expectations. Notably, when consumer green awareness is low, any
investment in GT leads to a decline in the manufacturer’s expected profits. This situation improves only
when consumer green awareness is enhanced. This highlights that the recognition of the manufacturer’s
products by environmentally conscious consumers is a critical driver for GT investment. Relying solely on
the cost-reduction benefits of GT is insufficient to incentivize manufacturers to invest in such technologies.

Figure 17. The functions V with s and ȳ.
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Figure 18 demonstrates the impact of the carbon emission reduction rate on the manufacturer’s expected
profits across different levels of GT. It is evident that increasing the carbon emission reduction rate enhances
the manufacturer’s expected profits. Furthermore, regardless of whether the emission reduction rate is
high or low, manufacturers can boost their expected profits through GT investment. Although the carbon
emission reduction rate is treated as exogenous in our analysis, this finding underscores that promoting GT
innovation through research and development (R&D) to improve emission reduction efficiency represents
a more effective strategy for achieving emission reduction goals. This result also aligns with the findings
regarding GT insurance in [28]. When GT can significantly increase manufacturer profits, technology
maturity becomes a critical factor in determining the level of profitability.

Figure 18. The functions V with r and ȳ.

7. Conclusion

In this paper, we investigate the optimal irreversible GT investment strategy for a monopolist manu-
facturer under the C&T mechanism, considering demand inertia and market uncertainty. By formulating
the problem within a continuous-time stochastic dynamic programming framework and employing
singular control analysis, we derive a variable threshold strategy that dictates the manufacturer’s in-
vestment decisions. This approach provides a dynamic feedback control rule, enabling managers to
determine not only whether to invest but also the precise timing and scale of investment in response
to fluctuating market states. Our major findings are as follows: (1) The optimal GT investment is not
a one-off event but a sequential and incremental process. The manufacturer will postpone investment
until the cumulative pressure from carbon emissions, driven by market demand, exceeds a critical
and state-dependent threshold. (2) The option value of waiting is significant. In the face of demand
volatility and investment irreversibility, manufacturers optimally choose to “wait and see” until market
conditions are sufficiently favorable, rather than investing immediately. (3) Numerical simulations based
on real-world data identify key drivers of the investment decision: Factors such as consumer green
awareness, permit allowance price, and emission reduction efficiency accelerate investment timing,
while high investment costs and demand volatility lead to delays.
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7.1. Theoretical and practical insights

We contribute to the literature by integrating irreversible investment theory and singular stochastic
control methods into the study of sustainable operations management, extending beyond static models
to capture the dynamic interplay between market uncertainty, carbon regulation, and multi-period
investment decisions, thereby enriching the application of real options analysis in environmental
economics.

For managers, this paper is a practical decision-support tool, advocating for a dynamic and adaptive
investment strategy over a static one-time plan. Managers should continuously monitor demand
and emission levels against the derived optimal threshold, initiating investment in phases only when
emissions persistently breach this threshold, thereby maximizing long-term expected profits while
managing risk.

Our findings provide nuanced insights for designing effective carbon markets: First, a stable and
sufficiently high carbon price is the most direct signal to incentivize GT investment; second, policies
aimed at fostering consumer green awareness can create a pull effect from the demand side, comple-
menting regulatory push measures; third, government support for R&D to improve emission reduction
efficiency is more effective than mandating higher technological standards alone. For instance, as our
sensitivity analysis shows, merely raising the technological ceiling (ȳ) without providing subsidies may
delay GT investments.

7.2. Limitations and Future Research

Despite its contributions, this paper has limitations that open avenues for future research. First, our
model focuses on a monopolist setting. Incorporating strategic competition among firms or within a
supply chain could yield new insights into how competitive pressures influence GT adoption. Second,
we treat policy parameters as exogenous and constant. In the future, researchers could take policy
uncertainties into account, such as changing emission caps, auctioning mechanisms, allowance bank-
ing/borrowing, or dynamic adjustments. Furthermore, extending the model to incorporate benchmarking
mechanisms is valuable. By linking allowance allocation to sector benchmarks and output levels, bench-
marking directly ties GT investment returns to production volume, fundamentally altering investment
incentives. Third, the assumption of perfect rationality could be relaxed by introducing behavioral
factors to explore how managerial risk preferences affect decisions. Fourth, the numerical calibration
primarily relies on data from a single electric vehicle manufacturer and a regional carbon market. This
may limit the direct generalizability of our quantitative findings to industries with different emission
structures, technology cost curves.
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Appendix

A. Proof of Lemma 4.1

Recall the uncontrolled carbon emission process Xx from (3.13), and notice that by an application of
Itô’s formula we find, for any ρ̂ > 0,

|e−ρ̂tXx
t | ≤ |x| + ρ̂

∫ t

0
e−ρ̂u|Xx

u |du +

∫ t

0
e−ρ̂uk(|µ| + |Xx

u |)du +

∣∣∣∣∣∣
∫ t

0
e−ρ̂uσdWu

∣∣∣∣∣∣ (A.1)

which implies

E
[

sup
t≥0

e−ρ̂t|Xx
t |

]
≤ |x| + C1

(
1 +

∫ ∞

0
e−ρ̂uE[|Xx

u |]du
)

+ E
[
sup
t≥0

∣∣∣∣∣ ∫ t

0
e−ρ̂uσdWu

∣∣∣∣∣] , (A.2)

for some C1 > 0. An application of the Burkholder-Davis-Gundy inequality yields

E
[

sup
t≥0

e−ρ̂t|Xx
t |

]
≤ |x| + C1

(
1 +

∫ ∞

0
e−ρ̂tE[|Xx

u |]du
)

+ C2E
( ∫ ∞

0
e−2ρ̂udu

) 1
2
 , (A.3)

for a constant C2 > 0, and therefore

E
[

sup
t≥0

e−ρ̂t|Xx
t |

]
≤ C(1 + |x|), (A.4)

for some constant C > 0, since it follows from standard calculations that E
[
|Xx

u |
]
≤ C3(1 + |x|) for a

constant C3 > 0.

B. Proof of Proposition 4.2

In order to prove the lower bound of V , we take the admissible (non-)investment strategy I0 to obtain
for all y ∈ [0, ȳ].

V(x, y) ≥ R(x, y) > −K1(1 + |x|). (B.1)
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Now, for any I ∈ I(y), we find by Lemma 4.1 that

J(x, y, I) ≤ E
[∫ ∞

0
e−ρt

(
(πcp − aE)Xx,y,I

t + (πb + arE)Xx,y,I
t Yy,I

t + aQ
)

dt
]

≤ E
[∫ ∞

0
e−ρt

(
(πcp − aE)Xx

t + (πb + arE)Xx
t Yy,I

t + aQ
)

dt
]

≤ E
[∫ ∞

0
e−ρt

((
(πcp − aE) + ȳ(πb + arE)

)
Xx

t + aQ
)

dt
]

≤ E
[∫ ∞

0
e−ρt

((
(πcp − aE) + ȳ(πb + arE)

)
|Xx

t | + aQ
)

dt
]

≤ E
[∫ ∞

0

((
(πcp − aE) + ȳ(πb + arE)

)
e−

ρ
2 t|e−

ρ
2 tXx

t |
)

dt
]

+
aQ
ρ

≤ K2(1 + |x|),

(B.2)

for some K2 ≥ 0, and upon observing that since β > 0, we have Xx,y,I ≤ Xx P-a.s. for any I ∈ I(y).
Finally, from (B.1) and (B.2), we have that (4.9) holds with K = max(K1,K2).

If y = ȳ, then the only permissible strategy is I0; therefore, V(x, ȳ) = R(x, ȳ). To demonstrate the
monotonicity of x 7→ V(x, y), consider x2 > x1, and observe that Xx2,y,I

t ≥ Xx1,y,I
t almost surely for any

t ≥ 0 and I ∈ I(y). Hence, J(x2, y, I) ≥ J(x1, y, I), leading to V(x2, y) ≥ V(x1, y) when πcp − aE > 0.

C. Proof of Theorem 4.3

Step 1: Let (x, y) ∈ R× [0, ȳ) be fixed, and let I ∈ I(y) be given. For N > 0, we define τR,N := τR∧N,
where τR := inf

{
s > 0 : Xx,y,I

s < (−R,R)
}
. Here, ∆Is := Is− Is− for s ≥ 0, and Ic represents the continuous

part of I ∈ I(y). By utilizing Itô-Tanaka-Meyer’s formula and the differentiability of w, we can derive

e−ρτR,N w(Xx,y,I
τR,N

,Yy,I
τR,N

) − w(x, y)

=

∫ τR,N

0
e−ρs

(
Lyw(Xx,y,I

s ,Yy,I
s ) − ρw(Xx,y,I

s ,Yy,I
s )

)
ds

+ σ

∫ τR,N

0
e−ρswx(Xx,y,I

s ,Yy,I
s )dWs

+
∑

0≤s≤τR,N

e−ρs
[
w(Xx,y,I

s ,Yy,I
s ) − w(Xx,y,I

s ,Yy,I
s− )

]
+

∫ τR,N

0
e−ρswy(Xx,y,I

s ,Yy,I
s )dIc

s ,

(C.1)

observing that t 7→ Xx,y,I
t is almost surely continuous for any I ∈ I(y), we find

w(Xx,y,I
s ,Yy,I

s ) − w(Xx,y,I
s ,Yy,I

s− ) = w(Xx,y,I
s ,Yy,I

s− + ∆Is) − w(Xx,y,I
s ,Yy,I

s− )

=

∫ ∆Is

0
wy(Xx,y,I

s ,Yy,I
s− + u)du,

(C.2)
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which substituted back into (C.1) gives the equivalence∫ τR,N

0
e−ρs

(
(πcp − aE)Xx,y,I

s + (πb + arE)Xx,y,I
s Yy,I

s + aQ
)

ds − c
∫ τR,N

0
e−ρsdIs

= w(x, y) − e−ρτR,N w(Xx,y,I
τR,N

,Yy,I
τR,N

)

+

∫ τR,N

0
e−ρs

(
Lyw(Xx,y,I

s ,Yy,I
s ) − ρw(Xx,y,I

s ,Yy,I
s )

+ (πcp − aE)Xx,y,I
s + (πb + arE)Xx,y,I

s Yy,I
s + aQ

)
ds

+ σ

∫ τR,N

0
e−ρswx(Xx,y,I

s ,Yy,I
s )dWs

+
∑

0≤s≤τR,N

e−ρs

[∫ ∆Is

0
wy(Xx,y,I

s ,Yy,I
s− + u) − c

]
du

+

∫ τR,N

0
e−ρs

[
wy(Xx,y,I

s ,Yy,I
s ) − c

]
dIc

s ,

(C.3)

by adding
∫ τR,N

0
e−ρs

(
(πcp − aE)Xx,y,I

s + (πb + arE)Xx,y,I
s Yy,I

s + aQ
)

ds − c
∫ τR,N

0
e−ρsdIs on both sides of

(C.1). Since w satisfies (4.10), by taking expectations on both sides of the latter equation, and using that
E[σ

∫ τR,N

0
e−ρswx(X

x,y,I
s ,Yy,I

s )dWs] = 0, we have

E
[∫ τR,N

0
e−ρs

(
(πcp − aE)Xx,y,I

s + (πb + arE)Xx,y,I
s Yy,I

s + aQ
)

ds − c
∫ τR,N

0
e−ρsdIs

]
≤ E

[
w(x, y) − e−ρτR,N w(Xx,y,I

τR,N
,Yy,I

τR,N
)
]
≤ w(x, y) + E

[
Ke−ρτR,N

(
1 + |Xx,y,I

τR,N
|
)]
,

(C.4)

To utilize the dominated convergence theorem in (C.4), we observe that since β > 0 and Yy,I
t ≥ 0,

Xx,y,I
t ≤ Xx

t P-a.s. for all t ≥ 0. Consequently, we have

Xx,y,I
t = x +

∫ t

0
k
(
(µ − βYy,I

t ) − Xx,y,I
t

)
ds + σWt

≥ x +

∫ t

0
k(µ − Xx

s )ds + σWt − kβȳt

= Xx
t − kβȳt ≥ −|Xx

t | − kβȳt,

(C.5)

where we have used that Yy,I
t ≤ ȳ P-a.s. for all t ≥ 0. Also, one has Xx,y,I

t ≤ Xx
t ≤ |X

x
t | + kβȳt. Hence,

|Xx,y,I
t | ≤ |Xx

t | + kβȳt. (C.6)

Now, we find∣∣∣∣∣∫ τR,N

0
e−ρs

(
(πcp − aE)Xx,y,I

s + (πb + arE)Xx,y,I
s Yy,I

s + aQ
)

ds − c
∫ τR,N

0
e−ρsdIs

∣∣∣∣∣
≤

∣∣∣∣∣∫ ∞

0
e−ρs

(
(πcp − aE)Xx,y,I

s + (πb + arE)Xx,y,I
s Yy,I

s + aQ
)

ds
∣∣∣∣∣ + cȳ

≤

∣∣∣∣∣∫ ∞

0
e−ρs

((
(πcp − aE) + (πb + arE)ȳ

)
|Xx,y,I

s | + aQ
)

ds
∣∣∣∣∣ + cȳ

≤
(
(πcp − aE) + (πb + arE)ȳ

) ∫ ∞

0
e−ρs (|Xx

s | + kβȳs + aQ
)

ds + cȳ

(C.7)

Journal of Industrial and Management Optimization Volume 22, Issue 1, 100–147.



142

and the first expression on the right-hand side of (C.7) is integrable by Lemma 4.1. To handle the
expectation appearing on the right-hand side of (C.4), we utilize (C.6) to obtain, for a certain constant
C1 > 0,

E
[
Ke−ρτR,N

(
1 + |Xx,y,I

τR,N
|
)]

≤ C1E
[
e−ρτR,N

(
1 + τR,N

)]
+ E

[
e−

ρ
2 τR,N sup

t≥0
e−

ρ
2 t|Xx

t |

]
≤ C1E

[
e−ρτR,N

(
1 + τR,N

)]
+ E

[
e−ρτR,N

] 1
2 E

[
sup
t≥0

e−ρt(Xx
t )2

] 1
2

(C.8)

where we apply the Hölder’s inequality in the last step. From the last expectation in (C.8), we can utilize
Itô’s formula to derive the following inequality:

e−ρt(Xx
t )2 ≤ x2 +

∫ t

0
e−ρu

[
ρ(Xx

u)2 + σ2
]

+

∫ t

0
2e−ρu|Xx

u |(k(|µ| + |Xx
u |))du + 2σ sup

t≥0

∣∣∣∣∣ ∫ t

0
e−ρuXx

udWu

∣∣∣∣∣. (C.9)

Subsequently, applying the Burkholder-Davis-Gundy inequality yields

E
[
sup
t≥0

∣∣∣∣∣ ∫ t

0
e−ρuσXx

udWu

∣∣∣∣∣] ≤ C2(1 + |x|), (C.10)

where C2 > 0 is a constant. Moreover, standard calculations show that E
[
|Xx

u |
q] ≤ C̃(1 + |x|q) for

q ∈ {1, 2} and some C̃ > 0. Combining (C.9) and (C.10), we obtain:

E
[
sup
t≥0

e−ρt(Xx
t )2

]
≤ C3(1 + x2), (C.11)

where C3 > 0 is a constant. Consequently, it follows from (C.8) that:

lim
N↑∞

lim
R↑∞

E
[
e−ρτR,N (1 + |Xx,y,I

τR,N
|)
]

= 0. (C.12)

Hence, the dominated convergence theorem can be invoked to take limits as R→ ∞ and then as N → ∞,
resulting in

J(x, y, I) ≤ w(x, y). (C.13)

Since I ∈ I(y) is arbitrary, we have

V(x, y) ≤ w(x, y). (C.14)

This yields V ≤ w due to the arbitrariness of (x, y) in R × [0, ȳ).
Step 2: Let I∗ ∈ I(y) be such that (4.11) and (4.12) are satisfied, and let τ∗R,N :=

inf
{
s > 0 : Xx,y,I∗

s < (−R,R)
}
∧ N. By employing the same arguments as in Step 1, all the inequali-

ties become equalities. Consequently, we obtain

E
[ ∫ τ∗R,N

0
e−ρs

(
(πcp − aE)Xx,y,I∗

s + (πb + arE)Xx,y,I∗
s Yy,I∗

s + aQ
)

ds − c
∫ τ∗R,N

0
e−ρsdI∗s

]
+ E

[
e−ρτ

∗
R,N w(Xx,y,I∗

τ∗R,N
,Yy,I∗

τ∗R,N
)
]

= w(x, y)
(C.15)
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Now, as I∗ is admissible, and by employing (4.10) and (C.12), we proceed as in Step 1 and take
limits as R ↑ ∞ and N ↑ ∞ in (C.15) to find J(x, y, I∗) ≥ w(x, y). Since V(x, y) ≥ J(x, y, I∗), then
V(x, y) ≥ w(x, y) for all (x, y) ∈ R × [0, ȳ). Hence, utilizing (C.14), we have V = w on R × [0, ȳ), and I∗

is optimal.

D. Proof of Lemma 5.2

From (5.15), we have

A′(y) = −β
ψ′′(F̃(y))

ψ′(F̃(y))
A(y) −

Rxy(F(y), y)

ψ′(F̃(y))
= H(F̃(y), A(y)), (D.1)

whereH : R × R→ R is defined as

H(F̃(y), A(y)) = −β
ψ′′(F̃(y))

ψ′(F̃(y))
A(y) −

Rxy(F(y), y)

ψ′(F̃(y))

= −
Rxy(F(y), y)

ψ′(F̃(y))

ψ′′(F̃(y))A(y)
βRxy(F(y), y)

+ 1
 . (D.2)

By the boundary condition w(x, ȳ) = R(x, ȳ), as in Theorem 4.3, it follows that

A(ȳ) = 0, (D.3)

which indicates that when all available GT investments are fully utilized (i.e., y = ȳ), the value
associated with making additional investments in GT becomes zero. Moreover, given (D.3) and the fact
thatH|R×[0,∞) is strictly negative due to the strict positivity of ψ( j) for any j ∈ N0, as shown in Lemma
5.1-(2). Since A(ȳ) = 0 andH(z, A) < 0 for all z ∈ R and A ≥ 0 (due to the strict positivity of ψ( j)), by
the theory of backward ODEs, there exists a unique solution A(y) on [0, ȳ] with A(y) > 0 for y < ȳ and
A′(y) = H(F̃(y), A(y)) < 0. A is strictly positive and strictly decreasing on [0, ȳ).

Combining (5.14) and (5.15), we can solve for

A(y) =
Rxy(F(y), y)ψ(F̃(y)) − (Ry(F(y), y) − c)ψ′(F̃(y))

β
(
ψ′2(F̃(y)) − ψ′′(F̃(y))ψ(F̃(y))

) , (D.4)

where Lemma 5.1-(3) ensures that the denominator of A(y) is nonzero. Now, the numerator on the
right-hand side of (D.4) can be written as

Rxy(F(y), y)ψ(F̃(y)) − (Ry(F(y), y) − c)ψ′(F̃(y))

β
(
ψ′2(F̃(y)) − ψ′′(F̃(y))ψ(F̃(y))

)
=

Rxy(F(y), y)
ρ

ρψ(F̃(y)) − ρ

Rxy
(Ry(F(y), y) − c)ψ′(F̃(y))

β
(
ψ′2(F̃(y)) − ψ′′(F̃(y))ψ(F̃(y))

) 
=

Rxy(F(y), y)
ρ

 σ2

2 ψ
′′(F̃(y)) + Myψ′(F̃(y))

β
(
ψ′2(F̃(y)) − ψ′′(F̃(y))ψ(F̃(y))

) ,
(D.5)
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where

My = (ρ + k)
[
βk
ρ + k

y +
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

− F(y)
]
, (D.6)

upon using the differential equation from Lemma 5.1-(2) with j = 0. Hence,

A(y) =
Rxy(F(y), y)

ρ

 σ2

2 ψ
′′(F̃(y)) + Myψ′(F̃(y))

β
(
ψ′2(F̃(y)) − ψ′′(F̃(y))ψ(F̃(y))

) . (D.7)

Since the denominator on the right-hand side of (D.7) is strictly negative by Lemma 5.1-(3), we must
have from the results A that both are strictly positive and strictly decreasing. Therefore the numerator
on the right-hand side of (D.7) is also strictly negative: This is possible only if

βk
ρ + k

y +
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

− F(y) < 0, (D.8)

as ψ(k) is strictly positive for any k ∈ N0. Hence, F satisfies

F(y) >
βk
ρ + k

y +
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

≥
βk(πcp − aE)

(πb + arE)(ρ + k)
+

cρ
πb + arE

,

(D.9)

for all y ∈ [0, ȳ].

E. Proof of Proposition 5.3

We introduce a new function R̃ : R2 → R as follows:

R̃(x, y) =
(x − βy)(πb + arE)

ρ + k
−
βk(πcp − aE)
ρ(ρ + k)

+
k(πb + arE)(µ − 2βy)

ρ(ρ + k)
. (E.1)

Note that by definition F̃(y) = F(y) + βy, and from the expression of Ry, we have

Ry(F(y), y) =
(F̃(y) − βy)(πb + arE)

ρ + k
−
βk(πcp − aE)
ρ(ρ + k)

+
k(πb + arE)(µ − 2βy)

ρ(ρ + k)
= R̃(F̃(y), y),

(E.2)

It can be observed that

R̃x(F̃(y), y) =
πb + arE
ρ + k

= Rxy(F(y), y). (E.3)

By substituting F̃(y) for F(y) in (5.14) and (5.15), and solving the system of equations A(y) and A′(y),
we have

A(y) =
R̃x(F̃(y), y)ψ(F̃(y)) + (c − R̃(F̃(y), y))ψ′(F̃(y))

−βQ0(F̃(y))
, (E.4)
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and

A′(y) =
R̃x(F̃(y), y)ψ′(F̃(y)) + (c − R̃(F̃(y), y))ψ′′(F̃(y))

Q0(F̃(y))
, (E.5)

where R̃x(F̃(y), y) denotes the partial derivative of R̃(x, y) with respect to x.
It is guaranteed by Lemma 5.1-(3) that Q j is strictly positive for all j ∈ N0, ensuring non-zero

denominators in (E.4) and (E.5). Consequently, the right-hand sides of (E.4) and (E.5) cannot be zero.
Furthermore, considering the boundary condition w(x, ȳ) = R(x, ȳ) from Theorem 4.3, it follows that
A(ȳ) = 0, which implies the existence of a point x̃ = F̃(ȳ). To ensure that x̃ can be solved, recall the
function H(x) defined in (5.24)

H(x) =
πb + arE
ρ + k

ψ(x) + (c − R̃(x, ȳ))ψ′(x). (E.6)

By analogous arguments to those in the proof of Lemma 4.2 in [32], we conclude that there exists a
unique solution x̃ ∈ R to H(x) = 0.

Next, we can use the above results to obtain an ODE that the free boundary F satisfies. By
differentiating (E.4) with respect to y, we obtain

A′(y) =
d
dy

 R̃x(F̃(y), y)ψ(F̃(y)) + (c − R̃(F̃(y), y))ψ′(F̃(y))

−βQ0(F̃(y))


=

1
−βQ2

0

[(
d
dy

[R̃xψ + (c − R̃)ψ′]
)

Q0 −
(
R̃xψ + (c − R̃)ψ′

) dQ0

dy

]
Now, compute the derivatives term by term:

d
dy

[R̃xψ] = R̃xxF̃′(y)ψ + R̃xyψ + R̃xψ
′F̃′(y)

d
dy

[(c − R̃)ψ′] = −R̃xF̃′(y)ψ′ − R̃yψ
′ + (c − R̃)ψ′′F̃′(y)

dQ0

dy
= Q′0(F̃(y))F̃′(y)

Note that R̃xx = 0 and R̃xy = 0 since R̃x is constant. After straightforward though lengthy algebraic
manipulations, we obtain

A′(y) =
πb + arE
β(ρ + k)

M(y, F̃(y), F̃′(y))

Q0(F̃(y))2
, (E.7)

where M : R3 7→ R is defined as

M(y, z, ω) = −
β(2k + ρ)

ρ
ψ′(z)Q0(z) + ωD(y, z), (E.8)

with D : R2 7→ R given by

D(y, z) = ψ(z)
(

ρ + k
πb + arE

)
(c − R̃(z, y))Q1(z) + ψ(z)Q′0(z). (E.9)
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To keep the proof structure clear, we omit the trivial derivation steps here.
By equating (E.5) and (E.7), we find

M(y, F̃(y), F̃′(y)) = βQ0(F̃(y))
[
πb + arE
ρ + k

(
c − R̃(F̃(y), y)

)
ψ′′(F̃(y)) + ψ′(F̃(y))

]
. (E.10)

We define N : R2 7→ R as

N(y, z) = Q0(z)
[2(k + ρ)

ρ
ψ′(z) +

ρ + k
πb + arE

(
c − R̃(z, y)

)
ψ′′(z)

]
. (E.11)

From (E.10) and (E.11), we can obtain the ODE

F̃′(y) = G(y, F̃(y)), (E.12)

with the boundary condition F̃(ȳ) = x̃, and where G : (R × R)/{(y, z) ∈ R2 : D(y, z) = 0} 7→ R is such
that

G(y, z) = β
N(y, z)
D(y, z)

. (E.13)

F. Proof of Proposition 6.1

For case (1), if µ − β × 0 = µ < F(0), the line of means x = µ − βy is decreasing in y, and the free
boundary F is increasing, resulting in no intersection.

Let us assume µ ≥ F(0) and differentiate between cases (2) and (3). The line of means x = µ−βy and
the free boundary x = F(y) have either one or zero intersections based on whether x = F(ȳ) > µ − βȳ or
not, respectively. In other words, it depends on whether F(ȳ) + βȳ = x̃(ȳ) > µ, where x̃(ȳ) represents the
dependence of x̃ on ȳ. By using Proposition 5.3 and the implicit function theorem, we can obtain:

x̃′(ȳ) =
ψ′(x̃)R̃y(x̃, ȳ)

ψ′′(x̃)
(
c − R̃(x̃, ȳ)

) = −
β(2k + ρ)(πb + arE)ψ′(x̃)

ρ(ρ + k)ψ′′(x̃)
(
c − R̃(x̃, ȳ)

) , (F.1)

where the strict inequality holds. Since c−R̃(x̃, ȳ) < 0 by Lemma 5.2 and equation (E.4), the denominator
ψ′′(x̃)(c − R̃(x̃, ȳ)) is negative as ψ′′ > 0. This ensures that x̃′(ȳ) > 0. Hence, F(ȳ) + βȳ increases with
respect to ȳ, indicating the existence of a point y∗, where there is an intersection for ȳ > y∗ and no
intersection for ȳ < y∗. The point y∗ is characterized by the fact that the line of means x = µ − βy
intersects the free boundary x = F(y) and the upper bound of the domain y = ȳ at the same point (x, y∗).
Based on Lemma 5.2 and its conclusion, the point x is identified as x = x̃ − βȳ, where x̃ is the solution
to H(x̃) = 0, with H defined in Equation (5.24). Thus, to find y∗, we need to simultaneously satisfy the
following conditions: 

x = µ − βy∗,

x = x̃ − βy∗,

ψ′(x̃)
(
c − R̃(x̃, y∗)

)
+
πb + arE

k + ρ
ψ(x̃) = 0.

Journal of Industrial and Management Optimization Volume 22, Issue 1, 100–147.



147

In this case, x̃ = µ, and the third equation can be rewritten as:

ψ′(µ)
(
c +

β(ρ + 2k)(πb + arE)ȳ
ρ(ρ + k)

+
βk(πcp − aE)
ρ(ρ + k)

−
µ

ρ
(πb + arE)

)
+
πb + arE
ρ + k

ψ(µ) = 0.

This is a first-order algebraic equation for y∗, and the solution can be obtained as shown in Equation
(6.1).
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