Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Processing and interpretation of magnetic data in the Caucasus Mountains and the Caspian Sea: A review

  • With the rapid development of aeromagnetic (primarily uncrewed) methods for measuring the magnetic field, the possibility of detailed magnetic research in hard-to-reach mountainous areas, forested areas, swamp areas, desert areas, and water areas has emerged. The conditions for interpreting the magnetic field are most difficult due to the vector nature of the magnetic properties of rocks, the wide range of their properties, and the presence of residual magnetization. The physical and geological conditions of the territory of Azerbaijan are characterized by rugged terrain relief, inclined magnetization (~58°), and complex geological environments. Along with using a probabilistic approach, deterministic methods for solving inverse and direct problems of geophysics become of great importance since it is possible to identify relatively extended reference boundaries and analyze magnetic anomalies from separate bodies of relatively simple shape. The article briefly outlines the main stages of processing and interpreting magnetic data under complex environments. The theoretical examples discussed include a block diagram of various disturbances, interpretive models of thin and thick beds, an intermediate model, a thin horizontal plate, and a horizontal circular cylinder on the flat and inclined surfaces under inclined magnetization conditions. The process of assessing magnetization on sloping terrain relief is shown. The presented field examples for the Caucasus Mountains show the quantitative interpretation of aeromagnetic data at the Big Somalit and Guton sites (southern Greater Caucasus, Azerbaijan), a deep regional profile through the Lesser and Greater Caucasus, magnetic field studies in the area around the Saatly superdeep borehole (Middle Kur depression between the Greater and Lesser Caucasus), and 3D magnetic field modeling at the Gyzylbulag gold deposit (the Azerbaijani part of the Lesser Caucasus). In the Caspian Sea, we demonstrated the use of an information parameter to identify faults in the Bulla hydrocarbon field (Gulf of Baku) and, for the first time, obtained the relationship between the generalized aeromagnetic data (2.5 kilometers over the mean sea level) and the central area of the mud volcanoes distribution in Azerbaijan.

    Citation: Lev Eppelbaum. Processing and interpretation of magnetic data in the Caucasus Mountains and the Caspian Sea: A review[J]. AIMS Geosciences, 2024, 10(2): 333-370. doi: 10.3934/geosci.2024019

    Related Papers:

    [1] Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang . Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. AIMS Mathematics, 2021, 6(6): 6356-6376. doi: 10.3934/math.2021373
    [2] Chaeyoung Lee, Seokjun Ham, Youngjin Hwang, Soobin Kwak, Junseok Kim . An explicit fourth-order accurate compact method for the Allen-Cahn equation. AIMS Mathematics, 2024, 9(1): 735-762. doi: 10.3934/math.2024038
    [3] Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650
    [4] Ajmal Ali, Tayyaba Akram, Azhar Iqbal, Poom Kumam, Thana Sutthibutpong . A numerical approach for 2D time-fractional diffusion damped wave model. AIMS Mathematics, 2023, 8(4): 8249-8273. doi: 10.3934/math.2023416
    [5] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori grid method for a time-fractional Black-Scholes equation. AIMS Mathematics, 2022, 7(12): 20962-20978. doi: 10.3934/math.20221148
    [6] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [7] Zeshan Qiu . Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318
    [8] Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893
    [9] Tingting Ma, Yuehua He . An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358
    [10] M. Hamid, T. Zubair, M. Usman, R. U. Haq . Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel. AIMS Mathematics, 2019, 4(5): 1416-1429. doi: 10.3934/math.2019.5.1416
  • With the rapid development of aeromagnetic (primarily uncrewed) methods for measuring the magnetic field, the possibility of detailed magnetic research in hard-to-reach mountainous areas, forested areas, swamp areas, desert areas, and water areas has emerged. The conditions for interpreting the magnetic field are most difficult due to the vector nature of the magnetic properties of rocks, the wide range of their properties, and the presence of residual magnetization. The physical and geological conditions of the territory of Azerbaijan are characterized by rugged terrain relief, inclined magnetization (~58°), and complex geological environments. Along with using a probabilistic approach, deterministic methods for solving inverse and direct problems of geophysics become of great importance since it is possible to identify relatively extended reference boundaries and analyze magnetic anomalies from separate bodies of relatively simple shape. The article briefly outlines the main stages of processing and interpreting magnetic data under complex environments. The theoretical examples discussed include a block diagram of various disturbances, interpretive models of thin and thick beds, an intermediate model, a thin horizontal plate, and a horizontal circular cylinder on the flat and inclined surfaces under inclined magnetization conditions. The process of assessing magnetization on sloping terrain relief is shown. The presented field examples for the Caucasus Mountains show the quantitative interpretation of aeromagnetic data at the Big Somalit and Guton sites (southern Greater Caucasus, Azerbaijan), a deep regional profile through the Lesser and Greater Caucasus, magnetic field studies in the area around the Saatly superdeep borehole (Middle Kur depression between the Greater and Lesser Caucasus), and 3D magnetic field modeling at the Gyzylbulag gold deposit (the Azerbaijani part of the Lesser Caucasus). In the Caspian Sea, we demonstrated the use of an information parameter to identify faults in the Bulla hydrocarbon field (Gulf of Baku) and, for the first time, obtained the relationship between the generalized aeromagnetic data (2.5 kilometers over the mean sea level) and the central area of the mud volcanoes distribution in Azerbaijan.



    Differential equations are very useful in many fields of science, including applied sciences and mathematical physics. Partial differential equations (PDEs) are widely employed in engineering to understand the behavior of physical systems through mathematical models. Many efficient approaches for identifying the solutions of nonlinear PDEs have been developed in recent years, such as: Hirotäs bilinear method [1], exp(Φ(ξ))-expansion method [2,3], generalized exponential rational function method [4], auxiliary equation method [5], first integral method [6], homotopy analysis method [7,8], tanh-method [9], transformed rational function method [10], residual power series method [11,12], extended direct algebraic method [13] and many other powerful mathematical techniques. Nonlinear PDEs are studied extensively because they help to understand the propagation of waves in many areas of mathematical physics, fluid mechanics and electromagnetic theory [14,15]. In addition, soliton solutions also have an effective contribution in fields of engineering and nonlinear optics [2,16,18,19,20,21].

    The traveling wave solutions of nonlinear PDEs equation are essential to explore and interpret various real life physical phenomena. The significance of the traveling wave solutions of nonlinear evolution equations has motivated many researches to investigate exact traveling wave solutions using effective and reliable mathematical techniques. The traveling wave solutions include solitary and other kinds of wave solutions. In particular, solitons are of great significance due to their useful applications in various areas of science and engineering [22,23].

    This study aims to investigate soliton and other traveling wave solutions of Gardner equation, which is an integrable nonlinear partial differential. The Gardner equation was originally proposed by Clifford Gardner in 1968 [24]. This equation is frequently referred to as combined Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation since it can be generalized to Korteweg-de Vries (KdV) equation. Gardner's equation has a wide range of applications in research, including quantum field theory and hydrodynamics [25,26,27].

    In this work, solitary wave solutions of Gardner equation (GE) are retrieved by utilizing the improved tan(Ω(Υ)2)-expansion method. This technique is a recently developed direct technique which provides a variety of traveling wave solutions for a wide class of nonlinear evolution equations [28,29,30,31].

    A soliton is an autonomous wave that diffuses while maintaining its shape and velocity. The nonlinear integrable KdV equation can be written, as

    rt+lrrx+mrxxx=0, (1.1)

    where r(x,t) in Eq (1.1) is the appropriate field variable and l, m are real constants, also x is representing the spatial variable and t is indicating the temporal variable. The solitary waves are generated due to nonlinear term rrx and the linear dispersion rxxx. The Gardener equation with constant coefficients [32,33] is considered in the form

    rt6(r+δ2r2)rx+rxxx=0, (1.2)

    where δ is a nonzero constant. Eq (1.2) is also called the combined KdV-mKdV equation. A higher order nonlinear term was added to the Eq (1.1) to generate the Gardner equation. Like KdV equation, Equation(1.2) is also an integrable equation.

    Step 2.1. The nonlinear partial differential equation (NLPDE) for r(x,t) is considered in the form

    Ω(r,rt,rx,rtt,rxt,rxx,)=0. (2.1)

    By the aid of transformation Υ=κ(xϖt), Eq (2.1) can be converted into an ordinary differential equation, as

    Γ(r,r,ϖr,r,ϖ2r)=0, (2.2)

    where ϖ is to be evaluated later and Υ is a wave variable.

    Step 2.2. The solitary wave solution of Eq (2.2) is supposed, as

    R(Υ)=P(Φ)=pj=0Gj[q+tan(Ω(Υ)2)]j+pj=1Hj[q+tan(Ω(Υ)2)]j, (2.3)

    where Gj(0jp) and Hj(1jp) are constants to be determined later. Also, Gp0,Hp0 and Ω=Ω(Υ) satisfy the ordinary differential equation (ODE),

    Ω(Υ)=q0sin(Ω(Υ))+q1cos(Ω(Υ))+q2. (2.4)

    Following are the special wave solutions for Eq (2.4).

    Family 2.1. For q20+q21q22<0 and q1q20,

    Ω(Υ)=2arctan[q0q1q2q22q21q20q1q2tan(q22q21q202(Υ+K))].

    Family 2.2. For q20+q21q22>0 and q1q20,

    Ω(Υ)=2arctan[q0q1q2q21+q20q22q1q2tanh(q21+q20q222(Υ+K))].

    Family 2.3. For q20+q21q22>0, q10 and q2=0,

    Ω(Υ)=2arctan[q0q1q21+q20q1tanh(q21+q202(Υ+K))].

    Family 2.4. For q20+q21q22<0, q20 and q1=0,

    Ω(Υ)=2arctan[q0q2+q22q20q2tan(q22q202(Υ+K))].

    Family 2.5. For q20+q21q22>0, q1q20 and q0=0,

    Ω(Υ)=2arctan[q1+q2q1q2tanh(q21q222(Υ+K))].

    Family 2.6. For q0=0 and q2=0,

    Ω(Υ)=arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1].

    Family 2.7. For q1=0 and q2=0,

    Ω(Υ)=arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1].

    Family 2.8. For q20+q21=q22,

    Ω(Υ)=2arctan[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)].

    Family 2.9. For q0=q1=q2=il0,

    Ω(Υ)=2arctan[eil0(Υ+K)1].

    Family 2.10. For q0=q2=il0 and q1=il0,

    Ω(Υ)=2arctan[eil0(Υ+K)1+eil0(Υ+K)].

    Family 2.11. For q2=q0,

    Ω(Υ)=2arctan[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1].

    Family 2.12. For q0=q2,

    Ω(Υ)=2arctan[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1].

    Family 2.13. For q2=q0,

    Ω(Υ)=2arctan[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0].

    Family 2.14. For q1=q2,

    Ω(Υ)=2arctan[q0eq0(Υ+K)q2eq0(Υ+K)].

    Family 2.15. For q1=0, q0=q2,

    Ω(Υ)=2arctan[q2(Υ+K)+2q2(Υ+K)].

    Family 2.16. For q0=0 and q1=q2,

    Ω(Υ)=2arctan[q2(Υ+K)].

    Family 2.17. For q0=0, q1=q2,

    Ω(Υ)=2arctan[1q2(Υ+K)].

    Family 2.18. For q0=0 and q1=0,

    Ω(Υ)=q2Υ+K,

    where q0,q1, q2 and G0,Gj,Hj(j=1,2,....p) are to be evaluated. Homogeneous balance principle is used to find the value of p by considering highest order derivatives and highest non-linear terms occurring in Eq (2.2). If p is not an integer, then suitable transformation is implemented.

    Step 2.3. Once the value of p is obtained, Eq (2.3) is substituted into Eq (2.2). By gathering the coefficients of tan(Ω(Υ)2)j, cot(Ω(Υ)2)j (j=0,1,2,...) and setting each coefficient equal to zero, a set of algebraic equations for G0,Gj,Hj(j=1,2,...p), q0,q1,q2 and q can be obtained.

    Step 2.4. The set of over determined equations are solved and the values of G0,G1,H1,...,Gp,Hp,ϖ and q are substituted in Eq (2.3).

    Consider the integrable nonlinear Gardner equation given by Eq (1.2). Substituting the wave transformation,

    r(x,t)=R(Υ),Υ=κ(xϖt), (3.1)

    into Eq (1.2) yields an ordinary differential equation, as

    ϖR+3R2+2δ2R3κ2R=0. (3.2)

    Implementing the homogeneous balance principle the value of positive integer is obtained, as p=1. The trial solution becomes

    R(Υ)=G0+G1[q+tan(Ω(Υ)2)]+H1[q+tan(Ω(Υ)2)]1. (3.3)

    Substituting Eq (3.3) and Eq (2.4) into Eq (3.2), the following set of algebraic equations can be derived for q0,q1,q2,κ,ϖ, G0,G1 and H1 by collecting the terms with the same order of tan(Ω(Υ)2) and setting every coefficient of all the polynomials equal to zero.

    (tan(Ω(Υ)2))0=4δ2H13κ2H1q122κ2H1q1q2κ2H1q22,(tan(Ω(Υ)2))1=12δ2G0H123κ2H1q0l13κ2H1q0q2+6H12,(tan(Ω(Υ)2))2=12δ2G02H1+12δ2G1H122κ2H1q02+κ2H1q12κ2H1q22+2ϖH1+12G0H1,(tan(Ω(Υ)2))3=4δ2G03+24δ2G0G1H1κ2G1q0q1κ2G1q0q2+κ2H1q0q1κ2H1q0q2+2ϖG0+6G02+12G1H1,(tan(Ω(Υ)2))4=12δ2G02G1+12δ2G12H12κ2G1q02+κ2G1q12κ2G1q22+2ϖG1+12G0G1,(tan(Ω(Υ)2))5=12δ2G0G12+3κ2G1q0l13κ2G1q0q2+6G12,(tan(Ω(Υ)2))6=4δ2G13κ2G1q12+2κ2G1q1q2κ2G1q22.

    Following are the solutions obtained by solving the system of algebraic equation.

    Set 3.1. κ=κ,ϖ=1δ2,G0=12δ2,G1=±142q1κδ4δ2κ2q121δ2,H1=±142q1κδ+4δ2κ2q121δ2,q0=0,q1=q1,q2=124δ2κ2q121δκ,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.4)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.4) and Families 2.2, 2.5 and 2.18 respectively, yields the following solutions:

    R1(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]±142q1κδ+4δ2κ2q121δ2[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.5)
    R2(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[q1+q2q1q2tanh(q21q222(Υ+K))]±142q1κδ+4δ2κ2q121δ2[q1+q2q1q2tanh(q21q222(Υ+K))]1, (3.6)
    R3(Υ)=12δ2±142q1κδ4δ2κ2q121δ2[tan(12arctan[Υq2+K])]±142q1κδ+4δ2κ2q121δ2[tan(12arctan[Υq2+K])]1. (3.7)

    Set 3.2. κ=κ,ϖ=1δ2,G0=121+1+(q12+q22)δ2κ2δ2,G1=0,H1=12κ(q1+q2)δ, q0=1+(q12+q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+H1[tan(Ω(Υ)2)]1, (3.8)

    where q0, q1, q2 are arbitrary constants.

    The following solutions are determined by using Eq (3.8) and Families 2.2, 2.3, 2.6, 2.7 and 2.11–2.14, respectively.

    R4(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.9)
    R5(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.10)
    R6(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[tan12(arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1])]1, (3.11)
    R7(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[tan(12arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1])]1, (3.12)
    R8(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1]1, (3.13)
    R9(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1]1, (3.14)
    R10(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.15)
    R11(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1. (3.16)

    Set 3.3. κ=κ,ϖ=1δ2,G0=121+1+(q12+q22)δ2κ2δ2,G1=12κ(q1q2)δ,H1=0, q0=1+(q12+q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)], (3.17)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.17) and Families 2.2, 2.3, 2.6, 2.7, 2.11–2.14, respectively, yields the following solution:

    R12(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))], (3.18)
    R13(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))], (3.19)
    R14(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[tan12(arctan[e2q1(Υ+K)1e2q1(Υ+K)+1,2eq1(Υ+K)e2q1(Υ+K)+1])], (3.20)
    R15(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[tan(12arctan[2eq0(Υ+K)e2q0(Υ+K)+1,e2q0(Υ+K)1e2q0(Υ+K)+1])], (3.21)
    R16(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[(q0+q1)eq1(Υ+K)1(q0q1)eq1(Υ+K)1], (3.22)
    R17(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[(q1+q2)eq1(Υ+K)+1(q1q2)eq1(Υ+K)1], (3.23)
    R18(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0], (3.24)
    R19(Υ)=121+1+(q12+q22)δ2κ2δ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]. (3.25)

    Set 3.4. κ=κ,ϖ=1+(q12q22)κ2δ2δ2,G0=1δ2,G1=12κ(q1q2)δ,H1=12κ(q1+q2)δ,q0=1κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.26)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.26) and Families 2.1–2.4, 2.8–2.10, 2.13–2.15, respectively, gives the following solutions:

    R20(Υ)=1δ212κ(q1q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]12κ(q1+q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]1, (3.27)
    R21(Υ)=1δ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]12κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.28)
    R22(Υ)=1δ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]12κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.29)
    R23(Υ)=1δ212κ(q1q2)δ[q0q2+q22q20q2tan(q22q202(Υ+K))]12κ(q1+q2)δ[q0q2+q22q20q2tan(q22q202(Υ+K))]1, (3.30)
    R24(Υ)=1δ212κ(q1q2)δ[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)]12κ(q1+q2)δ[(q1+q2)(q0(Υ+K)+2)q20(Υ+K)]1, (3.31)
    R25(Υ)=1δ212κ(q1q2)δ[eϑq0(Υ+K)1]12κ(q1+q2)δ[eϑq0(Υ+K)1]1, (3.32)
    R26(Υ)=1δ212κ(q1q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]12κ(q1+q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]1, (3.33)
    R27(Υ)=1δ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]12κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.34)
    R28(Υ)=1δ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]12κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1, (3.35)
    R29(Υ)=1δ212κ(q1q2)δ[q2(Υ+K)+2q2(Υ+K)]12κ(q1+q2)δ[q2(Υ+K)+2q2(Υ+K)]1. (3.36)

    Set 3.5. κ=κ,ϖ=2(1+(q12q22)κ2δ2)(12+(q12q22)κ2δ2)δ2,G0=q12κ2q22κ2,G1=12κ(q1q2)δ,H1=12κ(q1+q2)δ,q0=1+(2q122q22)δ2κ2κδ,q1=q1,q2=q2,

    R(Υ)=G0+G1[tan(Ω(Υ)2)]+H1[tan(Ω(Υ)2)]1, (3.37)

    where q0, q1, q2 are arbitrary constants.

    Using Eq (3.37) and Families 2.1–2.3, 2.9, 2.10, 2.13 and 2.14, respectively, yields the following solutions:

    R30(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]12κ(q1+q2)δ[q0q1q2q02q12+q22q1q2tan(q02q12+q222(Υ+K))]1, (3.38)
    R31(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]12κ(q1+q2)δ[q0q1q2+q21+q20q22q1q2tanh(q21+q20q222(Υ+K))]1, (3.39)
    R32(Υ)=q12κ2q22κ212κ(q1q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]12κ(q1+q2)δ[q0q1+q21+q20q1tanh(q21+q202(Υ+K))]1, (3.40)
    R33(Υ)=q12κ2q22κ212κ(q1q2)δ[eϑq0(Υ+K)1]12κ(q1+q2)δ[eϑq0(Υ+K)1]1, (3.41)
    R34(Υ)=q12κ2q22κ212κ(q1q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]12κ(q1+q2)δ[eϑq0(Υ+K)1+eϑq0(Υ+K)]1, (3.42)
    R35(Υ)=q12κ2q22κ212κ(q1q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]12κ(q1+q2)δ[eq1(Υ+K)+q1q0eq1(Υ+K)q1q0]1, (3.43)
    R36(Υ)=q12κ2q22κ212κ(q1q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]12κ(q1+q2)δ[q0eq0(Υ+K)q2eq0(Υ+K)1]1, (3.44)

    where Υ=κ(xϖt).

    Some of the obtained soliton solutions are graphically represented in this section. Kink solitons, dark-bright solitons, bright solitons, singular solitons and periodic wave solutions are retrieved.

    The 3D-graph and contour plot for the solution R4(Υ) are shown in Figure 1. The solution R4(Υ) is derived from Family 2.2 of solution Set 2.2 as defined by Eq (3.9). The obtained graphs show a kink soliton solution. Kink soliton is a type of solitary wave that ascend or descend from one asymptotic state to another. The contour graph is also included along with surface graph to illustrate the wave structure corresponding to the obtained solution.

    Figure 1.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.9) at κ=1, δ=1, q0=2.82, q1=3, q2=4, G0=0.914, G1=0, H1=1, K=0.5, ϖ=1.

    The graphical illustration of R23(Υ) is presented in Figure 2. The solution R23(Υ) is given by Equation (3.30) using the values of Set 2.4 for Family 2.4. The graphs in Figure 2 show a bright soliton. The surface graph shows a localized intensity peak above the continuous wave background which means that there is a temporary increase in the wave amplitude.

    Figure 2.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.30) at κ=1, δ=2, q0=0.5, q1=0, q2=0.5, G0=0.25, G1=0.125, H1=0.125, K=1, ϖ=0, ϑ=1.

    Figure 3 shows the 3D plot and the corresponding contour plot of R20(Υ) given by Eq (3.27). The graph of R12(Υ) given by Eq (3.18) is illustrated in Figure 4. Figure 5 provides the graphical illustration of R30(Υ) given by Eq (3.38). Figure 6 shows the graph of a dark-bright soliton which is graphical illustration of the solution R3(Υ) expressed by Eq (3.7). Similarly, Figures 79 presents the graphical illustrations for the solutions presented by Eq (3.35), Eq (3.6) and Eq (3.32), respectively.

    Figure 3.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.27) at κ=1, δ=1, q0=1, q1=1, q2=3, G0=1, G1=2, H1=1,K=1, ϖ=7.
    Figure 4.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.18) at κ=1, δ=1, q0=2.828, q1=3, q2=4, G0=0.914, G1=3.5, H1=0, K=1, ϖ=1.
    Figure 5.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.38) at κ=1, δ=3, q0=0.206, q1=0, q2=0.3, G0=0.09, G1=0.05, H1=0.05, K=1, ϖ=0.055, ϑ=1.
    Figure 6.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.7) at κ=1, δ=1, q0=0, q1=0, q2=0.5I, G0=0.5, G1=0.25I, H1=0.25I, K=1, ϖ=1.
    Figure 7.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.35) at κ=1,δ=3,q0=0.33,q1=3,q2=3,G0=0.11,G1=1,H1=0,K=1,ϖ=0.11,ϑ=1.
    Figure 8.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.6) at κ=1, δ=1, q0=0, q1=2.5, q2=2.449, G0=0.5, G1=0.025,  H1=2.474, K=1, ϖ=1.
    Figure 9.  This figure demonstrates the 3D graph and corresponding contour of Eq (3.32) at κ=1,δ=1,q0=1,q1=1,q2=1,G0=1,G1=0,H1=1,K=1,ϖ=1,ϑ=1.

    It can be easily observed that improved tan(Ω(Υ)2) technique is a spectacular technique as compared to many other direct techniques as it gave abundant soliton solutions. Using this technique, kink, singular, bright and dark-bright soliton solutions have been retrieved in this paper. This method is clearly more powerful than many other methods, such as: the tanh-method [34], the GG expansion method [35] and the generalized exponential rational function method, the Jacobi elliptic solution method [36], because the improved tan(Ω(Υ)2) method retrieved many more new solutions than the previously mentioned techniques.

    In this study, the soliton and other solitary wave solutions of the constant-coefficient Gardner equation are investigated using tan(Ω(Υ)2)-expansion method. A variety of precise closed form traveling wave solutions have been constructed including bright solitons, dark-bright solitons, kink solitons and periodic wave solutions. Some of the obtained solutions are illustrated using graphical simulations for suitable choice of parameters. The wave profile corresponding to the obtained solutions is depicted through 3D-surface graphs and corresponding 2D-contour plots. Comparison of the obtained results with those available in the literature depict the efficacy and productivity of the improved tan(Ω(Υ)2) technique. Mathematical computations and simulations were obtained using Maple software. The reported results may be helpful in further explorations of the nonlinear physical problems governed by the Gardner equation in fluid dynamics, plasma physics and other fields. The improved tan(Ω(Υ)2) technique will be useful for the analytic study of a large class of nonlinear PDEs that are widely used in engineering, physics and other sciences.

    The authors declare no conflicts of interest.



    [1] Telford WM, Geldart LP, Sheriff RE (2004) Applied Geophysics, 2 Eds., Cambridge University Press, Cambridge, UK, 770.
    [2] Mandea M, Korte M (2011) Geomagnetic Observations and Models, Springer Dordrecht, Heidelberg, London, 343. https://doi.org/10.1007/978-90-481-9858-0
    [3] Isles GJ, Rankin LR (2013) Geological Interpretation of Aeromagnetic Data, Society of Exploration Geophysicists and Australian Society of Exploration Geophysicists, Australia, 365. https://doi.org/10.1190/1.9781560803218.ref
    [4] Eppelbaum LV (2019) Geophysical Potential Fields: Geological and Environmental Applications, Elsevier, Amsterdam, 467.
    [5] Eppelbaum LV (2011) Study of magnetic anomalies over archaeological targets in urban conditions. Phys Chem Earth 36: 1318-1330. https://doi.org/10.1016/j.pce.2011.02.005 doi: 10.1016/j.pce.2011.02.005
    [6] Eppelbaum LV, Khesin BE (2012) Geophysical Studies in the Caucasus, Springer, Heidelberg, 411. https://doi.org/10.1007/978-3-540-76619-3
    [7] Eppelbaum LV, Katz YI (2015) Paleomagnetic Mapping in Various Areas of the Easternmost Mediterranean Based on an Integrated Geological-Geophysical Analysis, New Developments in Paleomagnetism Research, Ser: Earth Sciences in the 21st Century, Nova Science Publisher, 15-52.
    [8] Eppelbaum LV (2014) Four Color Theorem and Applied Geophysics. Appl Math 5: 658-666. http://dx.doi.org/10.4236/am.2014.54062 doi: 10.4236/am.2014.54062
    [9] Khesin BE, Eppelbaum LV (1997) The number of geophysical methods required for target classification: quantitative estimation. Geoinformatics 8: 31-39. https://doi.org/10.6010/geoinformatics1990.8.1_31 doi: 10.6010/geoinformatics1990.8.1_31
    [10] Laznicka P (2006) Giant Metallic Deposits. Future Sources of Industrial Metals, Springer, Berlin, 722.
    [11] Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis, New York: Wiley.
    [12] Logachev АА, Zaharov VP (1979) Magnetic Prospecting, 5 Eds., Nedra, Leningrad, 351. (in Russian)
    [13] Parasnis DS (1997) Principles of Applied Geophysics, 5 Eds., Chapman & Hall, London, UK: 429.
    [14] Blakely RJ (1995) Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 441. http://dx.doi.org/10.1017/CBO9780511549816
    [15] Hato T, Tsukamoto A, Adachi S, et al. (2013) Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources. Supercond Sci Technol 26: 1-8. https://doi.org/10.1088/0953-2048/26/11/115003 doi: 10.1088/0953-2048/26/11/115003
    [16] Gvishiani A, Soloviev A (2020) Observations, Modeling, and Systems Analysis in Geomagnetic Data Interpretation, Springer, Switzerland AG, 320. https://doi.org/10.1007/978-3-030-58969-1
    [17] Eppelbaum LV (2015) Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environ Earth Sci 74: 5971-5988. https://doi.org/10.1007/s12665-015-4622-1 doi: 10.1007/s12665-015-4622-1
    [18] Khesin BE, Alexeyev VV, Eppelbaum LV (1996). Interpretation of Geophysical Fields in Complicated Environments, Springer Dordrecht, 367. https://doi.org/10.1007/978-94-015-8613-9
    [19] Eppelbaum LV (2010) An advanced methodology for Remote Operation Vehicle magnetic survey to delineate buried targets. Transactions of the 20th General Meeting of the Internernational Mineralogical Association, CH30G: Archaeometry (General Session): Composition, Technology and Provenance of Archaeological Artifacts. Budapest, Hungary, 103.
    [20] Shannon CE (1948) A Mathematical Theory of Communication. Bell Sist Techn 27: 379-432. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [21] Eppelbaum LV, Khesin BE, Itkis SE (2001) Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeol Prospect 8: 163-185. https://doi.org/10.1002/arp.167 doi: 10.1002/arp.167
    [22] Wentzel ES, Ovcharov LA (2003) Probability Theory and its Engineering Applications, 3 Eds., Nauka, Moscow, 234. (in Russian)
    [23] Eppelbaum LV, Alperovich LS, Zheludev V, et al. (2011) Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. 24rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, European Association of Geoscientists & Engineers. https://doi.org/10.4133/1.3614158
    [24] Eppelbaum LV, Zheludev V, Averbuch, A (2014) Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. Izv Acad Sci Azerb Rep Ser Earth Sci 1-2: 36-46.
    [25] Diao H, Liu H, Wang L (2020) On generalized Holmgren's principle to the Lamé operator with applications to inverse elastic problems. Calc Var 59: 179. https://doi.org/10.1007/s00526-020-01830-5 doi: 10.1007/s00526-020-01830-5
    [26] Yin W, Ge J, Meng P, et al. (2020) A neural network method for the inverse scattering problem of impenetrable cavities. Electron Res Arch 28: 1123-1142. https://doi.org/10.3934/era.2020062 doi: 10.3934/era.2020062
    [27] Gao Y, Liu H, Wang X, et al. (2022) On an artificial neural network for inverse scattering problems. J Comput Phys 448: 1-15. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
    [28] Naudy H (1970) Une methode d'analyse fine des profiles aeromagnetiques. Geophys Prospect 18: 56-63. https://doi.org/10.1111/j.1365-2478.1970.tb02095.x doi: 10.1111/j.1365-2478.1970.tb02095.x
    [29] Reford MS, Sumner JS (1970) Aeromagnetic review article. Geophysics 29: 482-516. https://doi.org/10.1190/1.1439384 doi: 10.1190/1.1439384
    [30] Rao DA, Babu HV (1984) On the half-slope and straight-slope methods of basement depth determination. Geophysics 49: 1365-1368. https://doi.org/10.1190/1.1441763 doi: 10.1190/1.1441763
    [31] Roest WR, Verhoef J, Pilkington M (1992) Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics 57: 116-125. https://doi.org/10.1190/1.1443174 doi: 10.1190/1.1443174
    [32] Desvignes G, Tabbagh A, Benech C (1999) The determination of magnetic anomaly sources. Archaeol Prospect 6: 85-105. https://doi.org/10.1002/(SICI)1099-0763(199906)6:2<85::AID-ARP119>3.0.CO;2-I doi: 10.1002/(SICI)1099-0763(199906)6:2<85::AID-ARP119>3.0.CO;2-I
    [33] Flanagan G, Bain JE (2013) Improvements in magnetic depth estimation: application of depth and width extent nomographs to standard depth estimation techniques. First Break 31: 41-51. https://doi.org/10.3997/1365-2397.2013028 doi: 10.3997/1365-2397.2013028
    [34] Subrahmanyam M (2016) Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies. Pure Appl Geophys 173: 1733-1749. https://doi.org/10.1007/s00024-015-1181-z doi: 10.1007/s00024-015-1181-z
    [35] Oliveira SP, Ferreira FJF, de Souza J (2017) EdgeDetectPFI: an algorithm for automatic edge detection in potential field anomaly images—application to dike-like magnetic structures. Comput Geosci 103: 80-91. https://doi.org/10.1016/j.cageo.2017.02.006 doi: 10.1016/j.cageo.2017.02.006
    [36] Eppelbaum LV, Mishne AR (2011) Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future. Positioning 2: 112-133. https://doi.org/10.4236/pos.2011.23012 doi: 10.4236/pos.2011.23012
    [37] Eppelbaum LV, Khesin BE (2004) Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break 22: 53-56. https://doi.org/10.3997/1365-2397.22.11.26079 doi: 10.3997/1365-2397.22.11.26079
    [38] Mustafabeily M, Khesin BE, Muradkhanov SA, et al. (1964) Searching of copper-polymetallic (lead-zinc) deposits on the southern slope of the Greater Caucasus. Prospect Prot Entrails 9: 30-38. (in Russian)
    [39] Alexeyev VV, Khesin BE (1971) Interpretation of magnetic survey data in orogens of the South of the USSR. Rev VIEMS Ser Reg Explor Borehole Geophy, Moscow. (in Russian)
    [40] Khesin BE, Eppelbaum LV (2007) Development of 3-D gravity/magnetic models of Earth's crust in complicated regions of Azerbaijan. Proceedings of the Symposium of the European Association of Geophysics and Engineering, London, UK, 11-14. https://doi.org/10.3997/2214-4609.201401966
    [41] Dzabayev AA (1969) Principles of the Searching and Study of Oil-and-Gas Bearing Structures by Aeromagnetic Method (South Caspian Basin). Stat Ashkhabad, 217. (in Russian)
    [42] Golubov BN, Sheremet OG (1977) A geological interpretation of the gravitational and magnetic fields of the northern and middle Caspian, based on estimates of their ratios. Int Geol Rev 19: 1421-1428. https://doi.org/10.1080/00206817709471153 doi: 10.1080/00206817709471153
    [43] Gorodnitskiy AM, Brusilovskiy YuV, Ivanenko AN, et al. (2013) New methods for processing and interpreting marine magnetic anomalies: Application to structure, oil and gas exploration, Kuril forearc, Barents and Caspian seas. Geosci Front 4: 73-85. https://doi.org/10.1016/j.gsf.2012.06.002 doi: 10.1016/j.gsf.2012.06.002
    [44] Alizadeh AA, Guliyev IS, Kadirov FA, et al. (2017) Economic Minerals and Applied Geophysics, Geosciences in Azerbaijan, Springer, Heidelberg, 340.
    [45] Rustamov MI (2019) Geodynamics and Magmatism of the Caspian-Caucasian Segment of the Mediterranean Belt in the Phanerozoic. Nafta Press, Baku, 544. (in Russian)
    [46] Pilchin AN, Eppelbaum LV (1997) Determination of the lower edges of magnetized bodies by using geothermal data. Geophysical J Int 128: 167-174.
    [47] Alizadeh AA, Guliyev IS, Kadirov FA, et al. (2016) Geology, Geosciences in Azerbaijan, Springer, Heidelberg, 239. https://doi.org/10.1007/978-3-319-27395-2
    [48] Popov VS, Kremenetsky AA (1999) Deep and superdeep scientific drilling on continents. Earth Sci 11: 61-68. (in Russian)
    [49] Guliyev I, Aliyeva E, Huseynov D, et al. (2010) Hydrocarbon potential of ultra-deep deposits in the South Caspian Basin. Adapted from oral presentation at the AAPG European Region Annual Conference, Kiev, Ukraine.
    [50] Aliyev AdA, Guliyev IS, Dadashov FH, et al. (2015) Atlas of the World: Mud Volcanoes, Nafta Press, Baku, 321.
    [51] Eppelbaum LV, Katz YI (2022) Paleomagnetic-geodynamic mapping of the transition zone from ocean to the continent: A review. Appl Sci 12: 55419. https://doi.org/10.3390/app12115419 doi: 10.3390/app12115419
    [52] Eppelbaum LV (2022) System of Potential Geophysical Field Application in Archaeological Prospection. Handbook of Cultural Heritage Analysis, V Eds., Springer, 771-809.
  • This article has been cited by:

    1. Lijuan Nong, An Chen, Efficient Temporal Third/Fourth-Order Finite Element Method for a Time-Fractional Mobile/Immobile Transport Equation with Smooth and Nonsmooth Data, 2021, 14, 1996-1944, 5792, 10.3390/ma14195792
    2. Yuxuan Niu, Yang Liu, Hong Li, Fawang Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, 2023, 203, 03784754, 387, 10.1016/j.matcom.2022.07.001
    3. Lijuan Nong, Qian Yi, Jianxiong Cao, An Chen, Fast Compact Difference Scheme for Solving the Two-Dimensional Time-Fractional Cattaneo Equation, 2022, 6, 2504-3110, 438, 10.3390/fractalfract6080438
    4. Yuexiu Dong, Lijuan Nong, An Chen, Fast Crank‐Nicolson Block‐Centered Difference Scheme for a Tempered Time‐Fractional Mobile/Immobile Equation With Variable Coefficients, 2025, 0170-4214, 10.1002/mma.10701
    5. Haili Qiao, Aijie Cheng, A Fast Finite Difference Method for 2D Time Fractional Mobile/Immobile Equation with Weakly Singular Solution, 2025, 9, 2504-3110, 204, 10.3390/fractalfract9040204
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1457) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog