Processing math: 46%
Research article Special Issues

Seismic profiling of the sea-bottom in recognition of geotechnical conditions

  • Seismic surveys are widely applied in research on the recognition of geological and geotechnical conditions of seabed and ocean floor sediments. The methodology and equipment needed to carry out shallow seismic and direct geotechnical surveys, as well as the analysis of the results based on the survey of the Polish Baltic Sea bottom, shall be presented here. The interpretation of the seismic survey results is based on the analysis of the registration of different acoustic levels, characteristics of seismo-acoustic layers, their degree of readability and slope angles of individual acoustic reflections. The author deals with the analyses of seismic reflection data and tries to understand the wave image as best as possible. Based on the seismic registrations obtained by the Geofizyka-Toruń company, the author has elaborated interpretation patterns for the Polish Baltic sediments, which are also presented here. The seismic surveys were used to construct maps of specific levels with different geotechnical conditions in the sea-bottom and at a depth of 10, 20 and 30 m below the seabed. The author presents here new results of research related to the geotechnical characteristics of the Polish Baltic substrate at a depth of 30 m below the seabed. The geotechnical map of the Polish Baltic Sea of the substrate at the depth of 30 m below the sea-bottom, as prepared by the author, is very important for building deep foundations of marine constructions, such as oil and gas exploration and production platforms. Seismic surveys allow a good degree of recognition of various geotechnical types of soils in the Polish Baltic sea-bottom, for which approximate values of characteristic geotechnical parameters have been determined.

    Citation: Leszek J. Kaszubowski. Seismic profiling of the sea-bottom in recognition of geotechnical conditions[J]. AIMS Geosciences, 2020, 6(2): 199-230. doi: 10.3934/geosci.2020013

    Related Papers:

    [1] Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168
    [2] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [3] Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng . An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences and Engineering, 2015, 12(4): 803-840. doi: 10.3934/mbe.2015.12.803
    [4] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [5] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger . On the basic reproduction number R0 in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences and Engineering, 2007, 4(4): 595-607. doi: 10.3934/mbe.2007.4.595
    [6] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [7] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [8] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [9] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [10] Wenshuang Li, Shaojian Cai, Xuanpei Zhai, Jianming Ou, Kuicheng Zheng, Fengying Wei, Xuerong Mao . Transmission dynamics of symptom-dependent HIV/AIDS models. Mathematical Biosciences and Engineering, 2024, 21(2): 1819-1843. doi: 10.3934/mbe.2024079
  • Seismic surveys are widely applied in research on the recognition of geological and geotechnical conditions of seabed and ocean floor sediments. The methodology and equipment needed to carry out shallow seismic and direct geotechnical surveys, as well as the analysis of the results based on the survey of the Polish Baltic Sea bottom, shall be presented here. The interpretation of the seismic survey results is based on the analysis of the registration of different acoustic levels, characteristics of seismo-acoustic layers, their degree of readability and slope angles of individual acoustic reflections. The author deals with the analyses of seismic reflection data and tries to understand the wave image as best as possible. Based on the seismic registrations obtained by the Geofizyka-Toruń company, the author has elaborated interpretation patterns for the Polish Baltic sediments, which are also presented here. The seismic surveys were used to construct maps of specific levels with different geotechnical conditions in the sea-bottom and at a depth of 10, 20 and 30 m below the seabed. The author presents here new results of research related to the geotechnical characteristics of the Polish Baltic substrate at a depth of 30 m below the seabed. The geotechnical map of the Polish Baltic Sea of the substrate at the depth of 30 m below the sea-bottom, as prepared by the author, is very important for building deep foundations of marine constructions, such as oil and gas exploration and production platforms. Seismic surveys allow a good degree of recognition of various geotechnical types of soils in the Polish Baltic sea-bottom, for which approximate values of characteristic geotechnical parameters have been determined.


    The Euler system

    {x(ρu)+y(ρv)=0,x(p+ρu2)+y(ρuv)=0,x(ρuv)+y(p+ρv2)=0 (1)

    is usually used to describe the two-dimensional steady isentropic inviscid compressible flow, where (u,v), p and ρ represent the velocity, pressure and density of the flow, respectively, and p(ρ)=ργ/γ for a polytropic gas with the adiabatic exponent γ>1 after the nondimensionalization. Suppose that the flow is irrotational, i.e.,

    uy=vx. (2)

    Then the density ρ can be formulated as a function of the flow speed q=u2+v2 according to the Bernoulli law ([2]):

    ρ(q2)=(1γ12q2)1/(γ1),0<q<2/(γ1). (3)

    The sound speed c is defined as c2=p(ρ). At the sonic state, the flow speed is c=2/(γ+1), which is critical in the sense that the flow is subsonic when q<c, sonic when q=c, and supersonic when q>c. The system (1), (2) can be transformed into the full potential equation

    div(ρ(|φ|2)φ)=0, (4)

    where φ is the velocity potential with φ=(u,v), ρ is the function given by (3). It is noted that (4) is elliptic in the subsonic region, degenerate at the sonic state, while hyperbolic in the supersonic region.

    Subsonic-sonic flow is one of the most interesting aspects in the mathematical theory of compressible flows. The related problems are usually raised in physical experiments and engineering designs, and there are a lot of numerical simulations and rigorous theory involved in this field (see, e.g., [2,8,15]). Two kinds of subsonic-sonic flows have been intensively studied for decades: the flow past a profile and the flow in a nozzle. The outstanding work [1] by L. Bers proved that there exists a unique two-dimensional subsonic potential flow past a profile provided that the freestream Mach number is less than a critical value and the maximum flow speed tends to the sound speed as the freestream Mach number tends to the critical value. Later, the similar results for multi-dimensional cases were established in [13,9] by G. Dong, R. Finn and D. Gilbarg. These three works did not cover the flow with the critical freestream Mach number. It was shown in [3] based on a compensated compactness framework that the two-dimensional flow with sonic points past a profile may be realized as the weak limit of a sequence of strictly subsonic flows. However, all the subsonic-sonic flows above are obtained in the weak sense and their smoothness and uniqueness are unknown yet, so are the subsonic-sonic flows in an infinitely long nozzle. For a two-dimensional infinitely long nozzle, C. Xie et al. ([22]) proved that there exists a critical value such that a strictly subsonic flow exists uniquely as long as the incoming mass flux is less than the critical value, and a subsonic-sonic flow exists as the weak limit of a sequence of strictly subsonic flows. The multi-dimensional cases were investigated in [24,12,14]. A typical subsonic-sonic flow with precise regularity is a radially symmetric subsonic-sonic flow in a convergent straight nozzle. The structural stability was initially proved in [20] for the case of two-dimensional finitely long nozzle, and some new results can be found in [16,17,18,21,19]. In the recent decade, there are also some studies on rotational subsonic and subsonic-sonic flows, see [4,6,11,7,5,23] and the references therein.

    In the present paper, we would like to investigate the subsonic-sonic flow in a class of semi-infinitely long nozzles. Assume precisely that l0, l1>0 and α(0,1) are constants, and fC2,α((,0]) satisfies

    f(0)<f(0)=0,(x)1/2fL((l0,0]), (5)
    f(x)>0 for x(,0),f(x)=0 for x(,l0]. (6)

    The upper and lower wall of the nozzle are described as

    Γup:y=fk(x)(x(,0]),andΓlow:y=l1(xR),

    respectively, where k(0,1] and

    fk(x)=kf(x),x(,0].

    The sonic curve of the flow is a free boundary intersecting the upper wall at the origin, which is chosen as the outlet of the nozzle and is denoted by

    Γout:x=S(y),y[l1,0],S(0)=0.

    It is assumed further that the subsonic-sonic flow satisfies the slip conditions at Γup and Γlow, and its velocity is along the normal direction at Γout. See the following figure for an intuition.

    As in [18,21], the subsonic-sonic flow problem can be formulated in the physical plane as

    div(ρ(|φ|2)φ)=0,(x,y)Ωk, (7)
    φy(x,l1)=0,x(,S(l1)), (8)
    φy(x,fk(x))fk(x)φx(x,fk(x))=0,x(,0), (9)
    |φ(S(y),y)|=c,φ(S(y),y)=0,y(l1,0), (10)

    where (φ,S) is a solution and Ωk is the semi-infinitely long nozzle bounded by Γup, Γlow and Γout. The problem (7)–(10) is a free boundary problem of a quasilinear degenerate elliptic equation in an unbounded domain, whose degeneracy occurs at the free boundary and is characteristic. As mentioned in Remark 1.6 of [22], one can not require in advance that the flow tends to be uniformly subsonic at the far fields, otherwise, the elliptic problem may be overdetermined. In the paper, we prove that the subsonic-sonic flow in the nozzle is uniformly subsonic at the far fields, and the uniqueness of the flow results from this property. Similar to [20,18,16,17,21], we still solve the problem in the potential plane for the reason that the shape of the sonic curve is unknown in the physical plane while known in the potential plane, and the estimates of the flow speed can be made conveniently. In the potential plane, the subsonic-sonic flow problem (7)–(10) can be transformed into a quasilinear degenerate elliptic problem with free parameters and nonlocal boundary conditions in unbounded domain. The unboundedness of the domain makes the problem more difficulty than the ones in [20,18,16,17,21]. The Schauder fixed point theorem is employed to prove the existence of subsonic-sonic flows. For a given incoming mass flux and flow speed at the upper wall, we solve a fixed boundary problem of a quasilinear degenerate elliptic equation. If the solved incoming mass flux and flow speed at the upper wall are just the given ones, we get the solution. Note that the problem we concerns is in unbounded domain, we get the solution to the fixed boundary problem by taking limits of the sequences of the solutions to the truncated problems. Like that in [21], it seems very hard to construct appropriate super and sub solutions to prove the existence of solutions to truncated problems without sufficiently small (x)1/2fL((l0,0)). The method in [21] is used here: we first solve every regularized truncated problem when the flow speed at the outlet is suitable small and get priori estimates for the average and the derivatives of the solution, then we show the existence of the solution to the regularized truncated problem by use of the preliminaries obtained above, and finally we prove that their limit as the flow speed tends to be sonic at the outlet is a desired solution to the truncated problem. The difficulty here is that in order to get the solution to the fixed boundary problem by taking the limit of the solutions to the truncated problems, we must seek a suitable variation rate k0 such that the solutions to all the truncated problems exit provided that k(0,k0]. We overcome this difficulty by constructing complicated super and sub solutions to all the truncated problems. The Harnack's inequality is used to achieve the regularities and the asymptotic behaviors of the solution to the fixed boundary problem. As to the uniqueness of the subsonic-sonic flow, we first fix the free boundaries into fixed ones and transform the nonlocal boundary conditions into common ones by a proper coordinates transformation, and then we estiblish the uniqueness theorem by the energy estimates. Summing up, it is proved in this paper that if f satisfies (5) and (6), then there exists a unique subsonic-sonic flow to the problem (7)–(10) for suitably small k, and the flow speed is only C1/2 Hölder continuous and the flow acceleration blows up at the sonic curve. Furthermore, the flow is uniformly subsonic at the far fields.

    The paper is arranged as follows. In Section 2, we formulate the subsonic-sonic flow problem (7)–(10) in the potential plane. Then in Section 3, we solve the fixed boundary problem of a quasilinear degenerate elliptic equation in an unbounded domain. Finally in Section 4, we establish the well-posedness of the subsonic-sonic flow, and prove that the flow is uniformly subsonic at the far fields.

    Define a velocity potential φ and a stream function ψ, respectively, by

    φx=u=qcosθ,φy=v=qsinθ,ψx=ρv=ρqsinθ,ψy=ρu=ρqcosθ, (11)

    where θ is the flow angle. The system (1), (2) can be reduced to the Chaplygin equations ([2]):

    θψ+ρ(q2)+2q2ρ(q2)qρ2(q2)qφ=0,1qqψ1ρ(q2)θφ=0 (12)

    in the potential-stream coordinates (φ,ψ). The coordinates transformation (11) between the two coordinate systems are valid at least in the absence of stagnation points. Eliminating θ from (12) yields the following quasilinear equation of second order

    2A(q)φ2+2B(q)ψ2=0,

    where

    A(q)=qcρ(s2)+2s2ρ(s2)sρ2(s2)ds,B(q)=qcρ(s2)sds,0<q<2/(γ1).

    It is obvious that B() is strictly increasing in (0,2/(γ1)), while A() is strictly increasing in (0,c] and strictly decreasing in [c,2/(γ1)). It follows from [21] that there exist two constants 0<N1<N2 depending only on γ such that for c/6qc,

    N1(cq)A(q)N2(cq),N1B(q),A(q),B(q)N2, (13)
    N1(cq)E(B(q))N2(cq),N2E(B(q)),E(B(q))N1, (14)

    where E=AB1 and B1 is the inverse function of B. We use A1() to denote the inverse function of A()|(0,c] in this paper. Additionally, the flow angle at the upper and the lower wall are

    Θup(x)=arctanfk(x),x[l0,0]andΘlow(x)0,x(,0),

    respectively.

    As in [18,21], in order to describe the problem in the potential plane, we denote the flow speed at the upper wall by

    Qup(x)=q(x,fk(x)),x(,0],

    then the potential function at the upper wall is expressed by

    Φup(x)=x0Qup(s)(1+(fk(s))2)1/2ds={x0Qup(s)(1+(fk(s))2)1/2ds,if x[l0,0],ζ0+xl0Qup(s)ds,if x(,l0) (15)

    with

    ζ0=l00Qup(s)(1+(fk(s))2)1/2ds.

    The inverse function of Φup is denoted by Xup. The subsonic-sonic flow problem (7)–(10) can be formulated in the potential plane as follows:

    2A(q)φ2(φ,ψ)+2B(q)ψ2(φ,ψ)=0,(φ,ψ)(,0)×(0,m), (16)
    qψ(φ,0)=0,φ(,0), (17)
    B(q)ψ(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(,0), (18)
    q(0,ψ)=c,ψ(0,m), (19)
    Qup(x)=q(φ,m)|φ=Φup(x),x(,0], (20)

    where (q,m) is a solution with m>0 being the incoming mass flux. Solutions to the problem (16)–(19) are defined as follows.

    Definition 2.1. For m>0, a function qL((,0)×(0,m)) is called a solution to the fixed boundary problem (16)–(19), if

    0<inf(,0)×(0,m)qsup(,0)×(0,m)qc

    such that the integral equation

    0m0(A(q(φ,ψ))2ξφ2(φ,ψ)+B(q(φ,ψ))2ξψ2(φ,ψ))dψdφ+0fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ)ξ(φ,m)dφ=0

    holds for any ξC2((,0)×[0,m]) which vanishes for large |φ| with

    ξψ(,0)|(,0)=ξψ(,m)|(,0)=ξ(0,)|(0,m)=0.

    The existence of solutions to the problem (16)–(20) will be proved by a fixed point argument. Give m and Qup in advance as follows:

    δ1mδ2 (21)

    with

    δ1=cρ(c2/4)l12,δ2=cρ(c2)(l1+f(l0)),

    while QupC1/4((,0]) satisfies

    max{c2,ck1/4}Qup(x)c for x(,0],[Qup]C1/4((,0])1. (22)

    For such Qup, it is clear that Φup and Xup are well determined. Direct calculations yield that

    δ4ζ0δ3,c2Φup(x)δ5,x(,0], (23)
    |fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ)|kδ6(φ)1/2χ[ζ0,0](φ),φ(,0], (24)

    where χ[ζ0,0](φ) is the characteristic function of the interval [ζ0,0], and

    δ3=cl02,δ4=cl0(1+f2L((l0,0)))1/2,δ5=c(1+f2L((l0,0)))1/2,δ6=(x)1/2fL((l0,0))(2c)3/2.

    For fC2,α((,0]) satisfying (5) and (6), it follows from [21] that there exists a constant ˜l0(0,l0) depending only on f(0) and (x)1/2fL(l0,0) such that 2f(0)f(x)f(0)/2 for x[˜l0,0], and hence there exist two constants 0<τ1τ2 depending only on ˜l0, l0, f(0), inf(l0,˜l0)f and sup(l0,˜l0)f such that

    τ1xf(x)τ2x,x[l0,0]. (25)

    In this section, we deal with the well-posedness of the fixed boundary problem. For the given m and QupC1/4((,0]) satisfy (21) and (22), respectively, we solve the degenerate elliptic problem (16)–(19). Since the problem is in an unbounded domain, we first deal with the truncated problem in [ζ0n,0]×[0,m] with any sufficient large positive integer n, and make some useful compact estimates. Then we solve the problem (16)–(19) by a limit process. The key of the proof is seeking the variation rate k, which ensures the solutions to the truncated problems exist, is independent of n.

    The truncated problem is written as

    2A(qn)φ2(φ,ψ)+2B(qn)ψ2(φ,ψ)=0,(φ,ψ)(ζ0n,0)×(0,m), (26)
    A(qn)φ(ζ0n,ψ)=0,ψ(0,m), (27)
    qnψ(φ,0)=0,φ(ζ0n,0), (28)
    B(qn)ψ(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0), (29)
    qn(0,ψ)=c,ψ(0,m). (30)

    Note that (26) is degenerate at qn=c, we replace (30) with the following boundary condition

    qn(0,ψ)=c,ψ(0,m), (31)

    where c[c/3,c) is a constant, and consider the regularized truncated problem (26)–(29), (31). Then we solve the problem (26)–(30) by a limit process.

    The proof can be divided into four steps.

    Step 1. Well-posedness of the problem (26)–(29), (31) for c[c/3,c/2].

    Lemma 3.1. Assume that n2δ4+1 and c[c/3,c/2]. There exists a constant k1(0,1] depending only on γ, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)), such that if k(0,k1], then the problem (26)–(29), (31) admits a unique solution qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]). Furthermore, qn,c satisfies

    c/6qn,c(φ,ψ)<c,(φ,ψ)[ζ0n,0]×[0,m], (32)
    qn,c(ζ0n,ψ)ck3/4,ψ[0,m]. (33)

    Proof. The uniqueness result follows from Proposition 3.2 in [20]. Set

    k1=min{(c6)4/3,(c48δ22δ34)2,(c96δ34)4,(A(c/4)A(c/6)8δ22δ34)2,(A(c/3)A(c/4)16δ34)4,(2δ1δ5/24B(5c/6)δ6)2,(2δ2δ5/24B(c/6)δ6A(c/6))2,(1δ22e2δ4)4,(3A(5c/6)4δ24e2δ4B(5c/6))2}.

    For k(0,k1], define

    ¯qn,c(φ,ψ)=23c+(k1/2ψ2+k1/4(φ2)eφ)Λ(φ),(φ,ψ)[ζ0n,0]×[0,m],q_n,c(φ,ψ)=A1(A(c/4)(k1/2ψ2+k1/4(φ2)eφ)Λ(φ)),(φ,ψ)[ζ0n,0]×[0,m],

    where

    Λ(φ)=max{0,(φ+2δ4)3},φ(,0].

    Thanks to (13), (14), (23) and (24), direct calculations show that

    c2¯qn,c(φ,ψ)5c6,c6q_n,c(φ,ψ)c3,(φ,ψ)[ζ0n,0]×[0,m],A(ˉqn,c)φ(ζ0n,ψ)=A(q_n,c)φ(ζ0n,ψ)=0,ψ(0,m),ˉqn,cψ(φ,0)=q_n,cψ(φ,0)=0,φ(ζ0n,0),
    B(ˉqn,c)ψ(φ,m)=2k1/2mB(¯qn,c(φ,m))Λ(φ)2k1/2δ2δ34B(5c/6)χ[ζ0,0](φ)kδ6(φ)1/2χ[ζ0,0](φ),φ(ζ0n,0),B(ˉqn,c)ψ(φ,m)=2k1/2mB(q_n,c(φ,m))A(q_n,c(φ,m))Λ(φ)2k1/2δ2δ34B(c/6)A(c/6)χ[ζ0,0](φ)kδ6(φ)1/2χ[ζ0,0](φ),φ(ζ0n,0),
    2A(ˉqn,c)φ2(φ,ψ)+2B(ˉqn,c)ψ2(φ,ψ)B(¯qn,c(φ,ψ))(A(¯qn,c(φ,ψ))B(¯qn,c(φ,ψ))2ˉqn,cφ2(φ,ψ)+2ˉqn,cψ2(φ,ψ))2k1/4B(¯qn,c(φ,ψ))(φ+2δ4)×(A(5c/6)B(5c/6)(3k1/4δ226e2δ4)+4k1/4δ24)χ[2δ4,0](φ)2k1/4B(¯qn,c(φ,ψ))(φ+2δ4)×(3e2δ4A(5c/6)B(5c/6)+4k1/4δ24)χ[2δ4,0](φ)0,(φ,ψ)(ζ0n,0)×(0,m),

    and

    2A(q_n,c)φ2(φ,ψ)+2B(q_n,c)ψ2(φ,ψ)2A(q_n,c)φ2(φ,ψ)+B(q_n,c(φ,ψ))A(q_n,c(φ,ψ))2A(q_n,c)ψ2(φ,ψ)2k1/4(φ+2δ4)(6e2δ43k1/4δ224k1/4δ24B(c/3)A(c/3))χ[2δ4,0](φ)2k1/4(φ+2δ4)(3e2δ44k1/4δ24B(c/3)A(c/3))χ[2δ4,0](φ)0,(φ,ψ)(ζ0n,0)×(0,m),

    where χ[2δ4,0](φ) is the characteristic function of the interval [2δ4,0]. Therefore, ¯qn,c and q_n,c are a supersolution and a subsolution to the problem (26)–(29), (31), respectively. Thanks to the comparison principle (Proposition 3.2 in [20]) and a standard argument in the classical theory for elliptic equations, one can complete the lemma.

    Step 2. A priori estimates of the average of solutions to the problem (26)–(29), (31).

    Lemma 3.2. Assume that n2δ4+1, c[c/3,c) and qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0)×[0,m]) is a solution to the problem (26)–(29), (31). Then

    1mm0A(qn,c(φ,ψ))dψ=1mm0A(qn,c(ζ0,ψ))dψ,φ[ζ0n,ζ0]. (34)

    Furthermore, there exist three constants k2(0,1] and 0<σ1σ2 depending only on γ, τ1, τ2 and fL((l0,0)) such that if k(0,k2], then

    A(c)kσ2min{φ,ζ0}1mm0A(qn,c(φ,ψ))dψA(c)kσ1min{φ,ζ0},φ[ζ0n,0]. (35)

    Proof. The proof is similar to the proof of Lemma 3.2 in [21]. Integrating (26) over (0,m) with respect to ψ and using (28) and (29) show that

    d2dφ2m0A(qn,c(φ,ψ))dψ=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0). (36)

    And (27) yields that

    ddφm0A(qn,c(ζ0n,ψ))dψ=0. (37)

    One gets from (6), (36) and (37) that

    ddφm0A(qn,c(φ,ψ))dψ=0,φ[ζ0n,ζ0], (38)

    and

    ddφm0A(qn,c(φ,ψ))dψ=φζ0fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(s)ds=Xup(φ)l0fk(x)Φup(x)(1+(fk(x))2)3/2Qup(x)dx=Xup(φ)l0(arctanfk(x))dx=arctanfk(Xup(φ)),φ[ζ0,0]. (39)

    Thus (34) follows from (38). As in the proof of Lemma 3.2 in [21], it follows from (15) and (39) that

    1mm0A(qn,c(φ,ψ))dψ=1mm0A(qn,c(0,ψ))dψ+1m0φarctanfk(Xup(˜φ))d˜φ=A(c)+1m0φarctanfk(Xup(˜φ))d˜φ=A(c)kcf(Xup(φ))+O(k5/4),φ[ζ0,0], (40)

    where O() depend only on fL((l0,0)). Using (25), (34) and (40), we can obtain (35).

    Step 3. A priori derivative estimates of solutions to the problem (26)–(29), (31).

    Lemma 3.3. Assume that n2δ4+1, c[c/3,c), and qn,cC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0)×[0,m]) is a solution to the problem (26)–(29), (31) satisfying (32) and (33). Then for k(0,1],

    |qn,cψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(ζ0n,0)×(0,m), (41)
    |A(qn,c(φ1,ψ1))A(qn,c(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)[ζ0n,0]×[0,m], (42)

    where σ3 and σ4 are positive constants depending only on γ, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)).

    Proof. The proof is similar to Proposition 3.2 in [20]. Set

    z(φ,ψ)=B(qn,c)ψ(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Then zC((ζ0n,0)×(0,m))C([ζ0n,0]×[0,m]) solves the problem

    j1(φ,ψ)2zφ2+2zψ2+j2(φ,ψ)zφ+j3(φ,ψ)zψ+j4(φ,ψ)z=0,(φ,ψ)(ζ0n,0)×(0,m), (43)
    zφ(ζ0n,ψ)=0,ψ(0,m), (44)
    z(φ,0)=0,φ(ζ0n,0), (45)
    z(φ,m)=fk(x)(1+(fk(x))2)3/2Qup(x)|x=Xup(φ),φ(ζ0n,0), (46)
    z(0,ψ)=0,ψ(0,m), (47)

    where jiC((ζ0,0)×(0,m))(1i4) are defined by

    j1=E(B(qn,c))>0,j2=E(B(qn,c))E(B(qn,c))A(qn,c)φ,j3=E(B(qn,c))E(B(qn,c))B(qn,c)ψ,j4=(E(B(qn,c))(E(B(qn,c)))2(E(B(qn,c)))2(E(B(qn,c)))3)(A(qn,c)φ)2(E(B(qn,c)))2(E(B(qn,c)))3(A(qn,c)φ)20

    and E satisfies (14). It is clear that

    14j1(φ,ψ)(φ)3/2j4(φ,ψ)(φ)1/2j1(φ,ψ)j4(φ,ψ)(φ)1/212j2(φ,ψ)(φ)1/2,(φ,ψ)(ζ0n,0)×(0,m).

    Due to (24), one can show that

    z±(φ,ψ)=±kδ6(φ)1/2,(φ,ψ)[ζ0n,0]×[0,m]

    are a supersolution and a subsolution to the problem (43)–(47), respectively. The comparison principle (Proposition 3.2 in [20]) implies that

    |z(φ,ψ)|kδ6(φ)1/2,(φ,ψ)[ζ0n,0]×[0,m]. (48)

    Define

    ˜z±(φ,ψ)=±kδ6(ζ0)1/2,(φ,ψ)[ζ0n,ζ0]×[0,m].

    It is easy to verify that ˜z± are a supersolution and subsolution to the following problem

    j1(φ,ψ)2zφ2+2zψ2+j2(φ,ψ)zφ+j3(φ,ψ)zψ+j4(φ,ψ)z=0,(φ,ψ)(ζ0n,ζ0)×(0,m),zφ(ζ0n,ψ)=0,ψ(0,m),z(φ,0)=0,φ(ζ0n,ζ0),z(φ,m)=0,φ(ζ0n,ζ0),z(ζ0,ψ)=z(ζ0,ψ),ψ(0,m),

    respectively. The comparison principle shows that

    |z(φ,ψ)|kδ6(ζ0)1/2,(φ,ψ)[ζ0n,ζ0]×[0,m],

    which, together with (48), leads to (41). Finally, (42) can be proved in the same way as the proof of Proposition 3.2 in [20].

    Step 4. Well-posedness of the truncated problem (26)–(30).

    Lemma 3.4. Assume that n2δ4+1. There exists a constant 0<k3min{k1,k2} depending only on γ, τ1, τ2, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)), such that if k(0,k3], then the problem (26)–(30) admits a unique solution qnC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]) satisfies

    |qnψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(ζ0n,0)×(0,m), (49)
    |A(qn(φ1,ψ1))A(qn(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)[ζ0n,0]×[0,m], (50)
    cσ6k1/2(min{φ,ζ0})1/2qn(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m], (51)

    where 0<σ5σ6 are constants depending only on γ, τ1, τ2, l0, l1, f(l0), fL((l0,0)) and (x)1/2fL((l0,0)).

    Proof. The uniqueness result follows from Proposition 3.2 in [20]. For 0<kmin{k1,k2}, set

    Ck={c[c/3,c):the problem (26)–(29), (31) admits a solutionqn,cC((ζ0n,0)×(0,m))C1([ζ0n,0]×[0,m])with (32) and (33)}.

    It follows from Lemma 3.1 and the comparison principle (Proposition 3.2 in [20]) that Ck is a nonempty interval. Assume that cCk. For φ[ζ0n,0], thanks to cCk, (13) and (35), there exists a number ψφ(0,m) such that

    qn,c(φ,ψφ)c(kσ1N2)1/2(min{φ,ζ0})1/2,

    which, together with (41), yields

    qn,c(φ,ψ)=qn,c(φ,ψφ)+ψψφqn,cψ(φ,˜ψ)d˜ψc((σ1N2)1/2k1/2σ3δ2)k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m]. (52)

    Choose

    σ5=(σ14N2)1/2,k3=min{k1,k2,σ14σ23δ22N2,σ45δ2416}.

    For 0<kk3, one gets from cCk, (23) and (52) that

    c/4qn,c(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m], (53)
    qn,c(ζ0n,ψ)c2k3/4,ψ[0,m]. (54)

    It follows from cCk, (31) and (42) that

    |A(qn,c(φ,ψ))A(c)|kσ4(φ)1/2,ψ[0,m]. (55)

    Thanks to (53)–(55), one can prove from the comparison principle (Proposition 3.2 in [20]) and the continuous dependence of solutions to the problem (26)–(29), (31) that Ck=[c/3,c) for 0<kk3.

    Let 0<kk3. For c/3c1<c2<c, the comparison principle (Proposition 3.2 in [20]) gives

    qn,c1(φ,ψ)qn,c2(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Set

    qn(φ,ψ)=limccqn,c(φ,ψ),(φ,ψ)[ζ0n,0]×[0,m].

    Due to (41), (42) and (53), it is clear that qn is a solution to the problem (26)–(30), and qn satisfies (49), (50) and the second inequality in (51). For φ[ζ0n,0], it follows from (35) and (13) that there exists a number ˜ψφ(0,m) such that

    qn(φ,˜ψφ)c(kσ2N1)1/2(min{φ,ζ0})1/2.

    This estimate above and (49) yield

    qn(φ,ψ)=qn(φ,˜ψφ)+ψ˜ψφqnψ(φ,˜ψ)d˜ψc((σ2N1)1/2+k1/2σ3δ2)k1/2(min{φ,ζ0})1/2,(φ,ψ)[ζ0n,0]×[0,m].

    Hence the first inequality in (51) holds for σ6=(σ2/N1)1/2+σ3δ2. Finally, the Schauder theory for elliptic equations shows that qnC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C([ζ0n,0]×[0,m]).

    Let us establish the existence of the solution to the problem (16)–(19).

    Proposition 1. Assume that k(0,k3], then the problem (16)–(19) admits a solution qC((,0)×(0,m))C1((,0)×[0,m])C((,0]×[0,m]) satisfies

    |qψ(φ,ψ)|kσ3(min{φ,ζ0})1/2,(φ,ψ)(,0)×(0,m), (56)
    |A(q(φ1,ψ1))A(q(φ2,ψ2))|kσ4(|φ1φ2|1/2+|ψ1ψ2|),(φ1,ψ1),(φ2,ψ2)(,0]×[0,m], (57)
    cσ6k1/2(min{φ,ζ0})1/2q(φ,ψ)cσ5k1/2(min{φ,ζ0})1/2,(φ,ψ)(,0]×[0,m], (58)

    where σ3, σ4, σ5 and σ6 are given in Lemmas 3.3 and 3.4. Furthermore,

    1mm0A(q(φ,ψ))dψ=A(q),φ(,ζ0], (59)

    where

    q=A1(1mm0A(q(ζ0,ψ))dψ)[cσ6k1/2(ζ0)1/2,cσ5k1/2(ζ0)1/2]. (60)

    Proof. For any n>2δ4+1, the truncated problem (26)–(30) admits a unique solution

    qnC((ζ0n,0)×(0,m))C1([ζ0n,0)×[0,m])C1/2([ζ0n,0]×[0,m])

    satisfying (49)–(51). Therefore, there exists a subsequence of \{q_n\} weakly star convergenting to a function q in L^\infty((-\infty,0)\times(0,m)) , and q satisfies (58). It is not hard to check that q is a solution to the problem (16)–(19), and q satisfies (56)–(58). Finally, the Schauder theory for elliptic equations yields that

    q\in C^\infty((-\infty,0)\times(0,m))\cap C^1((-\infty,0)\times[0,m])\cap C((-\infty,0]\times[0,m]).

    Integrating (16) over (0,m) with respect to \psi and using (6), (17) and (18) lead to that

    \frac{{\rm d}^2}{{\rm d}\varphi^2}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = 0, \quad\varphi\in(-\infty,\zeta_0),

    and then there exists some constant C such that

    \begin{align} \frac{{\rm d}}{{\rm d}\varphi}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = C, \quad\varphi\in(-\infty,\zeta_0), \end{align} (61)

    which implies that

    \begin{align} \int_0^m A(q(\varphi,\psi)){\rm d}\psi = \int_0^m A(q(\zeta_0,\psi)){\rm d}\psi+C(\varphi-\zeta_0), \quad\varphi\in(-\infty,\zeta_0). \end{align} (62)

    It follows from (57) and (62) that

    \begin{align*} |C||\varphi-\zeta_0| &\leq \int_0^m|A(q(\varphi,\psi))-A(q(\zeta_0,\psi))| {\rm d}\psi \\ &\leq k\sigma_4\delta_2|\varphi-\zeta_0|^{1/2}, \quad\varphi\in(-\infty,\zeta_0), \end{align*}

    that is,

    \begin{align} |C|\leq k\sigma_4\delta_2|\varphi-\zeta_0|^{-1/2}, \quad\varphi\in(-\infty,\zeta_0). \end{align} (63)

    One can get C = 0 by taking \varphi\to-\infty in (63), and then (61) implies that

    \frac{1}{m}\int_0^m A(q(\varphi,\psi)){\rm d}\psi = \frac{1}{m}\int_0^m A(q(\zeta_0,\psi)){\rm d}\psi,\quad\varphi\in(-\infty,\zeta_0].

    Therefore, (59) holds.

    The solution to the problem (16)–(19) has the following regularity and asymptotic behavior.

    Proposition 2. Assume that q is a solution to the problem (16)–(19) satisfying Proposition 1. Then q\in C^{1/2}([2\zeta_0,0]\times[0,m]) and

    \begin{align} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_7k^{1/4}(-\varphi)^{-1/2},\quad (\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \end{align} (64)

    where \sigma_7 is a positive constants depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . Moreover, it holds that

    \begin{align} \begin{split} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8k^{1/2}(-\varphi)^{-2},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8k(-\varphi)^{-2}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{split} \end{align} (65)

    and hence

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9k(-\zeta)^{-2}, \quad\zeta\in(-\infty,2\zeta_0), \end{align} (66)

    where q_\infty is given in (60), and \sigma_8,\,\sigma_9>0 depend only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} .

    Proof. Similarly to the proof of Proposition 4.1 in [18], one can prove that q\in C^{1/2}([2\zeta_0,0]\times[0,m]) and satisfies (64).

    In the remaining of the proof, we use \mu_i\,(1\leq i\leq11) to denote a generic positive constant depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . It follows from (59) that for any \varphi\in(-\infty,\zeta_0] , there exists a number \psi_\varphi\in(0,m) such that

    q(\varphi,\psi_\varphi) = q_\infty,

    which, together with (56), yields

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_{L^\infty((-\infty,\zeta_0)\times(0,m))} \leq\int_0^m\Big\|\frac{\partial q}{\partial \psi}\Big\| _{L^\infty((-\infty,\zeta_0)\times(0,m))}{\rm d}\psi \leq\mu_1k. \end{align} (67)

    Note that q\in C^\infty((-\infty,0)\times(0,m))\cap C^1((-\infty,0)\times[0,m])\cap C((-\infty,0]\times[0,m]) solves

    \begin{align*} &\frac{\partial}{\partial \varphi}\Big(a(\varphi,\psi)\frac{\partial q}{\partial \varphi}\Big) +\frac{\partial}{\partial \psi}\Big(b(\varphi,\psi)\frac{\partial q}{\partial \psi}\Big) = 0, &&(\varphi,\psi)\in(-\infty,\zeta_0)\times(0,m), \\ &\frac{\partial q}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,\zeta_0), \\ &\frac{\partial q}{\partial \psi}(\varphi,m) = 0, &&\varphi\in(-\infty,\zeta_0), \end{align*}

    where

    a(\varphi,\psi) = A'(q(\varphi,\psi)),\quad b(\varphi,\psi) = B'(q(\varphi,\psi)),\quad (\varphi,\psi)\in(-\infty,\zeta_0)\times(0,m).

    Fix integer n\geq2 . Introducing

    \left\{\begin{array}{ll} \hat{\varphi} = k^{-1/4}(\varphi-n\zeta_0)/n, &\quad\varphi\in[4n\zeta_0,n\zeta_0/2], \\ \hat{\psi} = \psi/n, &\quad\psi\in[0,m], \end{array}\right.

    and setting

    \hat{q}(\hat{\varphi},\hat{\psi}) = q(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi})-q_\infty, \quad(\hat{\varphi},\hat{\psi})\in [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n].

    One can verify that

    \hat{q}\in C^\infty((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,m/n))\cap C^1([3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n])

    solves

    \begin{align} &\frac{\partial}{\partial \hat{\varphi}} \Big(k^{-1/2}\hat{a}(\hat{\varphi},\hat{\psi}) \frac{\partial \hat{q}}{\partial \hat{\varphi}}\Big) +\frac{\partial}{\partial \hat{\psi}} \Big(\hat{b}(\hat{\varphi},\hat{\psi}) \frac{\partial \hat{q}}{\partial \hat{\psi}}\Big) = 0, && \\ & &&(\hat{\varphi},\hat{\psi}) \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,m/n), \end{align} (68)
    \begin{align} &\frac{\partial \hat{q}}{\partial \hat{\psi}}(\hat{\varphi},0) = 0, &&\hat{\varphi}\in (3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align} (69)
    \begin{align} &\frac{\partial \hat{q}}{\partial \hat{\psi}}(\hat{\varphi},m/n) = 0, &&\hat{\varphi} \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align} (70)

    where

    \begin{align*} \hat{a}(\hat{\varphi},\hat{\psi}) = a(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi}),\quad &\hat{b}(\hat{\varphi},\hat{\psi}) = b(n\zeta_0+k^{1/4}n\hat{\varphi},n\hat{\psi}), \\ &(\hat{\varphi},\hat{\psi})\in [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,m/n]. \end{align*}

    Extending the problem (68)–(70) into the domain [3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2]\times[0,2m] yields

    \begin{align*} &\frac{\partial}{\partial \check{\varphi}} \Big(k^{-1/2}\check{a}(\check{\varphi},\check{\psi}) \frac{\partial \check{q}}{\partial \check{\varphi}}\Big) +\frac{\partial}{\partial \check{\psi}} \Big(\check{b}(\check{\varphi},\check{\psi}) \frac{\partial \check{q}}{\partial \check{\psi}}\Big) = 0, && \\ & &&(\check{\varphi},\check{\psi}) \in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2)\times(0,2m), \\ &\frac{\partial \check{q}}{\partial \check{\psi}}(\check{\varphi},0) = 0, &&\check{\varphi}\in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \\ &\frac{\partial \check{q}}{\partial \check{\psi}}(\check{\varphi},2m) = 0, &&\check{\varphi}\in(3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2), \end{align*}

    where for (\check{\varphi},\check{\psi}) \in[3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2] \times[(i-1)m/n,im/n]\; (1\leq i\leq2n) ,

    \begin{align*} \check{a}(\check{\varphi},\check{\psi}) & = \left\{\begin{array}{ll} \hat{a}(\check{\varphi},\check{\psi}-(i-1)m/n), &\quad\hbox{if $i$ is odd}, \\ \hat{a}(\check{\varphi},im/n-\check{\psi}), &\quad\hbox{if $i$ is even}, \end{array}\right. \\ \check{b}(\check{\varphi},\check{\psi}) & = \left\{\begin{array}{ll} \hat{b}(\check{\varphi},\check{\psi}-(i-1)m/n), &\quad\hbox{if $i$ is odd}, \\ \hat{b}(\check{\varphi},im/n-\check{\psi}), &\quad\hbox{if $i$ is even}. \end{array}\right. \end{align*}

    Duo to (13), (51) and (67), one gets that

    \begin{align*} \mu_2k^{1/2}\leq\check{a}(\check{\varphi},\check\psi)\leq\mu_3k^{1/2},\quad &\mu_2\leq\check{b}(\check{\varphi},\check\psi)\leq\mu_3,\quad \\ &(\check{\varphi},\check{\psi})\in [-4k^{-1/4},3k^{-1/4}\varepsilon/(4n)]\times[0,2m], \end{align*}

    and

    \|\check{q}\|_{L^\infty ((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2) \times(0,2m))}\leq\mu_1k.

    It follows from the Hölder continuity estimates for uniformly elliptic equations that there exists a number \beta\in(0,1) such that

    [\check{q}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4) \times(0,2m)} \leq\mu_4\|\check{q}\|_{L^\infty ((3k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/2) \times(0,2m))} \leq\mu_5k,

    which implies

    \begin{align*} [\check{a}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m)} &\leq\mu_6k, \\ [\check{b}]_{\beta;(5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m)} &\leq\mu_6k. \end{align*}

    The Schauder estimates on uniformly elliptic equations imply that

    \begin{align} \|\check{q}\|_{C^{1,\beta}((2k^{-1/4}\zeta_0,-k^{-1/4}\zeta_0/8) \times(0,2m))} &\leq\mu_7\|\check{q}\|_{L^\infty ((5k^{-1/4}\zeta_0/2,-k^{-1/4}\zeta_0/4)\times(0,2m))} \\ &\leq\mu_8k. \end{align} (71)

    Transforming (71) into the (\varphi,\psi) plane, one can get that

    \begin{align} \begin{split} \Big\|\frac{\partial q}{\partial \varphi}\Big\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\mu_9k^{3/4}n^{-1}, \\ \Big\|\frac{\partial q}{\partial \psi}\Big\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\mu_9kn^{-1}. \end{split} \end{align} (72)

    Similar to (67), we have from (72) that

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))} &\leq\int_0^m\Big\|\frac{\partial q_{n}}{\partial \psi}\Big\| _{L^\infty((3n\zeta_0,3n\zeta_0/4)\times(0,m))}{\rm d}\psi \\ &\leq\mu_{10}kn^{-1}. \end{align} (73)

    Using (73) and the same operation on q leads to that

    \begin{align*} \begin{split} \Big\|\frac{\partial q}{\partial \varphi}\Big\|_{L^\infty((2n\zeta_0,n\zeta_0)\times(0,m))} &\leq\mu_{11}k^{1/2}n^{-2}, \\ \Big\|\frac{\partial q}{\partial \psi}\Big\|_{L^\infty((2n\zeta_0,n\zeta_0)\times(0,m))} &\leq\mu_{11}kn^{-2}, \end{split} \end{align*}

    Then the arbitrariness of n\geq2 leads to (65), and hence (66) holds.

    Remark 1. Through the similar process of the proof of Proposition 2, one can show that for any positive integer \lambda , it holds that

    \begin{align*} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8'k^{1-\lambda/4}(-\varphi)^{-\lambda},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8'k(-\varphi)^{-\lambda}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m) \end{align*}

    and

    \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9'k(-\zeta)^{-\lambda}, \quad\zeta\in(-\infty,2\zeta_0),

    where \sigma_8',\,\sigma_9'>0 depend only on \lambda , \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} .

    The solution to the problem (16)–(19) is also unique for small k .

    Proposition 3. There exists a constant k_4\in(0,1] depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,k_4] , then the problem (16)–(19) admits at most one solution q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) satisfying (58).

    Proof. In the proof, we use \nu_i\,(1\leq i\leq5) to denote a generic positive constant depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} . Let q^{(1)},\,q^{(2)}\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) be two solution to the problem (16)–(19) satisfying (58). Define

    w_i(\varphi,\psi) = A(q^{(i)}(\varphi,\psi)),\quad (\varphi,\psi)\in(-\infty,0]\times[0,m],\quad i = 1,\,2.

    Then w_i\,(i = 1,\,2) solves

    \begin{align*} &\frac{\partial^{2} w_{i}}{\partial \varphi^{2}} +\frac{\partial^{2} B\left(A^{-1}\left(w_{i}\right)\right)}{\partial \psi^{2}} = 0, &&(\varphi,\psi)\in(-\infty,0)\times(0,m), \\ &\frac{\partial w_{i}}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,0), \\ &\frac{\partial B\left(A^{-1}\left(w_{i}\right)\right)}{\partial \psi}(\varphi,m) = \frac{f''_k(x)}{(1+(f'_k(x))^2)^{3/2}Q_{\rm up}(x)}\Big|_{x = X_{\rm up}(\varphi)}, && \\ &&&\varphi\in(-\infty,0), \\ &w_i(0,\psi) = 0, &&\psi\in(0,m). \end{align*}

    Set

    w(\varphi,\psi) = w_1(\varphi,\psi)-w_2(\varphi,\psi),\quad (\varphi,\psi)\in(-\infty,0]\times[0,m].

    It is easy to show that w solves

    \begin{align} &\frac{\partial^{2} w}{\partial \varphi^{2}} +\frac{\partial^{2}}{\partial \psi^{2}}(h(\varphi,\psi)w) = 0, &&(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{align} (74)
    \begin{align} &\frac{\partial w}{\partial \psi}(\varphi,0) = 0, &&\varphi\in(-\infty,0), \end{align} (75)
    \begin{align} &\frac{\partial(h w)}{\partial \psi}(\varphi,m) = 0, &&\varphi\in(-\infty,0), \end{align} (76)
    \begin{align} &w(0,\psi) = 0, &&\psi\in(0,m), \end{align} (77)

    where

    \begin{align*} h(\varphi,\psi) & = \int_0^1 \frac{B'(A^{-1}(\eta w_1(\varphi,\psi) +(1-\eta)w_2((\varphi,\psi))))} {A'(A^{-1}(\eta w_1(\varphi,\psi) +(1-\eta)w_2((\varphi,\psi))))}{\rm d}\eta, \\ & \quad (\varphi,\psi)\in(-\infty,0)\times(0,m). \end{align*}

    Thanks to (56), (58), (64) and (65), direct calculations yield

    \begin{gather} \nu_1k^{1/2}\langle-\varphi\rangle^{1/2} \leq h(\varphi,\psi)\leq \nu_1k^{1/2}\langle-\varphi\rangle^{1/2}, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{gather} (78)
    \begin{gather} \Big|\frac{\partial h}{\partial \psi}(\varphi,\psi)\Big| \leq\left\{\begin{array}{ll} \nu_2(-\varphi)^{-1/2}, \quad(\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \\ \nu_2(-\varphi)^{-2}, \quad(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{array}\right. \end{gather} (79)
    \begin{gather} \Big|\frac{\partial w}{\partial \varphi}(\varphi,\psi)\Big| \leq\nu_2k(-\varphi)^{-2}, \quad(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{gather} (80)

    where \langle-\varphi\rangle = \min\{-\varphi,-2\zeta_0\} . Fix \zeta<2\zeta_0-1 . Multiplying (74) by -w , then integrating over (\zeta,0)\times(0,m) by parts and using (75)–(77), we have

    \begin{align*} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\int_\zeta^0\int_0^mh(\varphi,\psi)\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ = \,&-\int_\zeta^0\int_0^m\frac{\partial h}{\partial \psi}(\varphi,\psi) w\frac{\partial w}{\partial \psi}{\rm d}\psi{\rm d}\varphi -\int_0^mw(\zeta,\psi)\frac{\partial w}{\partial \varphi}(\zeta,\psi) {\rm d}\psi, \end{align*}

    which, together with (78)–(80), yields

    \begin{align*} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_3\int_{2\zeta_0}^0\int_0^m(-\varphi)^{-1/2} \Big|w\frac{\partial w}{\partial \psi}\Big|{\rm d}\psi{\rm d}\varphi +\nu_3\int_\zeta^{2\zeta_0}\int_0^m(-\varphi)^{-2} \Big|w\frac{\partial w}{\partial \psi}\Big|{\rm d}\psi{\rm d}\varphi \\ &\qquad+\nu_3k(-\zeta)^{-2} \int_0^m|w(\zeta,\psi)|{\rm d}\psi. \end{align*}

    Then the Hölder's inequality gives

    \begin{align} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_4k^{1/2}\int_{2\zeta_0}^0\int_0^m (-\varphi)^{-1/2}w^2{\rm d}\psi{\rm d}\varphi +\nu_4k^{1/2}\int_\zeta^{2\zeta_0}\int_0^m (-\varphi)^{-4}w^2{\rm d}\psi{\rm d}\varphi \\ &\qquad+\nu_4k(-\zeta)^{-2} \int_0^m|w(\zeta,\psi)|{\rm d}\psi. \end{align} (81)

    It follows from the Hölder's inequality and Cauchy inequality that

    \begin{align} \int_{2\zeta_0}^0\int_0^m (-\varphi)^{-1/2}w^2{\rm d}\psi{\rm d}\varphi &\leq\int_{2\zeta_0}^0\int_0^m(-\varphi)^{-1/2} \bigg(\int_\varphi^0\frac{\partial w}{\partial \varphi}(s,\psi) {\rm d}s\bigg)^2{\rm d}\psi{\rm d}\varphi \\ &\leq\int_{2\zeta_0}^0(-\varphi)^{1/2} {\rm d}\varphi \int_{\zeta_0}^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\varphi{\rm d}\psi \\ &\leq(-2\zeta_0)^{3/2}\int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\varphi{\rm d}\psi, \end{align} (82)
    \begin{align} \int_\zeta^{2\zeta_0}\int_0^m (-\varphi)^{-4}w^2{\rm d}\psi{\rm d}\varphi &\leq\int_\zeta^{2\zeta_0}\int_0^m(-\varphi)^{-4} \bigg(\int_\varphi^0\frac{\partial w}{\partial \varphi}(s,\psi) {\rm d}s\bigg)^2{\rm d}\psi{\rm d}\varphi \\ &\leq\int_\zeta^{2\zeta_0}(-\varphi)^{-3} {\rm d}\varphi \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ &\leq(-2\zeta_0)^{-2} \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi, \end{align} (83)

    and

    \begin{align} \int_0^m|w(\zeta,\psi)|{\rm d}\psi &\leq\dfrac{m}{2}+\dfrac{1}{2} \int_0^mw^2(\zeta,\psi){\rm d}\psi \\ &\leq\dfrac{\delta_2}{2}+\int_0^m \bigg(\int_\zeta^0\Big|\frac{\partial w}{\partial \varphi}\Big| {\rm d}\varphi\bigg)^2{\rm d}\psi \\ &\leq\dfrac{\delta_2}{2}+(-\zeta) \int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2{\rm d}\varphi{\rm d}\psi. \end{align} (84)

    Substituting (82)–(84) into (81) to get

    \begin{align} &\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \\ \leq\,&\nu_5k^{1/2}\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\nu_5k(-\zeta)^{-2} +\nu_5k(-\zeta)^{-1}\int_\zeta^0\int_0^m \Big(\frac{\partial w}{\partial \varphi}\Big)^2{\rm d}\varphi{\rm d}\psi \\ \leq\,&2\nu_5k^{1/2}\int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +\nu_5k(-\zeta)^{-2}. \end{align} (85)

    Choose k_4 = 1/(16\nu_5^2+1) . For any k\in(0,k_4] , (85) implies

    \begin{align} \int_\zeta^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_\zeta^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \leq2\nu_5k^{1/2}(-\zeta)^{-2}. \end{align} (86)

    Taking \zeta\to-\infty in (86) to get

    \int_{-\infty}^0\int_0^m\Big(\frac{\partial w}{\partial \varphi}\Big)^2 {\rm d}\psi{\rm d}\varphi +k^{-1/2}\int_{-\infty}^0\int_0^m \langle-\varphi\rangle^{1/2}\Big(\frac{\partial w}{\partial \psi}\Big)^2 {\rm d}\psi{\rm d}\varphi \leq0,

    which implies

    \begin{align} \frac{\partial w}{\partial \varphi}(\varphi,\psi) = \frac{\partial w}{\partial \psi}(\varphi,\psi) = 0, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m). \end{align} (87)

    It follows (77) and (87) that

    w(\varphi,\psi) = 0,\quad (\varphi,\psi)\in(-\infty,0]\times[0,m].

    Therefore, q^{(1)} = q^{(2)} .

    First we prove the existence of the solution to the problem (16)–(20) by a fixed point argument.

    Theorem 4.1. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exists a constant k_0\in(0,1] depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,k_0] , then the problem (16)–(20) admits a solution (q,m) satisfying

    \begin{gather} q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) \\ \Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq k\sigma_3(\min\{-\varphi,-\zeta_0\})^{1/2}, \quad(\varphi,\psi)\in(-\infty,0)\times(0,m), \end{gather} (88)
    \begin{gather} |A(q(\varphi_1,\psi_1))-A(q(\varphi_2,\psi_2))| \leq k\sigma_4(|\varphi_1-\varphi_2|^{1/2}+|\psi_1-\psi_2|), \\ (\varphi_1,\psi_1),\, (\varphi_2,\psi_2)\in(-\infty,0]\times[0,m], \end{gather} (89)
    \begin{gather} c_*-\sigma_6k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2} \leq q(\varphi,\psi)\leq c_*-\sigma_5k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}, \\ (\varphi,\psi)\in(-\infty,0]\times[0,m], \end{gather} (90)

    where

    \begin{align} m = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1),\quad c_*-\sigma_6k^{1/2}(-\zeta_0)^{1/2}\leq q_\infty \leq c_*-\sigma_5k^{1/2}(-\zeta_0)^{1/2}, \end{align} (91)

    and \sigma_3 , \sigma_4 , \sigma_5 , \sigma_6 are given in Lemmas 3.3 and 3.4. Furthermore,

    \begin{align} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_7k^{1/4}(-\varphi)^{-1/2},\quad (\varphi,\psi)\in[2\zeta_0,0)\times(0,m), \end{align} (92)

    and for any positive integer \lambda , it holds that

    \begin{align} \begin{split} \Big|\frac{\partial q}{\partial \varphi}(\varphi,\psi)\Big| \leq\sigma_8'k^{1-\lambda/4}(-\varphi)^{-\lambda},\quad &\Big|\frac{\partial q}{\partial \psi}(\varphi,\psi)\Big| \leq\sigma_8'k(-\varphi)^{-\lambda}, \\ &(\varphi,\psi)\in(-\infty,2\zeta_0)\times(0,m), \end{split} \end{align} (93)

    and

    \begin{align} \|q(\varphi,\psi)-q_\infty\|_ {L^\infty((-\infty,\zeta)\times(0,m))} \leq\sigma_9'k(-\zeta)^{-\lambda}, \quad\zeta\in(-\infty,2\zeta_0), \end{align} (94)

    where \sigma_7 , \sigma_8' and \sigma_9' are given in Proposition 2 and Remark 1. Therefore, the flow is uniformly subsonic at the far fields.

    Proof. Choose

    \begin{align*} k_0 = \min\bigg\{k_3,\,k_4,\, \frac{c_*^2}{4\sigma_6^2\delta_4},\, \frac{1}{\sigma_6^4\delta_4^2},\, \frac{N_1}{2\sigma_4\delta_5^{1/2}}\bigg\}. \end{align*}

    For k\in(0,k_0] , set

    \mathscr{Q} = \left\{(m,Q_{\rm up})\in [\delta_1,\delta_2]\times C^{1/4}((-\infty,0]):\, \hbox{$Q_{\rm up}$ satisfies $(22)$}\right\}

    with the norm

    \|(m,Q_{\rm up})\|_{\mathscr{Q}} = \max\left\{m,\, \|Q_{\rm up}\|_{L^\infty(-\infty,0)}\right\}.

    For a given (m,Q_{\rm up})\in\mathscr{Q} , it is clear that \Phi_{\rm up} , X_{\rm up} and q_\infty are well determined, and it follows from Propositions 1–3 that the problem (16)–(19) admits a unique solution q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) satisfying (56)–(58) and (66). Set

    \hat{m} = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1),\quad \widehat{Q}_{\rm up}(x) = q(\Phi_{\rm up}(x),m), \quad x\in(-\infty,0].

    From (56)–(58), (66) and the choice of k_0 , it is easy to verify that (\hat{m},\widehat{Q}_{\rm up})\in\mathscr{Q} and

    \mathcal{K}:\,\mathscr{Q}\to\mathscr{Q},\quad (m,Q_{\rm up}) \mapsto(\hat{m},\widehat{Q}_{\rm up}).

    is a self-mapping. Furthermore, one can prove the compactness of \mathcal{K} by using (56)–(58), and the continuity of \mathcal{K} by using its compactness and the uniqueness result for the problem (16)–(19). Therefore, the Schauder fixed point theorem shows that the problem (16)–(20) admits a solution (q,m) such that q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) satisfies (88)–(94).

    From Theorem 4.1, for k\in(0,k_0] , the problem (16)–(20) admits a solution (q,m) satisfying q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C^{1/2}((-\infty,0]\times[0,m]) ,

    \begin{align} \begin{split} &\max\left\{\dfrac{c_*}{2},\, c_*-M_1k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}\right\} \\ \le\,&q(\varphi,\psi)\le c_*-M_2k^{1/2}(\min\{-\varphi,-\zeta_0\})^{1/2}, \\ & \quad (\varphi,\psi)\in(-\infty,0)\times(0,m) \end{split} \end{align} (95)

    and

    \|q(\varphi,\psi)-q_\infty\|_{L^\infty((-\infty,\zeta)\times(0,m)} \leq M_3k(-\zeta)^{-2}, \quad\zeta < 2\zeta_0,

    where

    \begin{gather*} m = q_\infty\rho(q_\infty^2)(f_k(-l_0)+l_1), \\ \max\left\{\dfrac{c_*}{2},\,c_*-M_1k^{1/2}(-\zeta_0)^{1/2}\right\} \le q_\infty\le c_*-M_2k^{1/2}(-\zeta_0)^{1/2}, \end{gather*}

    and M_1 , M_2 , M_3 are positive constants. Indeed, this solution is also unique if k is suitably small.

    Theorem 4.2. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exists a constant k_0'\in(0,1] depending only on \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} , \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , M_1 and M_2 , such that if k\in(0,k_0'] , then there is at most one solution (q,m) to the problem (16)–(20) such that q\in C^\infty((-\infty,0)\times(0,m)) \cap C^1((-\infty,0)\times[0,m]) \cap C((-\infty,0]\times[0,m]) and q satisfies (95).

    Proof. In the proof, we use C_i\,(1\leq i\leq5) to denote a generic positive constant depending only on \gamma , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} , \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , M_1 and M_2 . Let (q^{(1)},m^{(1)}) and (q^{(2)},m^{(2)}) be two solutions to the problem (16)–(20) such that q^{(i)}\in C^\infty((-\infty,0)\times(0,m^{(i)})) \cap C^1((-\infty,0)\times[0,m^{(i)}]) \cap C((-\infty,0]\times[0,m^{(i)}]) and satisfies (95) for i = 1,\,2 . Denote \Phi_{{\rm up},i} and X_{{\rm up},i} to be the associated functions defined in Section 2 corresponding to q^{(i)} for i = 1,\,2 . For i = 1,\,2 , introduce the new coordinates transformations

    \left\{\begin{array}{ll} x = X_{{\rm up},i}(\varphi),&\varphi\in(-\infty,0], \\ y = \dfrac{\psi}{m^{(i)}},&\psi\in[0,m^{(i)}], \end{array}\right.\qquad \left\{\begin{array}{ll} \varphi = \Phi_{{\rm up},i}(x),&x\in(-\infty,0], \\ \psi = m^{(i)}y,&y\in[0,1]. \end{array}\right.

    Define

    W_i(x,y) = A(q^{(i)}(\Phi_{{\rm up},i}(x),m^{(i)}y)),\quad (x,y)\in(-\infty,0]\times[0,1],\quad i = 1,\,2.

    Then W_i satisfies

    \begin{align} &\frac{\partial}{\partial x}\Big(m^{(i)}X_i(x)\frac{\partial W_{i}}{\partial x}\Big) +\frac{\partial}{\partial y}\Big(\frac{1}{m^{(i)}X_i(x)}\frac{\partial B\left(A^{-1}\left(W_{i}\right)\right)}{\partial y}\Big) = 0, && \\ &&&(x,y)\in(-\infty,0)\times(0,1), \end{align} (96)
    \begin{align} &\frac{\partial W_{i}}{\partial y}(x,0) = 0, &&x\in(-\infty,0), \end{align} (97)
    \begin{align} &\frac{1}{m^{(i)}X_i(x)}\frac{\partial B\left(A^{-1}\left(W_{i}\right)\right)}{\partial y}(x,1) = \frac{f''_k(x)}{1+(f'_k(x))^2}, &&x\in(-\infty,0), \end{align} (98)
    \begin{align} &W_i(0,y) = 0, &&y\in(0,1), \end{align} (99)

    where

    X_i(x) = \frac{1}{(1+(f'_k(x))^2)^{1/2} A^{-1}(W_i(x,{f_k(-L_0)}))},\quad x\in(-\infty,0].

    Set

    W(x,y) = W_1(x,y)-W_2(x,y),\quad (x,y)\in(-\infty,0]\times[0,1].

    One can verify from that W satisfies

    \begin{align} &\frac{\partial}{\partial x}\Big(m^{(1)}X_1(x)\frac{\partial W}{\partial x}\Big) +\frac{\partial}{\partial y}\Big(\dfrac{1}{m^{(1)}X_1(x)}H(x,y)\frac{\partial W}{\partial y}\Big) \\[1.5 mm] &\qquad+\frac{\partial}{\partial x}\Big(m^{(1)}X(x)\frac{\partial W_{2}}{\partial x}\Big) +\frac{\partial}{\partial x}\Big(mX_2(x)\frac{\partial W_{2}}{\partial x}\Big) \\[1.5 mm] &\qquad+\frac{\partial}{\partial y}\Big(\dfrac{1}{m^{(1)}X_1(x)}\frac{\partial Z}{\partial y}(x,y)W\Big) -\frac{\partial}{\partial y}\Big(\dfrac{m}{m^{(1)}m^{(2)}X_1(x)}\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\Big) \\[1.5 mm] &\qquad-\frac{\partial}{\partial y}\Big(\dfrac{X(x)}{m^{(2)}X_1(x)X_2(x)} \frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\Big) = 0,\quad(x,y)\in(-\infty,0)\times(0,1), \end{align} (100)

    where

    \begin{gather*} m = m^{(1)}-m^{(2)}, \\ X(x) = X_1(x)-X_2(x),\quad x\in(-\infty,0], \\ H(x,y) = \int_0^1\dfrac{B'(A^{-1} (\eta W_1(x,y)+(1-\eta)W_2(x,y)))} {A'(A^{-1}(\eta W_1(x,y)+(1-\eta)W_2(x,y)))}{\rm d}\eta, \quad(x,y)\in(-\infty,0)\times(0,1). \end{gather*}

    It follows from (13), (59), (88) and (90)–(93) that

    \begin{gather} C_1k^{-1/2}\langle-x\rangle^{-1/2} \leq H(x,y)\leq C_2k^{-1/2}\langle-x\rangle^{-1/2}, \quad(x,y)\in(-\infty,0)\times(0,1), \end{gather} (101)
    \begin{gather} \Big|\frac{\partial H}{\partial y}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2(-x)^{-1/2},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (102)
    \begin{gather} \Big|\frac{\partial W_{i}}{\partial x}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2k^{3/4},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2k(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right.\quad i = 1,\,2, \end{gather} (103)
    \begin{gather} \Big|\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}(x,y)\Big| \leq\left\{\begin{array}{ll} C_2k(-x)^{1/2},&(x,y)\in[-L_0,0)\times(0,1), \\ C_2k(-x)^{-2},&(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (104)
    \begin{gather} |X(x)|\leq\left\{\begin{array}{ll} C_2k^{-1/2}(-x)^{-1/2}|W(x,1)|, &(x,y)\in[-L_0,0)\times(0,1), \\ C_2k^{-1/2}|W(x,1)|, &(x,y)\in(-\infty,-L_0)\times(0,1), \end{array}\right. \end{gather} (105)
    \begin{gather} |m|\leq C_2\bigg(\int_{-L_0}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x\bigg)^{1/2}, \end{gather} (106)

    where

    \langle-x\rangle = \min\{-x,\,L_0\},\quad L_0 = 3l_0\left(1+\|f'\|_{L^\infty((-l_0,0))}^2\right)^{1/2}.

    Fix L>L_0 . Multiplying (100) by -W and then integrating by parts over (-L,0)\times(0,1) , one gets from (96)–(99) that

    \begin{align*} &\int_{-L}^0\int_0^1m^{(1)}X_1(x)\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\int_{-L}^0\int_0^1\frac{1}{m^{(1)}X_1(x)}H(x,y) \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ = \,&-\int_{-L}^0\int_0^1m^{(1)}X(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x} {\rm d}y{\rm d}x -\int_{-L}^0\int_0^1mX_2(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x} {\rm d}y{\rm d}x \\ &\qquad-\int_{-L}^0\int_0^1\dfrac{1}{m^{(1)}X_1(x)} \frac{\partial H}{\partial y}(x,y)W\frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_{-L}^0\int_0^1\dfrac{m}{m^{(1)}m^{(2)}X_1(x)} \frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_{-L}^0\int_0^1 \dfrac{X(x)}{m^{(2)}X_1(x)X_2(x)}\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y} \frac{\partial W}{\partial y}{\rm d}y{\rm d}x \\ &\qquad+\int_0^1W(-L,y)\Big(m^{(1)}X_1(-L)\frac{\partial W_{1}}{\partial x}(-L,y) -m^{(2)}X_2(-L)\frac{\partial W_{2}}{\partial x}(-L,y)\Big){\rm d}y, \end{align*}

    which, together with (23), (90), (101) and (103), yields

    \begin{align} \begin{split} &\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&C_3\underbrace{\int_{-L}^0\int_0^1 \Big|X(x)\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x}\Big| {\rm d}y{\rm d}x}_{J_1} +C_3\underbrace{\int_{-L}^0\int_0^1 \Big|m\frac{\partial W}{\partial x}\frac{\partial W_{2}}{\partial x}\Big| {\rm d}y{\rm d}x}_{J_2} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|\frac{\partial H}{\partial y}(x,y)W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x}_{J_3} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|m\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x}_{J_4} \\ &\qquad+C_3\underbrace{\int_{-L}^0\int_0^1 \Big|X(x)\frac{\partial B\left(A^{-1}\left(W_{2}\right)\right)}{\partial y}\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x}_{J_5} \\ &\qquad+C_3k(-L)^{-2} \underbrace{\int_0^1|W(-L,y)|{\rm d}y}_{I_L}. \end{split} \end{align} (107)

    Below, let us make estimates on J_i\,(1\leq i\leq 5) and I_L in (107). The following five inequalities are necessary. From the Hölder's inequality and (99), it follows

    \begin{align} &\int_{-L_0}^0\int_0^1(-x)^{-\vartheta_1}W^2 {\rm d}y{\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1(-x)^{-\vartheta_1} \bigg(\int_x^0\left|\frac{\partial W}{\partial x}(s,y)\right| {\rm d}s\bigg)^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L_0}^0(-x)^{1-\vartheta_1}{\rm d}x \int_{-L_0}^0\int_0^1\left(\frac{\partial w}{\partial x}\right)^2 {\rm d}y{\rm d}x \\ \leq\,&\dfrac{L_0^{2-\vartheta_1}}{2-\vartheta_1} \int_{-L}^0\int_0^1\left(\frac{\partial W}{\partial x}\right)^2 {\rm d}y{\rm d}x,\quad\vartheta_1\in[0,2), \end{align} (108)

    and

    \begin{align} &\int_{-L}^{-L_0}\int_0^1 (-x)^{-\vartheta_2}W^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L}^{-L_0}\int_0^1(-x)^{-\vartheta_2} \bigg(\int_x^0\Big|\frac{\partial W}{\partial x}(s,y)\Big|{\rm d}s \bigg)^2{\rm d}y{\rm d}x \\ \leq\,&\int_{-L}^{-L_0}(-x)^{1-\vartheta_2}{\rm d}x \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x \\ \leq\,&\dfrac{L_0^{2-\vartheta_2}}{\vartheta_2-2} \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x, \quad\vartheta_2\in(2,+\infty). \end{align} (109)

    Then from the Cauchy's inequality, (108) and (109), we have

    \begin{align} &\int_{-L_0}^0W^2(x,1){\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1W^2{\rm d}y{\rm d}x +2\int_{-L_0}^0\int_0^1\Big|W\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x \\ \leq\,& L_0^2\int_{-L}^0\int_0^1\left(\frac{\partial W}{\partial x}\right)^2 {\rm d}y{\rm d}x +k^{1/2}L_0^{1/2}\int_{-L_0}^0\int_0^1W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L_0}^0\int_0^1(-x)^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0^2+L_0^{5/2})\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (110)
    \begin{align} &\int_{-L_0}^0(-x)^{-1}W^2(x,1){\rm d}x \\ \leq\,&\int_{-L_0}^0\int_0^1(-x)^{-1}W^2 {\rm d}y{\rm d}x +2\int_{-L_0}^0\int_0^1(-x)^{-1}\Big|W\frac{\partial W}{\partial y}\Big| {\rm d}y{\rm d}x \\ \leq\,&L_0\int_{-L_0}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{1/2}\int_{-L_0}^0\int_0^1(-x)^{-3/2}W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L_0}^0\int_0^1(-x)^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0+2L_0^{1/2})\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (111)

    and

    \begin{align} &\int_{-L}^{-L_0}(-x)^{-4}W^2(x,1){\rm d}x \\ \leq\,&\int_{-L}^{-L_0}\int_0^1 (-x)^{-4}W^2{\rm d}y{\rm d}x +2\int_{-L}^{-L_0}\int_0^1(-x)^{-4} \Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ \leq\,& L_0^{-2}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +k^{1/2}L_0^{1/2}\int_{-L}^{-L_0}\int_0^1(-x)^{-8}W^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}L_0^{-1/2}\int_{-L}^{-L_0}\int_0^1 \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&(L_0^{-2}+L_0^{-5/2}) \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x \\ &\qquad+k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x. \end{align} (112)

    It follows from Cauchy's inequality with \varepsilon , (102)–(106) and (108)–(112) that

    \begin{align} J_1&\leq\varepsilon\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +\dfrac{1}{\varepsilon}\int_{-L}^0\int_0^1 |X(x)|^2\Big|\frac{\partial W_{2}}{\partial x}\Big|^2{\rm d}y{\rm d}x \\ &\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{C_2^2k^{1/2}}{\varepsilon}\int_{-L_0}^0 (-x)^{-1}W^2(x,1){\rm d}y{\rm d}x \\ &\qquad\quad+\dfrac{C_2^2k}{\varepsilon}\int_{-L}^{-L_0} (-x)^{-4}W^2(x,1){\rm d}y{\rm d}x \\ &\leq C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad\quad+\dfrac{C_4k^{1/2}}{\varepsilon} \cdot k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x, \end{align} (113)
    \begin{align} J_2&\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{1}{\varepsilon}\int_{-L}^0\int_0^1m^2 \Big(\frac{\partial W_{2}}{\partial x}\big)^2{\rm d}y{\rm d}x \\ &\leq\varepsilon\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +\dfrac{C_2^2}{\varepsilon}m^2\bigg(k^{3/2} +L_0k^2\int_{-L}^{-L_0}(-x)^{-4}{\rm d}x\bigg) \\ &\leq C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x, \end{align} (114)
    \begin{align} J_3&\leq C_2\int_{-L_0}^0\int_0^1 (-x)^{-1/2}\Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x +C_2\int_{-L}^{-L_0}\int_0^1 (-x)^{-2}\Big|W\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2k^{1/2}}{\varepsilon}\int_{-L_0}^0\int_0^1 (-x)^{-1/2}W^2{\rm d}y{\rm d}x +\dfrac{C_2L_0^{1/2}k^{1/2}}{\varepsilon} \int_{-L}^{-L_0}\int_0^1 (-x)^{-4}W^2{\rm d}y{\rm d}x \\ &\qquad\quad+C_2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +C_4\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (115)
    \begin{align} J_4&\leq C_2k\int_{-L_0}^0\int_0^1 (-x)^{1/2}\Big|m\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x +C_2k\int_{-L}^{-L_0}\int_0^1 (-x)^{-2}\Big|m\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2k^{5/2}}{\varepsilon}m^2 \bigg(\int_{-L_0}^0(-x)^{3/2}{\rm d}x +\int_{-L}^{-L_0}(-x)^{-4}{\rm d}x\bigg) \\ &\qquad\quad+C_2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x +C_4\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (116)

    and

    \begin{align} J_5&\leq C_2^2k^{1/2}\int_{-L_0}^0\int_0^1 \Big|W(x,1)\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\qquad\quad+C_2^2k^{1/2}\int_{-L}^{-L_0}\int_0^1(-x)^{-2} \Big|W(x,1)\frac{\partial W}{\partial y}\Big|{\rm d}y{\rm d}x \\ &\leq\dfrac{C_2^2L_0^{1/2}k^{3/2}}{\varepsilon} \int_{-L_0}^0W^2(x,1){\rm d}x +\dfrac{C_2^2L_0^{1/2}k^{3/2}}{\varepsilon} \int_{-L}^{-L_0}(-x)^{-4}W^2(x,1){\rm d}x \\ &\qquad\quad+C_2^2\varepsilon k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x \\ &\leq\dfrac{C_4k^{1/2}}{\varepsilon}\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x \\ &\qquad\quad+C_4\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) k^{-1/2}\int_{-L}^0\int_0^1 \langle-x\rangle^{-1/2}\Big(\frac{\partial W}{\partial y}\Big)^2 {\rm d}y{\rm d}x, \end{align} (117)

    where \varepsilon>0 is to be determined. Additionally,

    \begin{align} I_L&\leq1+\int_0^1W^2(-L,y){\rm d}y \\ &\leq1+\int_0^1 \bigg(\int_{-L}^0\Big|\frac{\partial W}{\partial x}\Big|{\rm d}x\bigg)^2{\rm d}y \\ &\leq1+(-L)\int_{-L}^0\int_0^1 \Big(\frac{\partial W}{\partial x}\Big)^2{\rm d}y{\rm d}x. \end{align} (118)

    Substituting (113)–(118) into (107) to get

    \begin{align} &\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \\ \leq\,&C_5\Big(\varepsilon+\dfrac{k^{1/2}}{\varepsilon}\Big) \bigg(\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x\bigg) \\ &\qquad\quad+C_5(-L)^{-1} +C_5k\int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x. \end{align} (119)

    Choose \varepsilon = (4C_5)^{-1} and k_0' = \min\{(16C_5^2+1)^{-1},\,(4C_5+1)^{-1}\} . For any k\in(0,k_0'] , (119) implies

    \begin{align} \int_{-L}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-L}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \leq 2C_5(-L)^{-1}. \end{align} (120)

    Taking L\to+\infty in (120), we obtain that

    \begin{align*} \int_{-\infty}^0\int_0^1\Big(\frac{\partial W}{\partial x}\Big)^2 {\rm d}y{\rm d}x +k^{-1/2}\int_{-\infty}^0\int_0^1\langle-x\rangle^{-1/2} \Big(\frac{\partial W}{\partial y}\Big)^2{\rm d}y{\rm d}x \leq0, \end{align*}

    which shows that

    \frac{\partial W}{\partial x}(x,y) = \frac{\partial W}{\partial y}(x,y) = 0,\quad (x,y)\in(-\infty,0)\times(0,1).

    Then W(x,y) = 0 follows from (99), and hence (q^{(1)},m^{(1)}) = (q^{(2)},m^{(2)}) .

    In terms of the physical variables, Theorems 4.1 and 4.2 can be transformed as

    Theorem 4.3. Assume that f\in C^{2,\alpha}([-l_0,0]) satisfies (5) and (6). There exist four constants \widetilde{k}_0\in(0,1] and \widetilde{M}_1,\,\widetilde{M}_2>0 depending only on \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that if k\in(0,\widetilde{k}_0] then the problem (7)–(10) admits a unique solution (\varphi,S,m) satisfying \varphi\in C^3(\varOmega_k)\cap C^2(\overline{\varOmega}_k\setminus S) \cap C^1(\overline{\varOmega}_k) , S\in C^1([-l_1,0]) ,

    \begin{align*} \max\left\{\frac{c_*}{2},\,c_*-\widetilde{M}_2(k\,{\rm dist}_S(\langle x\rangle,y))^{1/2}\right\} \leq|\nabla\varphi(x,y)|\leq c_*-\widetilde{M}_1(k\,{\rm dist}_S(\langle x\rangle,y))^{1/2}, \\ (x,y)\in\varOmega_k, \end{align*}

    where {\rm dist}_S(x,y) is the distance from (x,y) to S and \langle x\rangle = \max\{x,\,-l_0\} . Moreover, for any positive integer \lambda , there exists a constant \widetilde{M}_3>0 depending only on \lambda , \gamma , \tau_1 , \tau_2 , l_0 , l_1 , f(-l_0) , \|f'\|_{L^\infty((-l_0,0))} and \|(-x)^{-1/2}f''\|_{L^\infty((-l_0,0))} , such that

    \|\varphi(x,y)-q_\infty x\|_ {C^1(\varOmega_k\cap\{x < -R\})} \leq\widetilde{M}_3kR^{-\lambda},\quad R > l_0,

    where

    \max\left\{\frac{c_*}{2},\,c_*-\widetilde{M}_2(kl_0)^{1/2}\right\} \leq q_\infty\leq c_*-\widetilde{M}_1(kl_0)^{1/2}.

    Therefore, the flow is uniformly subsonic at the far fields.



    [1] Kaszubowski LJ (2016) Seismic profiling of the seabottoms for shallow geological and geotechnical investigations. In: Finkl CW, Makowski C (eds.). Seafloor mapping along continental shelves. Springer International Publishing Switzerland, Heidelberg New York Dordrecht London, 13: 191-243.
    [2] Jegliński B, Pruszkowski J (1981) Metodyka badań geologiczno-inżynierskich dla inwestycji portowych na przykładzie Portu Północnego (Metodology of the enginnering-geological research for port investments on the example of the Northern Port, in Polish). In: Subotowicz W (ed). Geologiczno-inżynierskie badania wybrzeża i dna Bałtyku Południowego, Gdańsk, 189.
    [3] Stucka B (1981) Badania geologiczno-inżynierskie dla posadowienia obiektów hydrotechnicznych w porcie Kołobrzeg (Enginnering-geological research for the foundation of hydrtechnical constructions in the port of Kolobrzeg, in Polish). In: Subotowicz W (ed). Geologiczno-inżynierskie badania wybrzeża i dna Bałtyku Południowego, Gdańsk, 206.
    [4] Pieczka FB (1981) Charakterystyka geologiczno-inżynierska osadów dennych Bałtyku (Enginnering-geological characteristics of the seabottom sediments of the Baltic, in Polish). In: Subotowicz W (ed) Geologiczno-inżynierskie badania wybrzeża i dna Bałtyku Południowego, Gdańsk, 72.
    [5] Jurowska Z, Kramarska R (1990a) Geological map of the Baltic Sea bottom, 1:200,000, sheet Dziwnów. Państw Inst Geol, Warszawa.
    [6] Jurowska Z, Kramarska R (1990b) Geological map of the Baltic Sea bottom, 1:200,000, sheet Szczecin. Państw Inst Geol, Warszawa.
    [7] Kramarska R (1991a) Geological map of the Baltic Sea bottom, 1:200,000, sheet Ławica Słupska. Państw Inst Geol, Warszawa.
    [8] Kramarska R (1991b) Geological map of the Baltic Sea bottom, 1:200,000, sheet Ławica Słupska N. Państw Inst Geol, Warszawa.
    [9] Michałowska M, Pikies R (1990) Geological map of the Baltic Sea bottom, 1:200,000, sheet Koszalin. Państw Inst Geol, Warszawa.
    [10] Pikies R (1992) Geological map of the Baltic Sea bottom, 1:200,000, sheet Południowa Ławica Środkowa. Państw Inst Geol, Warszawa.
    [11] Pikies R (1993a) Geological map of the Baltic Sea bottom, 1:200,000, sheet Basen Gotlandzki. Państw Inst Geol, Warszawa.
    [12] Pikies R (1993b) Geological map of the Baltic Sea bottom, 1:200,000, sheet Próg Gotlandzko-Gdański. Państw Inst Geol, Warszawa.
    [13] Pikies R, Jurowska Z (1994) Geological map of the Baltic Sea bottom, 1: 200,000, sheet Puck. Państw Inst Geol, Warszawa.
    [14] Uścinowicz S (1989) Geological map of the Baltic Sea bottom, 1:200,000, sheet Kołobrzeg. Państw Inst Geol, Warszawa.
    [15] Uścinowicz S, Zachowicz J (1989) Geological map of the Baltic Sea bottom, 1:200,000, sheet Nexo. Państw Inst Geol, Warszawa.
    [16] Uścinowicz S, Zachowicz J (1990) Geological map of the Baltic Sea bottom, 1:200,000, sheet Ronne. Państw Inst Geol, Warszawa.
    [17] Uścinowicz S, Zachowicz J (1991) Geological map of the Baltic Sea bottom, 1:200,000, sheet Slupsk. Państw Inst Geol, Warszawa.
    [18] Uścinowicz S, Zachowicz J (1993a) Geological map of the Baltic Sea bottom, 1:200,000, sheet Gdańsk. Państw Inst Geol, Warszawa.
    [19] Uścinowicz S, Zachowicz J (1993b) Geological map of the Baltic Sea bottom, 1:200,000, sheet Głębia Gdańska. Państw Inst Geol, Warszawa.
    [20] Uścinowicz S, Zachowicz J (1993) Geological map of the Baltic Sea bottom, 1:200,000, sheet Głębia Gdańska. Państw Inst Geol, Warszawa.
    [21] Wiłun Z (2013) Zarys geotechniki (Outline of geotechnics, in Polish). Wydawnictwo Komunikacji i Łączności,Warszawa, 724.
    [22] Mazurkiewicz BK (1985) Mechanika gruntów dna morskiego (Seabed soil mechanics, in Polish), Państ, Wydaw, Naukowe, Warszawa, 146.
    [23] Dembicki E (1987) Zagadnienia geotechniczne budowli morskich (Geotechnical issues of marine construction, in Polish). Wydawnictwo Morskie, Gdańsk, 280.
    [24] Kaszubowski LJ (2017) Badania sejsmiczne i sejsmoakustyczne w rozpoznawaniu warunków geologicznych i geotechnicznych podłoża gruntowego (Seismic and seismo-acoustic research in recognition of the geological and geotechnical conditions of the soil substrate; in Polish). In: Meyer Z (ed.) Regionalne Problemy Inżynierii Środowiska. Wyd. Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin, 17-31.
    [25] British Geological Survey. Available from: http://www.bgs.ac.uk/sciencefacilities/marine-operations/geophysical-equipment.html.
    [26] Labaune C, Tesson M, Gensous B (2005) Integration of high and very high resolution seismic reflection profiles to study late Quaternary deposits of a coastal area in the western Gulf of Lions, SW France. Mar Geophys Res 26: 109-122. doi: 10.1007/s11001-005-3711-z
    [27] Rosa B (1987) Pokrywa osadowa i rzeźba dna (Sedimentary cover and surface of the seabottom, Eng Summ). In: Augustowski B (ed) Bałtyk Południowy (Southern Baltic). Ossolineum, Wrocław, 67-120.
    [28] Kaszubowski LJ, Coufal R (2008) Preliminary engineering-geological division of the Baltic Sea bottom (Polish part) in the light of geological maps of the Baltic and seismoacoustic research. 11th Baltic Geotechnical Conference, Poland, Gdańsk, 399.
    [29] Kaszubowski LJ, Coufal R (2011) Analiza geologiczno-inżynierska dna polskiej części Morza Bałtyckiego (Enginnering-geological analysis of the Polish Baltic seabottom, Eng Summ). Biul Państwowego Inst Geol 446: 341-350.
    [30] Kaszubowski LJ, Coufal R (2014) Wytrzymałość na ścinanie i ściskanie gruntów polskiego Bałtyku na głębokości 10 i 20 m poniżej dna morskiego (Resistance of shear and compression of the Polish Baltic soils on the depth of 10 and 20 m below the seabottom, Eng Summ). Prz Geol 62: 609-620.
    [31] Look BG (2007) Handbook of geotechnical Investigation and Design Tables. Routledge.
    [32] Dadlez R (1995) Mezozoik (Mesozoic, in Polish). In: Dadlez R, Mojski JE, Słowanska B, et al. (eds). Atlas Geologiczny Południowego Bałtyku-tekst (Geological Atlas of the Southern Baltic-text), Państ Inst Geol, Warszawa, 16-19.
    [33] Rossa W, Wypych K (1981) Sejsmostratygrafia dna Bałtyku Południowego (Seismostratigraphy of the Southern Baltic seabottom, in Polish). In: Subotowicz W (ed.), Geologiczno-inżynierskie badania wybrzeża i dna Bałtyku Południowego, Gdańsk, 48.
    [34] Kramarska R, Uścinowicz S, Zachowicz J (2002) Cainozoic of the Southern Baltic-selected problems. Prz Geol 50: 709-716.
  • geosci-06-02-013-s001.pdf
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5379) PDF downloads(384) Cited by(0)

Figures and Tables

Figures(20)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog