The coasts, with their intricate combination of natural and anthropogenic fragilities, can always be considered a crucial component in the geography of risk and territorial governance. Furthermore, coastal areas worldwide are currently facing profound and immediate impacts of climate change, presenting unparalleled challenges for both ecosystems and coastal communities. In these contexts, high socio-environmental vulnerability has often been linked to planning and management practices that, at times, have exacerbated coastal exposure, making it more prone to extreme natural phenomena, such as coastal floods and storm surges, as well as degradation. The case of the Gaeta Gulf, a largely urbanized part of the central Tyrrhenian coast in Italy that encompasses two administrative areas between the northern Campania and the southern Lazio Regions, provides an opportunity to investigate these criticalities both along the coastline and within the interconnected inland areas. This research aims to understand how administrations and communities perceive, experience, and understand the coastal risks and challenges posed by climate change, as well as their level of information and preparedness to address such risks. These aspects will be analyzed through a multidisciplinary approach, shedding light on the political, social, environmental, and economic practices in these areas, and the potential implications for coastal planning policies. In addition, this contribution presents the results of a qualitative survey involving the administration of questionnaires related to the perception of climate change impacts on the coasts and the level of information on the mitigation and adaptation practices within the communities living in these areas.
Citation: Eleonora Gioia, Eleonora Guadagno. Perception of climate change impacts, urbanization, and coastal planning in the Gaeta Gulf (central Tyrrhenian Sea): A multidimensional approach[J]. AIMS Geosciences, 2024, 10(1): 80-106. doi: 10.3934/geosci.2024006
[1] | Hui Sun, Zhongyang Sun, Ya Huang . Equilibrium investment and risk control for an insurer with non-Markovian regime-switching and no-shorting constraints. AIMS Mathematics, 2020, 5(6): 6996-7013. doi: 10.3934/math.2020449 |
[2] | Gideon Simpson, Daniel Watkins . Relative entropy minimization over Hilbert spaces via Robbins-Monro. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359 |
[3] | Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133 |
[4] | I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady . Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131 |
[5] | Hanan Haj Ahmad, Osama E. Abo-Kasem, Ahmed Rabaiah, Ahmed Elshahhat . Survival analysis of newly extended Weibull data via adaptive progressive Type-Ⅱ censoring and its modeling to Carbon fiber and electromigration. AIMS Mathematics, 2025, 10(4): 10228-10262. doi: 10.3934/math.2025466 |
[6] | Huifang Yuan, Tao Jiang, Min Xiao . The ruin probability of a discrete risk model with unilateral linear dependent claims. AIMS Mathematics, 2024, 9(4): 9785-9807. doi: 10.3934/math.2024479 |
[7] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052 |
[8] | Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy . Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution. AIMS Mathematics, 2024, 9(11): 32646-32673. doi: 10.3934/math.20241563 |
[9] | M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662 |
[10] | Lin Xu, Linlin Wang, Hao Wang, Liming Zhang . Optimal investment game for two regulated players with regime switching. AIMS Mathematics, 2024, 9(12): 34674-34704. doi: 10.3934/math.20241651 |
The coasts, with their intricate combination of natural and anthropogenic fragilities, can always be considered a crucial component in the geography of risk and territorial governance. Furthermore, coastal areas worldwide are currently facing profound and immediate impacts of climate change, presenting unparalleled challenges for both ecosystems and coastal communities. In these contexts, high socio-environmental vulnerability has often been linked to planning and management practices that, at times, have exacerbated coastal exposure, making it more prone to extreme natural phenomena, such as coastal floods and storm surges, as well as degradation. The case of the Gaeta Gulf, a largely urbanized part of the central Tyrrhenian coast in Italy that encompasses two administrative areas between the northern Campania and the southern Lazio Regions, provides an opportunity to investigate these criticalities both along the coastline and within the interconnected inland areas. This research aims to understand how administrations and communities perceive, experience, and understand the coastal risks and challenges posed by climate change, as well as their level of information and preparedness to address such risks. These aspects will be analyzed through a multidisciplinary approach, shedding light on the political, social, environmental, and economic practices in these areas, and the potential implications for coastal planning policies. In addition, this contribution presents the results of a qualitative survey involving the administration of questionnaires related to the perception of climate change impacts on the coasts and the level of information on the mitigation and adaptation practices within the communities living in these areas.
This article studies the questions of existence and nonexistence of weak solutions to the system of polyharmonic wave inequalities
{utt+(−Δ)mu≥|x|a|v|p,(t,x)∈(0,∞)×RN∖¯B1,vtt+(−Δ)mv≥|x|b|u|q,(t,x)∈(0,∞)×RN∖¯B1. | (1.1) |
Here, (u,v)=(u(t,x),v(t,x)), N≥2, B1 is the open unit ball of RN, m≥1 is an integer, a,b≥−2m, (a,b)≠(−2m,−2m), and p,q>1. We will investigate (1.1) under the Navier-type boundary conditions
{(−Δ)iu≥fi(x),i=0,⋯,m−1,(t,x)∈(0,∞)×∂B1,(−Δ)iv≥gi(x),i=0,⋯,m−1,(t,x)∈(0,∞)×∂B1, | (1.2) |
where fi,gi∈L1(∂B1) and (−Δ)0 is the identity operator. Notice that no restriction on the signs of fi or gi is imposed.
The study of semilinear wave inequalities in RN was firstly considered by Kato [1] and Pohozaev & Véron [2]. It was shown that the problem
utt−Δu≥|u|p,(t,x)∈(0,∞)×RN | (1.3) |
possesses a critical exponent pK=N+1N−1 in the following sense:
(ⅰ) If N≥2 and 1<p≤pK, then (1.3) possesses no global weak solution, provided
∫RNut(0,x)dx>0. | (1.4) |
(ⅱ) If p>pK, there are global positive solutions satisfying (1.4).
Caristi [3] studied the higher-order evolution polyharmonic inequality
∂ju∂tj−|x|αΔmu≥|u|p,(t,x)∈(0,∞)×RN, | (1.5) |
where α≤2m. Caristi discussed separately the cases α=2m and α<2m. For instance, when j=2 and α=0, it was shown that, if N≥m+1 and 1<p≤N+mN−m, then (1.5) possesses no global weak solution, provided (1.4) holds. Other existence and nonexistence results for evolution inequalities involving the polyharmonic operator in the whole space can be found in [4,5,6].
The study of the blow-up for semilinear wave equations in exterior domains was firstly considered by Zhang [7]. Namely, among many other problems, Zhang investigated the equation
utt−Δu=|x|a|u|p,(t,x)∈(0,∞)×RN∖D, | (1.6) |
where N≥3, a>−2, and D is a smooth bounded subset of RN. It was shown that (1.6) under the Neumann boundary condition
∂u∂ν=f(x)≥0,(t,x)∈(0,∞)×∂D, |
admits a critical exponent N+aN−2 in the following sense:
(ⅰ) If 1<p<N+aN−2, then (1.6) admits no global solution, provided f≢0.
(ⅱ) If p>N+aN−2, then (1.6) admits global solutions for some f>0.
In [8,9], it was shown that the critical value p=N+aN−2 belongs to case (ⅰ). Furthermore, the same result holds true, if (1.6) is considered under the Dirichlet boundary condition
u=f(x)≥0,(t,x)∈(0,∞)×∂D, |
where D=¯B1.
In [10], the authors considered the system of wave inequalities (1.1) in the case m=1. The system was studied under different types of inhomogeneous boundary conditions. In particular, under the boundary conditions (1.2) with m=1 (Dirichlet-type boundary conditions), the authors obtained the following result: Assume that a,b≥−2, (a,b)≠(−2,−2), If0:=∫∂B1f0dSx≥0, Ig0:=∫∂B1g0dSx≥0, (If0,Ig0)≠(0,0), and p,q>1. If N=2; or N≥3 and
N<max{sign(If0)2p(q+1)+pb+apq−1,sign(Ig0)2q(p+1)+qa+bpq−1}, |
then (1.1)-(1.2) (with m=1) admits no weak solution. Moreover, the authors pointed out the sharpness of the above condition.
In the case m=2, the system (1.1) was recently studied in [11] under different types of boundary conditions. In particular, under the boundary conditions (1.2) with f0≡0 and g0≡0, i.e.,
{u≥0,−Δu≥f1(x),(t,x)∈(0,∞)×∂B1,v≥0,−Δv≥g1(x),(t,x)∈(0,∞)×∂B1. | (1.7) |
Namely, the following result was obtained: Let N≥2, a,b≥−4, (a,b)≠(−4,−4), ∫∂B1f1dSx>0, ∫∂B1g1dSx>0, and p,q>1. If N∈{2,3,4}; or
N≥5,N<max{4p(q+1)+pb+apq−1,4q(p+1)+qa+bpq−1}, |
then (1.1) (with m=2) under the boundary conditions (1.7) admits no weak solution. Moreover, it was shown that the above condition is sharp.
Further results related to the existence and nonexistence of solutions for evolution problems in exterior domains can be found in [12,13,14,15,16,17].
The present work aims to extend the obtained results in [10,11] from m∈{1,2} to an arbitrary m≥1. Before presenting our main results, we need to define weak solutions to the considered problem.
Let
Q=(0,∞)×RN∖B1,ΣQ=(0,∞)×∂B1. |
Notice that ΣQ⊂Q.
Definition 1.1. We say that φ is an admissible test function, if
(i) φ∈C2,2mt,x(Q);
(ii) supp(φ)⊂⊂Q (φ is compactly supported in Q);
(iii) φ≥0;
(iv) For all j=0,1,⋯,m−1,
Δjφ|ΣQ=0,(−1)j∂(Δjφ)∂ν|ΣQ≤0, |
where ν denotes the outward unit normal vector on ∂B1, relative to RN∖B1.
The set of all admissible test functions is denoted by Φ.
Definition 1.2. We say that the pair (u,v) is a weak solution to (1.1)-(1.2), if
(u,v)∈Lqloc(Q)×Lploc(Q),∫Q|x|a|v|pφdxdt−m−1∑i=0∫ΣQfi(x)∂((−Δ)m−1−iφ)∂νdσdt≤∫Qu(−Δ)mφdxdt+∫Quφttdxdt | (1.8) |
and
∫Q|x|b|u|qφdxdt−m−1∑i=0∫ΣQgi∂((−Δ)m−1−iφ)∂νdσdt≤∫Qv(−Δ)mφdxdt+∫Qvφttdxdt | (1.9) |
for every φ∈Φ.
Notice that, if (u,v) is a regular solution to (1.1)-(1.2), then (u,v) is a weak solution in the sense of Definition 1.2.
For every function f∈L1(∂B1), we set
If=∫∂B1f(x)dσ. |
Our first main result is stated in the following theorem.
Theorem 1.1. Let p,q>1, N≥2, and a,b≥−2m with (a,b)≠(−2m,−2m). Let fi,gi∈L1(∂B1) for every i=0,⋯,m−1. Assume that Ifm−1,Igm−1≥0 and (Ifm−1,Igm−1)≠(0,0). If N≤2m; or N≥2m+1 and
N<max{sign(Ifm−1)×2mp(q+1)+pb+apq−1,sign(Igm−1)×2mq(p+1)+qa+bpq−1}, | (1.10) |
then (1.1)-(1.2) possesses no weak solution.
Remark 1.1. Notice that (1.10) is equivalent to
N−2m<α,Ifm−1>0; orN−2m<β,Igm−1>0, | (1.11) |
where
α=a+2m+p(b+2m)pq−1 | (1.12) |
and
β=b+2m+q(a+2m)pq−1. | (1.13) |
On the other hand, due to the condition a,b≥−2m and (a,b)≠(−2m,−2m), we have α,β>0, which shows that, if N≤2m, then (1.10) is always satisfied.
The proof of Theorem 1.1 is based on the construction of a suitable admissible test function and integral estimates. The construction of the admissible test function is specifically adapted to the polyharmonic operator (−Δ)m, the geometry of the domain, and the Navier-type boundary conditions (1.2).
Remark 1.2. By Theorem 1.1, we recover the nonexistence result obtained in [10] in the case m=1. We also recover the nonexistence result obtained in [11] in the case m=2.
Next, we are concerned with the existence of solutions to (1.1)-(1.2). Our second main result shows the sharpness of condition (1.10).
Theorem 1.2. Let p,q>1 and a,b≥−2m with (a,b)≠(−2m,−2m). If
N−2m>max{α,β}, | (1.14) |
where α and β are given by (1.12) and (1.13), then (1.1)-(1.2) admits stationary solutions for some fi,gi∈L1(∂B1) (i=0,⋯,m−1) with Ifm−1,Igm−1>0.
Theorem 1.2 will be proved by the construction of explicit stationary solutions to (1.1)-(1.2).
Remark 1.3. At this moment, we don't know whether there is existence or nonexistence in the critical case N≥2m+1,
N=max{sign(Ifm−1)×2mp(q+1)+pb+apq−1,sign(Igm−1)×2mq(p+1)+qa+bpq−1}. |
This question is left open.
From Theorem 1.1, we deduce the following nonexistence result for the corresponding stationary polyharmonic system
{(−Δ)mu≥|x|a|v|p,x∈RN∖¯B1,(−Δ)mv≥|x|b|u|q,x∈RN∖¯B1, | (1.15) |
under the Navier-type boundary conditions
{(−Δ)iu≥fi(x),i=0,⋯,m−1,x∈∂B1,(−Δ)iv≥gi(x),i=0,⋯,m−1,x∈∂B1. | (1.16) |
Corollary 1.1. Let p,q>1, N≥2, and a,b≥−2m with (a,b)≠(−2m,−2m). Let fi,gi∈L1(∂B1) for every i=0,⋯,m−1. Assume that Ifm−1,Igm−1≥0 and (Ifm−1,Igm−1)≠(0,0). If N≤2m; or N≥2m+1 and (1.10) holds, then (1.15)-(1.16) possesses no weak solution.
The rest of this manuscript is organized as follows: Section 2 is devoted to some auxiliary results. Namely, we first construct an admissible test function in the sense of Definition 1.1. Next, we establish some useful integral estimates involving the constructed test function. The proofs of Theorems 1.1 and 1.2 are provided in Section 3.
Throughout this paper, the letter C denotes a positive constant that is independent of the scaling parameters T, τ, and the solution (u,v). The value of C is not necessarily the same from one line to another.
In this section, we establish some auxiliary results that will be used later in the proof of our main result.
Let us introduce the radial function H defined in RN∖B1 by
H(x)={ln|x|ifN=2,1−|x|2−NifN≥3. | (2.1) |
We collect below some useful properties of the function H.
Lemma 2.1. The function H satisfies the following properties:
(i) H≥0;
(ii) H∈C2m(RN∖B1);
(iii) H|∂B1=0;
(iv) ΔH=0 in RN∖B1;
(v) For all j≥1,
ΔjH|∂B1=∂(ΔjH)∂ν|∂B1=0; |
(vi) ∂H∂ν|∂B1=−C.
Proof. (ⅰ)–(ⅴ) follow immediately from (2.1). On the other hand, we have
∂H∂ν|∂B1={−1ifN=2,−(N−2)ifN≥3, |
which proves (ⅵ).
We next consider a cut-off function ξ∈C∞(R) satisfying the following properties:
0≤ξ≤1,ξ(s)=1 if |s|≤1,ξ(s)=0 if |s|≥2. | (2.2) |
For all τ≫1, let
ξτ(x)=ξ(|x|τ),x∈RN∖B1, |
that is (from (2.2)),
ξτ(x)={1if1≤|x|≤τ,ξ(|x|τ)ifτ≤|x|≤2τ,0if|x|≥2τ. | (2.3) |
For k≫1, we introduce the function
ζτ(x)=H(x)ξkτ(x),x∈RN∖B1. | (2.4) |
We now introduce a second cut-off function G∈C∞(R) satisfying the following properties:
G≥0,supp(G)⊂⊂(0,1). | (2.5) |
For T>0 and k≫1, let
GT(t)=Gk(tT),t≥0. | (2.6) |
Let φ be the function defined by
φ(t,x)=GT(t)ζτ(x),(t,x)∈Q. | (2.7) |
By Lemma 2.1, (2.3)–(2.7), we obtain the following result.
Lemma 2.2. The function φ belongs to Φ.
For all λ>1, μ≥−2m, and φ∈Φ, we consider the integral terms
J(λ,μ,φ)=∫Q|x|−μλ−1φ−1λ−1|(−Δ)mφ|λλ−1dxdt | (2.8) |
and
K(λ,μ,φ)=∫Q|x|−μλ−1φ−1λ−1|φtt|λλ−1dxdt. | (2.9) |
Lemma 2.3. Let φ be the admissible test function defined by (2.7). Assume that
(i) J(p,a,φ),J(q,b,φ),K(p,a,φ),K(q,b,φ)<∞;
(ii) Ifm−1,Igm−1≥0.
If (u,v) is a weak solution to (1.1)-(1.2), then
Ifm−1≤CT−1([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)ppq−1([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)pqpq−1 | (2.10) |
and
Igm−1≤CT−1([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)qpq−1([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)pqpq−1. | (2.11) |
Proof. Let (u,v) be a weak solution to (1.1)-(1.2) and φ be the admissible test function defined by (2.7). By (1.8), we have
∫Q|x|a|v|pφdxdt−m−1∑i=0∫ΣQfi(x)∂((−Δ)m−1−iφ)∂νdσdt≤∫Qu(−Δ)mφdxdt+∫Quφttdxdt. |
On the other hand, by Lemma 2.1: (ⅴ), (ⅵ), (2.5)–(2.7), we have
m−1∑i=0∫ΣQfi(x)∂((−Δ)m−1−iφ)∂νdσdt=∫ΣQfm−1(x)∂φ∂νdσdt=−C∫ΣQfm−1(x)GT(t)dσdt=−C(∫∞0GT(t)dt)∫∂B1fm−1(x)dσ=−C(∫∞0Gk(tT)dt)Ifm−1=−CT(∫10Gk(s)ds)Ifm−1=−CTIfm−1. |
Consequently, we obtain
∫Q|x|a|v|pφdxdt+CTIfm−1≤∫Qu(−Δ)mφdxdt+∫Quφttdxdt. | (2.12) |
Similarly, by (1.9), we obtain
∫Q|x|b|u|qφdxdt+CTIgm−1≤∫Qv(−Δ)mφdxdt+∫Qvφttdxdt. | (2.13) |
Furthermore, by Hölder's inequality, we have
∫Qu(−Δ)mφdxdt≤∫Q|u||(−Δ)mφ|dxdt=∫Q(|x|bq|u|φ1q)(|x|−bq|(−Δ)mφ|φ−1q)dxdt≤(∫Q|x|b|u|qφdxdt)1q(∫Q|x|−bq−1|(−Δ)mφ|qq−1φ−1q−1dxdt)q−1q, |
that is,
∫Qu(−Δ)mφdxdt≤(∫Q|x|b|u|qφdxdt)1q[J(q,b,φ)]q−1q. | (2.14) |
Similarly, we obtain
∫Quφttdxdt≤(∫Q|x|b|u|qφdxdt)1q[K(q,b,φ)]q−1q. | (2.15) |
Thus, it follows from (2.12), (2.14), and (2.15) that
∫Q|x|a|v|pφdxdt+CTIfm−1≤(∫Q|x|b|u|qφdxdt)1q([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q). | (2.16) |
Using (2.13) and proceeding as above, we obtain
∫Q|x|b|u|qφdxdt+CTIgm−1≤(∫Q|x|a|v|pφdxdt)1p([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p). | (2.17) |
Using (2.16)-(2.17), and taking into consideration that Igm−1≥0, we obtain
∫Q|x|a|v|pφdxdt+CTIfm−1≤(∫Q|x|a|v|pφdxdt)1pq([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)1q([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q). |
Then, by Young's inequality, it holds that
∫Q|x|a|v|pφdxdt+CTIfm−1≤1pq∫Q|x|a|v|pφdxdt+pq−1pq([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)pqq(pq−1)([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)pqpq−1. |
Consequently, we have
(1−1pq)∫Q|x|a|v|pφdxdt+CTIfm−1≤pq−1pq([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)ppq−1([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)pqpq−1, |
which yields (2.10). Similarly, using (2.16)-(2.17), and taking into consideration that Ifm−1≥0, we obtain
∫Q|x|b|u|qφdxdt+CTIgm−1≤(∫Q|x|b|u|qφdxdt)1pq([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)1p([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p), |
which implies by Young's inequality that
∫Q|x|b|u|qφdxdt+CTIgm−1≤1pq∫Q|x|b|u|qφdxdt+pq−1pq([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)pqp(pq−1)([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)pqpq−1. |
Thus, it holds that
(1−1pq)∫Q|x|b|u|qφdxdt+CTIgm−1≤pq−1pq([J(q,b,φ)]q−1q+[K(q,b,φ)]q−1q)qpq−1([J(p,a,φ)]p−1p+[K(p,a,φ)]p−1p)pqpq−1, |
which yields (2.11).
The aim of this subsection is to estimate the integral terms J(λ,μ,φ) and K(λ,μ,φ), where λ>1, μ≥−2m, and φ is the admissible test function defined by (2.7) with τ,k≫1.
The following result follows immediately from (2.5) and (2.6).
Lemma 2.4. We have
∫∞0GT(t)dt=CT. |
Lemma 2.5. We have
∫∞0G−1λ−1T|d2GTdt2|λλ−1dt≤CT1−2λλ−1. | (2.18) |
Proof. By (2.5) and (2.6), we have
∫∞0G−1λ−1T|d2GTdt2|λλ−1dt=∫T0G−1λ−1T|d2GTdt2|λλ−1dt | (2.19) |
and
d2GTdt2(t)=kT−2Gk−2(tT)((k−1)G′2(tT)+G(tT)G″ |
for all t\in (0, T) . The above inequality yields
\left|\frac{d^2G_T}{dt^2}(t)\right|\leq CT^{-2}G^{k-2}\left(\frac{t}{T}\right), \quad t\in (0, T), |
which implies that
G_T^{\frac{-1}{\lambda-1}}\left|\frac{d^2G_T}{dt^2}\right|^{\frac{\lambda}{\lambda-1}} \leq C T^{\frac{-2\lambda}{\lambda-1}} G^{k-\frac{2\lambda}{\lambda-1}}\left(\frac{t}{T}\right), \quad t\in (0, T). |
Then, by (2.19), it holds that
\begin{aligned} \int_{0}^\infty G_T^{\frac{-1}{\lambda-1}}\left|\frac{d^2G_T}{dt^2}\right|^{\frac{\lambda}{\lambda-1}}\, dt& \leq CT^{\frac{-2\lambda}{\lambda-1}}\int_0^T G^{k-\frac{2\lambda}{\lambda-1}}\left(\frac{t}{T}\right)\, dt\\ & = C T^{1-\frac{2\lambda}{\lambda-1}}\int_0^1 G^{k-\frac{2\lambda}{\lambda-1}}(s)\, ds\\ & = C T^{1-\frac{2\lambda}{\lambda-1}}, \end{aligned} |
which proves (2.18).
To estimate J(\lambda, \mu, \varphi) and K(\lambda, \mu, \varphi) , we consider separately the cases N\geq 3 and N = 2 .
Lemma 2.6. We have
\begin{equation} \int_{\mathbb{R}^N\backslash B_1} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx\leq C\tau^{N-\frac{\mu+2m\lambda}{\lambda-1}}. \end{equation} | (2.20) |
Proof. Since H and \xi_\tau are radial functions (see (2.1) and (2.3)), to simplify writing, we set
H(x) = H(r), \, \, \xi_\tau(x) = \xi_\tau(r), |
where r = |x| . By (2.4) and making use of Lemma 2.1 (ⅳ), one can show that for all x\in \mathbb{R}^N\backslash B_1 , we have
\begin{aligned} \Delta^m \zeta_\tau(x) & = \Delta^m \left(H(x) \xi_\tau^k(x) \right)\\ & = \sum\limits_{i = 0}^{2m-1} \frac{d^i H}{dr^{i}}(r)\sum\limits_{j = 1}^{2m-i}C_{i, j}\frac{d^{j} \xi_\tau^k}{dr^{j}}(r)r^{i+j-2m}, \end{aligned} |
where C_{i, j} are some constants, which implies by (2.3) that
\begin{equation} {\rm{supp}}\left(\Delta^m\zeta_\tau\right)\subset \left\{x\in \mathbb{R}^N: \tau\leq |x|\leq 2\tau\right\} \end{equation} | (2.21) |
and
\begin{equation} |\Delta ^m\zeta_\tau(x)|\leq C \sum\limits_{i = 0}^{2m-1} \left|\frac{d^i H}{dr^{i}}(r)\right|\sum\limits_{j = 1}^{2m-i} \left|\frac{d^{j} \xi_\tau^k}{dr^{j}}(r)\right|r^{i+j-2m}, \quad x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right). \end{equation} | (2.22) |
On the other hand, for all x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right) , we have by (2.1) and (2.3) that
\begin{equation} \left|\frac{d^i H}{dr^{i}}(r)\right| = \left\{\begin{array}{llll} H(r) &\text{if}& i = 0, \\[10pt] C r^{2-N-i} &\text{if}& i = 1, \cdots, 2m-1 \end{array} \right. \end{equation} | (2.23) |
and (we recall that 0\leq \xi_\tau\leq 1 )
\begin{equation} \begin{aligned} \left|\frac{d^{j} \xi_\tau^k}{dr^{j}}(r)\right| &\leq C \tau^{-j} \xi_\tau^{k-j}(r)\\ &\leq C \tau^{-j} \xi_\tau^{k-2m}(r), \, \, j = 1, \cdots, 2m-i. \end{aligned} \end{equation} | (2.24) |
Then, in view of (2.1), (2.21)–(2.24), we have
\begin{aligned} |\Delta^m\zeta_\tau(x)|&\leq C \xi_\tau^{k-2m}(r)\left(H(r) \sum\limits_{j = 1}^{2m}\tau^{-j} r^{j-2m}+ r^{2-N}\sum\limits_{i = 1}^{2m-1} \sum\limits_{j = 1}^{2m-i}\tau^{-j} r^{j-2m}\right)\\ &\leq C \xi_\tau^{k-2m}(r)\left(\tau^{-2m}+\tau^{2-N-2m}\right)\\ &\leq C \tau^{-2m}\xi_\tau^{k-2m}(x) \end{aligned} |
for all x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right) . Taking into consideration that H\geq C for all x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right) , the above estimate yields
\begin{equation} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\leq C \tau^{\frac{-2m\lambda-\mu}{\lambda-1}}\xi_\tau^{k-\frac{2m\lambda}{\lambda-1}}(x), \quad x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right). \end{equation} | (2.25) |
Finally, by (2.21) and (2.25), we obtain
\begin{aligned} \int_{\mathbb{R}^N\backslash B_1} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx & = \int_{\tau < |x| < 2\tau} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx \\ &\leq C\tau^{\frac{-2m\lambda-\mu}{\lambda-1}} \int_{\tau < |x| < 2\tau} \xi_\tau^{k-\frac{2m\lambda}{\lambda-1}}(x)\, dx\\ &\leq C\tau^{\frac{-2m\lambda-\mu}{\lambda-1}} \int_{r = \tau}^{2\tau} r^{N-1}\, dr\\ & = C \tau^{N-\frac{\mu+2m\lambda}{\lambda-1}}, \end{aligned} |
which proves (2.20).
Lemma 2.7. We have
J(\lambda, \mu, \varphi)\leq CT \tau^{N-\frac{\mu+2m\lambda}{\lambda-1}}. |
Proof. By (2.7) and (2.8), we have
J(\lambda, \mu, \varphi) = \left(\int_0^\infty G_T(t)\, dt\right) \left(\int_{\mathbb{R}^N\backslash B_1} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx\right). |
Then, using Lemmas 2.4 and 2.6, we obtain the desired estimate.
Lemma 2.8. We have
\begin{equation} \int_{\mathbb{R}^N\backslash B_1}|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau(x)\, dx\leq C \left(\tau^{N-\frac{\mu}{\lambda-1}}+\ln \tau\right). \end{equation} | (2.26) |
Proof. By (2.1)–(2.4), we have
\begin{aligned} \int_{\mathbb{R}^N\backslash B_1}|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau(x)\, dx& = \int_{1 < |x| < 2\tau}|x|^{\frac{-\mu}{\lambda-1}}\left(1-|x|^{2-N}\right)\xi^\kappa\left(\frac{|x|}{\tau}\right) \, dx\\ &\leq \int_{1 < |x| < 2\tau}|x|^{\frac{-\mu}{\lambda-1}}\, dx\\ & = C \int_{r = 1}^{2\tau} r^{N-1-\frac{\mu}{\lambda-1}}\, dr\\ &\leq \left\{\begin{array}{llll} C \tau^{N-\frac{\mu}{\lambda-1}} &\mbox{if}& N-\frac{\mu}{\lambda-1} > 0, \\ [4pt] C \ln \tau &\mbox{if}& N-\frac{\mu}{\lambda-1} = 0, \\ [4pt] C &\mbox{if}& N-\frac{\mu}{\lambda-1} < 0 \end{array} \right.\\ &\leq C \left(\tau^{N-\frac{\mu}{\lambda-1}}+\ln \tau\right), \end{aligned} |
which proves (2.26).
Lemma 2.9. We have
K(\lambda, \mu, \varphi)\leq C T^{1-\frac{2\lambda}{\lambda-1}}\left(\tau^{N-\frac{\mu}{\lambda-1}}+\ln \tau\right). |
Proof. By (2.7) and (2.9), we have
K(\lambda, \mu, \varphi) = \left(\int_{0}^\infty G_T^{\frac{-1}{\lambda-1}}\left|\frac{d^2G_T}{dt^2}\right|^{\frac{\lambda}{\lambda-1}}\, dt\right)\left(\int_{\mathbb{R}^N\backslash B_1}|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau(x)\, dx\right). |
Then, using Lemmas 2.5 and 2.7, we obtain the desired estimate.
Lemma 2.10. We have
\begin{equation} \int_{\mathbb{R}^2\backslash B_1} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx\leq C \tau^{2-\frac{2m\lambda+\mu}{\lambda-1}}\ln \tau. \end{equation} | (2.27) |
Proof. Proceeding as in the proof of Lemma 2.6, we obtain
{\rm{supp}}\left(\Delta^m\zeta_\tau\right)\subset \left\{x\in \mathbb{R}^2: \tau\leq |x|\leq 2\tau\right\} |
and
|\Delta ^m\zeta_\tau(x)| \leq C \tau^{-2m}\ln \tau\, \xi_\tau^{k-2m}(x), \quad x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right). |
The above estimate yields
|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\leq C \tau^{\frac{-2m\lambda-\mu}{\lambda-1}}\ln \tau\, \xi_\tau^{k-\frac{2m\lambda}{\lambda-1}}(x), \quad x\in {\rm{supp}}\left(\Delta^m\zeta_\tau\right). |
Then, it holds that
\begin{aligned} \int_{\mathbb{R}^2\backslash B_1} |x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau^{\frac{-1}{\lambda-1}}|(-\Delta)^m\zeta_\tau|^{\frac{\lambda}{\lambda-1}}\, dx&\leq C \tau^{\frac{-2m\lambda-\mu}{\lambda-1}}\ln \tau\int_{\tau < |x| < 2\tau}\xi_\tau^{k-\frac{2m\lambda}{\lambda-1}}(x)\, dx\\ &\leq C \tau^{\frac{-2m\lambda-\mu}{\lambda-1}}\ln \tau\int_{r = \tau}^{2\tau} r\, dr\\ &\leq C \tau^{2-\frac{2m\lambda+\mu}{\lambda-1}}\ln \tau, \end{aligned} |
which proves (2.27).
Using (2.7)-(2.8), Lemma 2.4, and Lemma 2.10, we obtain the following estimate of J(\lambda, \mu, \varphi) .
Lemma 2.11. We have
J(\lambda, \mu, \varphi)\leq CT \tau^{2-\frac{2m\lambda+\mu}{\lambda-1}}\ln \tau. |
Lemma 2.12. We have
\begin{equation} \int_{\mathbb{R}^2\backslash B_1}|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau(x)\, dx\leq C \ln \tau\, \left(\tau^{2-\frac{\mu}{\lambda-1}}+\ln \tau\right). \end{equation} | (2.28) |
Proof. By (2.1)–(2.4), we have
\begin{aligned} \int_{\mathbb{R}^2\backslash B_1}|x|^{\frac{-\mu}{\lambda-1}}\zeta_\tau(x)\, dx& = \int_{1 < |x| < 2\tau}|x|^{\frac{-\mu}{\lambda-1}}\ln |x|\, \xi^\kappa\left(\frac{|x|}{\tau}\right) \, dx\\ &\leq \int_{1 < |x| < 2\tau}|x|^{\frac{-\mu}{\lambda-1}}\ln |x|\, dx\\ & = C \int_{r = 1}^{2\tau} r^{1-\frac{\mu}{\lambda-1}}\ln r\, dr\\ &\leq \left\{\begin{array}{llll} C \tau^{2-\frac{\mu}{\lambda-1}} \ln \tau &\mbox{if}& 2-\frac{\mu}{\lambda-1} > 0, \\ [4pt] C (\ln \tau )^2 &\mbox{if}& 2-\frac{\mu}{\lambda-1} = 0, \\ [4pt] C \ln \tau &\mbox{if}& 2-\frac{\mu}{\lambda-1} < 0 \end{array} \right.\\ &\leq C \ln \tau\, \left(\tau^{2-\frac{\mu}{\lambda-1}}+\ln \tau\right), \end{aligned} |
which proves (2.28).
Using (2.7), (2.9), Lemma 2.5, and Lemma 2.12, we obtain the following estimate of K(\lambda, \mu, \varphi) .
Lemma 2.13. We have
K(\lambda, \mu, \varphi)\leq C T^{1-\frac{2\lambda}{\lambda-1}}\ln \tau\, \left(\tau^{2-\frac{\mu}{\lambda-1}}+\ln \tau\right). |
This section is devoted to the proofs of Theorems 1.1 and 1.2.
By Remark 1.1, (1.10) is equivalent to (1.11). Without restriction of the generality, we assume that
\begin{equation} N-2m < \alpha, \quad I_{f_{m-1}} > 0. \end{equation} | (3.1) |
Indeed, exchanging the roles of (I_{f_{m-1}}, a, p) and (I_{g_{m-1}}, b, q) , the case
N-2m < \beta, \quad I_{g_{m-1}} > 0 |
reduces to (3.1).
We use the contradiction argument. Namely, let us suppose that (u, v) is a weak solution to (1.1)-(1.2) (in the sense of Definition 1.2). For k, T, \tau\gg 1 , let \varphi be the admissible test function defined by (2.7). Then, by Lemma 2.3, we have
\begin{equation} I_{f_{m-1}}^{\frac{pq-1}{p}}\leq CT^{-\frac{pq-1}{p}}\left(\left[J(p, a, \varphi)\right]^{\frac{p-1}{p}}+\left[K(p, a, \varphi)\right]^{\frac{p-1}{p}}\right) \left(\left[J(q, b, \varphi)\right]^{\frac{q-1}{q}}+\left[K(q, b, \varphi)\right]^{\frac{q-1}{q}}\right)^{q}. \end{equation} | (3.2) |
Making use of Lemmas 2.7 and 2.12, we obtain that for all N\geq 2 ,
\begin{equation} J(\lambda, \mu, \varphi)\leq CT \tau^{N-\frac{\mu+2m\lambda}{\lambda-1}} \ln \tau, \quad \lambda > 1, \, \mu\geq -2m. \end{equation} | (3.3) |
Similarly, by Lemmas 2.9 and 2.13, we obtain that for all N\geq 2 ,
\begin{equation} K(\lambda, \mu, \varphi)\leq C T^{1-\frac{2\lambda}{\lambda-1}}\left(\tau^{N-\frac{\mu}{\lambda-1}}+\ln \tau\right)\ln \tau, \quad \lambda > 1, \, \mu\geq -2m. \end{equation} | (3.4) |
In particular, for (\lambda, \mu) = (p, a) , we obtain by (3.3) and (3.4) that
\begin{equation} \begin{aligned} &\left[J(p, a, \varphi)\right]^{\frac{p-1}{p}}+\left[K(p, a, \varphi)\right]^{\frac{p-1}{p}}\\ &\leq C\left[T^{\frac{p-1}{p}} \tau^{\left(N-\frac{a+2mp}{p-1}\right)\frac{p-1}{p}} (\ln \tau)^{\frac{p-1}{p}}+ T^{\left(1-\frac{2p}{p-1}\right)\frac{p-1}{p}}\left(\tau^{N-\frac{a}{p-1}}+\ln \tau\right)^{\frac{p-1}{p}}(\ln \tau)^\frac{p-1}{p}\right]\\ & = C T^{\frac{p-1}{p}} \tau^{\left(N-\frac{a+2mp}{p-1}\right)\frac{p-1}{p}} (\ln \tau)^{\frac{p-1}{p}}\left[1+T^{-2}\left(\tau^{\frac{2mp}{p-1}}+\tau^{-\left(N-\frac{a+2mp}{p-1}\right)}\ln\tau\right)^{\frac{p-1}{p}}\right]. \end{aligned} \end{equation} | (3.5) |
Furthermore, taking T = \tau^\theta , where
\begin{equation} \theta > \max\left\{m, \left(\frac{a+2mp}{p-1}-N\right)\frac{p-1}{p}\right\}, \end{equation} | (3.6) |
we obtain
1+T^{-2}\left(\tau^{\frac{2mp}{p-1}}+\tau^{-\left(N-\frac{a+2mp}{p-1}\right)}\ln\tau\right)^{\frac{p-1}{p}}\leq C. |
Then, from (3.5), we deduce that
\begin{equation} \left[J(p, a, \varphi)\right]^{\frac{p-1}{p}}+\left[K(p, a, \varphi)\right]^{\frac{p-1}{p}}\leq C \left[\tau^{\theta+ N-\frac{a+2mp}{p-1}}\ln\tau\right]^{\frac{p-1}{p}}. \end{equation} | (3.7) |
Similarly, for
\begin{equation} \theta > \max\left\{m, \left(\frac{b+2mq}{q-1}-N\right)\frac{q-1}{q}\right\}, \end{equation} | (3.8) |
we obtain
\begin{equation} \left(\left[J(q, b, \varphi)\right]^{\frac{q-1}{q}}+\left[K(q, b, \varphi)\right]^{\frac{q-1}{q}}\right)^{q} \leq C \left[\tau^{\theta+ N-\frac{b+2mq}{q-1}}\ln\tau\right]^{q-1}. \end{equation} | (3.9) |
Thus, for T = \tau^\theta , where \theta satisfies (3.6) and (3.8), we obtain by (3.2), (3.7), and (3.9) that
I_{f_{m-1}}^{\frac{pq-1}{p}}\leq C\tau^{-\frac{\theta(pq-1)}{p}}\left[\tau^{\theta+ N-\frac{a+2mp}{p-1}}\ln\tau\right]^{\frac{p-1}{p}}\left[\tau^{\theta+ N-\frac{b+2mq}{q-1}}\ln\tau\right]^{q-1}, |
that is,
\begin{equation} I_{f_{m-1}}^{\frac{pq-1}{p}}\leq C \tau^\delta (\ln \tau)^{\frac{pq-1}{p}}, \end{equation} | (3.10) |
where
\begin{aligned} \delta & = \frac{pq-1}{p}\left[N-\frac{(b+2mq)p+a+2mp}{pq-1}\right]\\ & = \frac{pq-1}{p} \left(N-2m-\alpha\right). \end{aligned} |
Since N-2m < \alpha , we have \delta < 0 . Then, passing to the limit as \tau\to \infty in (3.10), we reach a contradiction with I_{f_{m-1}} > 0 . This completes the proof of Theorem 1.1.
Let us introduce the family of polynomial functions \left\{P_i\right\}_{0\leq i\leq m} , where
P_i(z) = \left\{\begin{array}{llll} 1 &\mbox{if}& i = 0, \\[10pt] \prod\limits_{j = 0}^{i-1} (z+2j)\prod\limits_{j = 1}^i (N-2j-z)&\mbox{if}& i = 1, \cdots, m. \end{array} \right. |
From (1.14), we deduce that
N-2j > \max\left\{\alpha, \beta\right\}, \quad j = 1, \cdots, m. |
Furthermore, because a, b\geq -2m and (a, b)\neq (-2m, -2m) , we have \alpha, \beta > 0 . Then,
\begin{equation} P_i(z) > 0, \quad i = 0, 1, \cdots, m, \quad z\in \{\alpha, \beta\}. \end{equation} | (3.11) |
For all
\begin{equation} 0 < \varepsilon\leq \min\left\{[P_m(\alpha)]^{\frac{1}{p-1}}, [P_m(\beta)]^{\frac{1}{q-1}}\right\}, \end{equation} | (3.12) |
we consider functions of the forms
\begin{equation} u_\varepsilon(x) = \varepsilon |x|^{-\alpha}, \quad x\in \mathbb{R}^N\backslash B_1 \end{equation} | (3.13) |
and
\begin{equation} v_\varepsilon(x) = \varepsilon |x|^{-\beta}, \quad x\in \mathbb{R}^N\backslash B_1. \end{equation} | (3.14) |
Since u_\varepsilon and v_\varepsilon are radial functions, elementary calculations show that
\begin{equation} (-\Delta)^i u_\varepsilon(x) = \varepsilon P_i(\alpha)|x|^{-\alpha-2i}, \quad i = 0, 1, \cdots, m, \quad x\in\mathbb{R}^N\backslash B_1 \end{equation} | (3.15) |
and
\begin{equation} (-\Delta)^i v_\varepsilon(x) = \varepsilon P_i(\beta)|x|^{-\beta-2i}, \quad i = 0, 1, \cdots, m, \quad x\in \mathbb{R}^N\backslash B_1. \end{equation} | (3.16) |
Taking i = m in (3.15), using (3.11)–(3.14), we obtain
\begin{aligned} (-\Delta)^m u_\varepsilon(x)& = \varepsilon P_m(\alpha)|x|^{-\alpha-2m}\\ & = |x|^a \varepsilon^p |x|^{-\beta p} \left(\varepsilon^{1-p}P_m(\alpha) |x|^{-\alpha-2m-a+\beta p}\right)\\ &\geq |x|^a v_\varepsilon^{p}(x)|x|^{-\alpha-2m-a+\beta p}. \end{aligned} |
On the other hand, by (1.12) and (1.13), one can show that
-\alpha-2m-a+\beta p = 0. |
Then, we obtain
\begin{equation} (-\Delta)^m u_\varepsilon(x)\geq |x|^a v_\varepsilon^{p}(x), \quad x\in \mathbb{R}^N\backslash B_1. \end{equation} | (3.17) |
Similarly, taking m = i in (3.16), using (3.11)–(3.14), we obtain
\begin{aligned} (-\Delta)^m v_\varepsilon(x)& = \varepsilon P_m(\beta)|x|^{-\beta-2m}\\ & = |x|^b \varepsilon^q |x|^{-\alpha q} \left(\varepsilon^{1-q}P_m(\beta) |x|^{-\beta-2m-b+\alpha q}\right)\\ &\geq |x|^b u_\varepsilon^{q}(x)|x|^{-\beta-2m-b+\alpha q}. \end{aligned} |
Using that
-\beta-2m-b+\alpha q = 0, |
we obtain
\begin{equation} (-\Delta)^m v_\varepsilon(x)\geq |x|^b u_\varepsilon^{q}(x), \quad x\in \mathbb{R}^N\backslash B_1. \end{equation} | (3.18) |
Furthermore, by (3.11) and (3.15), for all i = 0, \cdots, m-1 , we have
\begin{equation} (-\Delta)^i u_\varepsilon(x) = \varepsilon P_i(\alpha) > 0, \quad x\in \partial B_1. \end{equation} | (3.19) |
Similarly, by (3.11) and (3.16), for all i = 0, \cdots, m-1 , we have
\begin{equation} (-\Delta)^i v_\varepsilon(x) = \varepsilon P_i(\beta) > 0, \quad x\in \partial B_1. \end{equation} | (3.20) |
Finally, (3.17)–(3.20) show that for all \varepsilon satisfying (3.12), the pair of functions (u_\varepsilon, v_\varepsilon) given by (3.13) and (3.14) is a stationary solution to (1.1)-(1.2) with f_i\equiv \varepsilon P_i(\alpha) and g_i\equiv \varepsilon P_i(\beta) for all i = 0, \cdots, m-1 . The proof of Theorem 1.2 is then completed.
The system of polyharmonic wave inequalities (1.1) under the inhomogeneous Navier-type boundary conditions (1.2) was investigated. First, we established a nonexistence criterium for the nonexistence of weak solutions (see Theorem 1.1). Namely, under condition (1.10), we proved that (1.1)-(1.2) possesses no weak solution, provided I_{f_{m-1}}, I_{g_{m-1}}\geq 0 and (I_{f_{m-1}}, I_{g_{m-1}})\neq (0, 0) . Next, we proved the sharpness of the obtained criterium (1.10) by showing that under condition (1.14), (1.1)-(1.2) possesses weak solutions (stationary solutions) for some f_i, g_i\in L^1(\partial B_1) ( i = 0, \cdots, m-1 ) with I_{f_{m-1}}, I_{g_{m-1}} > 0 (see Theorem 1.2). From Theorem 1.1, we deduced an optimal criterium for the nonexistence of weak solutions to the corresponding stationary polyharmonic system (1.15) under the Navier-type boundary conditions (1.16) (see Corollary 1.1).
In this study, the critical case N\geq 2m+1 ,
N = \max\left\{{\rm{sign}}(I_{f_{m-1}})\times \frac{2mp(q+1)+pb+a}{pq-1}, {\rm{sign}}(I_{g_{m-1}})\times \frac{2mq(p+1)+qa+b}{pq-1}\right\} |
is not investigated. It would be interesting to know whether there is existence or nonexistence of weak solutions in this case.
Manal Alfulaij: validation, investigation, writing review and editing; Mohamed Jleli: Conceptualization, methodology, investigation and formal analysis; Bessem Samet: Conceptualization, methodology, validation and investigation. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Mohamed Jleli is supported by Researchers Supporting Project number (RSP2024R57), King Saud University, Riyadh, Saudi Arabia.
The authors declare no conflicts of interest.
[1] | Lee H, Calvin K, Dasgupta D, et al. (2023) Climate Change 2023: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647 |
[2] |
Mentaschi L, Vousdoukas MI, Pekel J, et al. (2018) Global long-term observations of coastal erosion and accretion. Sci Rep 8: 1–11. https://doi.org/10.1038/s41598-018-30904-w doi: 10.1038/s41598-018-30904-w
![]() |
[3] |
Ribot JC (2011) Vulnerability before adaptation: Toward transformative climate action. Glob Environ Chang 21: 1160–1162. https://doi.org/10.1016/j.gloenvcha.2011.07.008 doi: 10.1016/j.gloenvcha.2011.07.008
![]() |
[4] | Casareale C, Gioia E, Colocci A, et al. (2023) Perception of the Self–Exposure to Geohazards in the Italian Coastal Population of the Adriatic Basin. In: D'Amico S, De Pascale F (Eds), Geohazards and Disaster Risk Reduction. Advances in Natural and Technological Hazards Research, London: Springer International Publishing, 49–71. https://doi.org/10.1007/978-3-031-24541-1_3 |
[5] |
Sundblad EL, Biel A, Gä rling T (2007) Cognitive and affective risk judgements related to climate change. J Environ Psychol 27: 97–106. https://doi.org/10.1016/j.jenvp.2007.01.003 doi: 10.1016/j.jenvp.2007.01.003
![]() |
[6] |
Cutter SL, Barnes L, Berry M, et al. (2008) A place-based model for understanding community resilience to natural disasters. Glob Environ Chang 18: 598–606. https://doi.org/10.1016/j.gloenvcha.2008.07.013 doi: 10.1016/j.gloenvcha.2008.07.013
![]() |
[7] |
Gierlach E, Belsher BE, Beutler LE (2010) Cross-Cultural Differences in Risk Perceptions of Disasters. Risk Anal 30: 1539–1549. https://doi.org/10.1111/j.1539-6924.2010.01451.x doi: 10.1111/j.1539-6924.2010.01451.x
![]() |
[8] |
Reynolds TW, Bostrom A, Read D, et al. (2010) Now What Do People Know About Global Climate Change? Survey Studies of Educated Laypeople. Risk Anal 30: 1520–1538. https://doi.org/10.1111/j.1539-6924.2010.01448.x doi: 10.1111/j.1539-6924.2010.01448.x
![]() |
[9] |
Slovic P (1987) Perception of risk. Science 236: 280–285. https://doi.org/10.1126/science.3563507 doi: 10.1126/science.3563507
![]() |
[10] |
Bubeck P, Botzen WJW, Aerts JCJH (2012) A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior. Risk Anal 32: 1481–1495. https://doi.org/10.1111/j.1539-6924.2011.01783.x doi: 10.1111/j.1539-6924.2011.01783.x
![]() |
[11] |
Wachinger G, Renn O, Begg C, et al. (2013) The risk perception paradox—implications for governance and communication of natural hazards. Risk Anal 33: 1049–1065. https://doi.org/10.1111/j.1539-6924.2012.01942.x doi: 10.1111/j.1539-6924.2012.01942.x
![]() |
[12] |
Grothmann T, Patt A (2005) Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob Environ Chang 15: 199–213. https://doi.org/10.1016/j.gloenvcha.2005.01.002 doi: 10.1016/j.gloenvcha.2005.01.002
![]() |
[13] |
Ernoul L, Vareltzidou S, Charpentier M, et al. (2020) Perception of climate change and mitigation strategies in two European Mediterranean deltas. AIMS Geosci 6: 561–576. https://doi.org/10.3934/geosci.2020032 doi: 10.3934/geosci.2020032
![]() |
[14] |
Lugeri FR, Farabollini P, De Pascale F, et al. (2021) PPGIS applied to environmental communication and hazards for a community—based approach: a dualism in the Southern Italy "calanchi" landscape. AIMS Geosci 7: 490–506. https://doi.org/10.3934/geosci.2021028 doi: 10.3934/geosci.2021028
![]() |
[15] |
Gugg G (2019) Beyond the volcanic risk. To defuse the announced disaster of Vesuvius. AIMS Geosci 5: 480–492. https://doi.org/10.3934/geosci.2019.3.480 doi: 10.3934/geosci.2019.3.480
![]() |
[16] | Ministry for the Environment Land and Sea (2007) Fourth National Communication under the UN Framework Convention on Climate Change. Rome: MATTM. |
[17] | Lionello P, Baldi M, Brunetti M, et al. (2009) Eventi climatici estremi: tendenze attuali e clima futuro dell'Italia. In: Castellari S, Artale V (Eds), I cambiamenti climatici in Italia: evidenze, vulnerabilità e impatti, Bologna: Bononia University Press, 81–106. |
[18] | Breil M, Catenacci M, Travisi C (2007) Impatti del cambiamento climatico sulle zone costiere: Quantificazione economica di impatti e di misure di adattamento—sintesi di risultati e indicazioni metodologiche per la ricerca futura. Conference paper prepared for the APAT Workshop on "Cambiamenti climatici e ambiente marino–costiero: scenari futuri per un programma nazionale di adattamento", Palermo. 27–28. |
[19] | Woodroffe CD (2007) The natural resilience of coastal system: primary concepts, Managing Coastal Vulnerability, Amsterdam: Elsevier, 45–60. |
[20] |
Salvati P, Bianchi C, Fiorucci F, et al. (2014) Perception of flood and landslide risk in Italy: A preliminary analysis. Nat Hazards Earth Syst Sci 14: 2589–2603. https://doi.org/10.5194/nhess-14-2589-2014 doi: 10.5194/nhess-14-2589-2014
![]() |
[21] |
Gioia E, Casareale C, Colocci A, et al. (2021) Citizens' Perception of Geohazards in Veneto Region (NE Italy) in the Context of Climate Change. Geosciences 11: 424. https://doi.org/10.3390/geosciences11100424 doi: 10.3390/geosciences11100424
![]() |
[22] |
Antronico L, Coscarelli R, Gariano SL, et al. (2023) Perception of climate change and geo-hydrological risk among high-school students: A local-scale study in Italy. Int J Disaster Risk Reduct 90: 103663. https://doi.org/10.1016/j.ijdrr.2023.103663 doi: 10.1016/j.ijdrr.2023.103663
![]() |
[23] |
Mercatanti L, Sabato G (2021) Sustainability and risk perception: multidisciplinary approaches, AIMS Geosci 7: 219–223. https://doi.org/10.3934/geosci.2021013 doi: 10.3934/geosci.2021013
![]() |
[24] |
Bonati S (2021) Dal climate denial alla natura da salvare: il riduzionismo nella narrazione dei cambiamenti climatici. Riv Geogr Ital 128: 53–68. https://doi.org/10.3280/rgioa2-2021oa12032 doi: 10.3280/rgioa2-2021oa12032
![]() |
[25] | Casareale C, Gioia E (2022) Narrazioni della crisi climatica nelle regioni adriatiche. Presentation at "XI giornata di studio "Oltre la globalizzazione". Società di Studi Geografici, Como. Available from: https://eventi.societastudigeografici.it/wp-content/uploads/2022/12/Programma-Narrazioni-Como-SSG_2022-OltreLaGlob-5_12.pdf. |
[26] |
Valente A, Russo F (2022) Conflittualità nell'uso della costa di Gaeta (Lazio Meridionale, Italia). Documenti Geografici 2: 91–102. http://dx.doi.org/10.19246/DOCUGEO2281-7549/202102_07 doi: 10.19246/DOCUGEO2281-7549/202102_07
![]() |
[27] | Pennetta M, Donadio C, Stanislao C, et al. (2016) Assetto geomorfologico dell'area marina di Sinuessa ed ipotesi di fruizione sostenibile. Energia Ambiente e Innovazione 4: 48–53. |
[28] |
De Pippo T, Donadio C, Pennetta M, et al. (2008) Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97: 451–466. https://doi.org/10.1016/j.geomorph.2007.08.015 doi: 10.1016/j.geomorph.2007.08.015
![]() |
[29] | Manzi E (1974) La pianura napoletana, Naples: Pubblicazioni dell'Istituto di geografia economica dell'Università di Napoli. |
[30] | Brogna M, Olivieri FM (2015) Aree protette, turismo e forme di ricettività: il caso del Lazio. Geotema 49: 15–28. |
[31] | Gallo A (1991) La vitalità dei centri costieri degli Aurunci. Semestrale di Studi e Ricerche di Geografia 2: 133–144. |
[32] | Paoluzio ML (1991) Il Parco Nazionale del Circeo. Sem Studi Ricerche Geo 2: 75–89. |
[33] |
Pennetta M, Brancato VM, De Muro S, et al. (2016) Morpho–sedimentary features and sediment transport model of the submerged beach of the 'Pineta della foce del Garigliano' SCI Site (Caserta, southern Italy). J Maps 12: 139–146. https://doi.org/10.1080/17445647.2016.1171804 doi: 10.1080/17445647.2016.1171804
![]() |
[34] |
Pennetta M, Stanislao C, D'Ambrosio V, et al. (2016) Geomorphological features of the archaeological marine area of Sinuessa in Campania, southern Italy. Quat Int 425: 198–213. https://doi.org/10.1016/j.quaint.2016.04.019 doi: 10.1016/j.quaint.2016.04.019
![]() |
[35] |
Donadio C, Stamatopoulos L, Stanislao C, et al. (2018) Coastal dune development and morphological changes along the littorals of Garigliano, Italy, and Elis, Greece, during the Holocene. J Coast Conserv 22: 847–863. https://doi.org/10.1007/s11852-017-0543-3 doi: 10.1007/s11852-017-0543-3
![]() |
[36] |
Donadio C, Vigliotti M, Valente R, et al. (2018) Anthropic vs. natural shoreline changes along the northern Campania coast, Italy. J Coast Conserv 22: 939–955. https://doi.org/10.1007/s11852-017-0563-z doi: 10.1007/s11852-017-0563-z
![]() |
[37] | Cardi L (1979) Lo sviluppo urbano di Gaeta dal '500 al '900, Gaeta. |
[38] |
Amorosi A, Pacifico A, Rossi V, et al. (2012) Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy. Sediment Geol 282: 307–320. https://doi.org/10.1016/j.sedgeo.2012.10.003 doi: 10.1016/j.sedgeo.2012.10.003
![]() |
[39] | Nava ML, Giampaola D, Laforgia E, et al. (2007) Tra il Clanis e il Sebeto: Nuovi dati sull'occupazione della piana campana tra il Neolitico e l'eta del Bronzo. Atti della XL Riunione Scientifica, Istituto Italiano di Preistoria e Protostoria, Strategie di insediamento fra Lazio e Campania in età preistorica e protostorica 30: 101–126. |
[40] | Panico R (1997) La pianura pontina nel Settecento. Una storia del paesaggio attraverso una lettura geografico–storica delle controversie economiche ambientali. Geografia 20: 98–116. |
[41] | Aguzzi L (2012) Stato dell'ambiente marino costiero del Golfo di Gaeta (lt), Rieti: ARPA Lazio. |
[42] | De Filippo E, Strozza S (2012) Vivere da immigrati nel casertano. Profili variabili, condizioni difficili e relazioni in divenire. Vivere da immigrati nel casertano, 1–336. |
[43] | Cristaldi F, Leonardi S (2016) Tra importazioni e filiere corte: Agricoltura e imprenditoria etnica nell'area laziale, Studi in onore di Emanuele Paratore. Spunti di ricerca per un mondo che cambia, Edigeo, 73–98. |
[44] | Matarazzo N (2019) Flussi migratori e segregazione spaziale nelle regioni agricole del Mezzogiorno d'Italia: il Litorale domitio (Caserta). Geotema 61: 66–73. |
[45] | Cristaldi F (2020) Latina. Dal mosaico amministrativo alle vacche sacre. In: Fondazione Migrantes (Eds), Rapporto Italiani nel Mondo, Todi: Tau editrice, 250–259. |
[46] |
Galluccio F, Guadagno E (2016) Aporie dei beni comuni. Pratiche di governo del territorio e forme di gestione nel settore estrattivo: le cave in Campania. Sem Studi Ricerche Geo 2: 71–89. https://doi.org/10.13133/1125-5218.15048 doi: 10.13133/1125-5218.15048
![]() |
[47] | Campania Region, Litorale Domitio–Flegreo. strategie per la rigenerazione territoriale, ambientale e sociale. 2020. Available from: https://europa.regione.campania.it/wp-content/uploads/2022/07/masterplan-impaginato-16-5x23-5-2904-1840.pdf. |
[48] | Guadagno E, Grasso M (2022) Le coste in Italia: una questione «frastagliata» . Geotema 69: 24–38. |
[49] |
Falco E (2017) Protection of Coastal Areas in Italy: Where Do National Landscape and Urban Planning Legislation Fail? Land Use Policy 66: 80–89. https://doi.org/10.1016/j.landusepol.2017.04.038 doi: 10.1016/j.landusepol.2017.04.038
![]() |
[50] | Alexander KA (2020) Conflicts over Marine and Coastal Common Resources. Causes, Governance and Prevention, London: Routledge. |
[51] |
Baltar F, Brunet I (2012) Social research 2.0: Virtual snowball sampling method using Facebook. Internet Res 22: 57–74. https://doi.org/10.1108/10662241211199960 doi: 10.1108/10662241211199960
![]() |
[52] |
Lefever S, Dal M, Matthíasdóttir Á (2007) Online data collection in academic research: Advantages and limitations. Br J Educ Technol 38: 574–582. https://doi.org/10.1111/j.1467-8535.2006.00638.x doi: 10.1111/j.1467-8535.2006.00638.x
![]() |
[53] | Legambiente, Rapporto Spiagge 2022. Legambiente, Rome. 2022. Available from: https://www.legambiente.it/wp-content/uploads/2022/07/Rapporto-Spiagge-2022.pdf. |
[54] |
Jones M, Daugstad K (1997) Usage of the cultural landscape concept in Norwegian and Nordic landscape administration. Landscape Res 22: 267–281. https://doi.org/10.1080/01426399708706515 doi: 10.1080/01426399708706515
![]() |
[55] |
Castree N (2002) False antitheses? Marxism, nature and actor–networks. Antipode Radical J Geogr 34: 111–146. https://doi.org/10.1111/1467-8330.00228 doi: 10.1111/1467-8330.00228
![]() |
[56] |
Cannon T, Müller-Mahn D (2010) Vulnerability, resilience and development discourses in context of climate change. Nat Hazards 55: 621–635. https://doi.org/10.1007/s11069-010-9499-4 doi: 10.1007/s11069-010-9499-4
![]() |
[57] | Collins PH, Bilge S (2020) Intersectionality, Hoboken: John Wiley & Sons. |
[58] | Hilhorst D, Bankoff G (2022) Why Vulnerability Still Matters: The Politics of Disaster Risk Creation, New York: Routledge. |
[59] | Dini F, Zilli S (2015) Il riordino territoriale dello Stato. Rapporto 2014, Roma: Società Geografica Italiana. |
[60] | Petts J, Leach B (2000) Evaluating methods for public participation: Literature Review, Bristol: Environment Agency. |
[61] |
Eisenack K, Moser S, Hoffmann E, et al. (2014) Explaining and overcoming barriers to climate change adaptation. Nature Clim Change 4: 867–872. https://doi.org/10.1038/NCLIMATE2350 doi: 10.1038/NCLIMATE2350
![]() |
[62] |
Guggenheim M (2014) Introduction: disasters as politics—politics as disasters. Sociol Rev 62: 1–16. https://doi.org/10.1111/1467-954X.12121 doi: 10.1111/1467-954X.12121
![]() |