Research article Special Issues

The local boundary estimate of weak solutions to fractional $ p $-Laplace equations

  • Published: 07 April 2025
  • MSC : 35R11, 42B25

  • In this paper, we investigate weak solutions to equations of fractional $ p $-Laplace type. We obtain several local boundary estimates about weak solutions in Bessel space by the Lipschitz truncation method and the pointwise Hardy inequality. The estimates are global over bounded domains that satisfy an exterior uniform thickness condition, which involves the fractional $ (s, p) $-capacity.

    Citation: Wenjia Li, Guanglan Wang, Guoliang Li. The local boundary estimate of weak solutions to fractional $ p $-Laplace equations[J]. AIMS Mathematics, 2025, 10(4): 8002-8021. doi: 10.3934/math.2025367

    Related Papers:

  • In this paper, we investigate weak solutions to equations of fractional $ p $-Laplace type. We obtain several local boundary estimates about weak solutions in Bessel space by the Lipschitz truncation method and the pointwise Hardy inequality. The estimates are global over bounded domains that satisfy an exterior uniform thickness condition, which involves the fractional $ (s, p) $-capacity.



    加载中


    [1] D. R. Adams, J. Xiao, Strong type estimates for homogeneous Besov capacities, Math. Ann., 325 (2003), 695–709. https://doi.org/10.1007/s00208-002-0396-3 doi: 10.1007/s00208-002-0396-3
    [2] J. C. Bellido, J. Cueto, C. Mora-Corral, $\Gamma$-convergence of polyconvex functionals involving $s$-fractional gradients to their local counterparts, Calc. Var. Partial Dif., 60 (2021). https://doi.org/10.1007/s00526-020-01868-5
    [3] J. C. Bellido, J. Cueto, C. Mora-Corral, Fractional piola identity and polyconvexity in fractional spaces, Ann. I. H. Poincaré, 2020.
    [4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [5] G. E. Comi, G. Stefani, A distributional approach to fractional Sobolev spaces and fractional variationb: Existence of blow-up, J. Funct. Anal., 277 (2019), 3373–3435. https://doi.org/10.1016/j.jfa.2019.03.011 doi: 10.1016/j.jfa.2019.03.011
    [6] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, Florida, 1992.
    [7] K. Gao, S. T. Jhang, S. G. Shi, J. S. Zheng, Blow-up prevention by subquadratic and quadratic degradations in a three-dimensional Keller-Segel-Stokes system with indirect signal production, J. Differ. Equations, 423 (2025), 324–376. https://doi.org/10.1016/j.jde.2024.12.045 doi: 10.1016/j.jde.2024.12.045
    [8] J. Giacomoni, D. Kumar, K. Sreenadh, Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal., 36 (2022). https://doi.org/10.1007/s12220-021-00837-4
    [9] L. M. Guo, Y. Wang, H. M. Liu, C. Li, J. B. Zhao, H. L. Chu, On iterative positive solutions for a class of singular infinite-point p-Laplacian fractional differential equations with singular source terms, J. Appl. Anal. Comput., 13 (2023) 2827–2842. https://doi.org/10.11948/20230008
    [10] L. I. Hedberg, On certain convolution inequalities, P. Am. Math. Soc., 36 (1972), 505–510. https://doi.org/10.1090/S0002-9939-1972-0312232-4 doi: 10.1090/S0002-9939-1972-0312232-4
    [11] J. L. Lewis, Uniformly fat sets, T. Am. Math. Soc., 308 (1988), 177–196. https://doi.org/10.1090/S0002-9947-1988-0946438-4
    [12] G. L. Li, S. G. Shi, L. Zhang, Potential characterizations of fractional polar sets, J. Math. Anal. Appl., 539 (2024). https://doi.org/10.1016/j.jmaa.2024.128536
    [13] Z. Jia, Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with $p$-Laplacian diffusion and nonlinear production, Discrete Cont. Dyn.-B, 28 (2023), 4847–4863. https://doi.org/10.3934/dcdsb.2023044 doi: 10.3934/dcdsb.2023044
    [14] T. Mengesha, D. Spector, Localization of nonlocal gradients in various topologies, Cala. Var. Partial Dif., 52 (2015), 253–279. https://doi.org/10.1007/s00526-014-0711-3 doi: 10.1007/s00526-014-0711-3
    [15] X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pure. Appl., 101 (2014), 275–302. https://doi.org/10.1016/j.matpur.2013.06.003 doi: 10.1016/j.matpur.2013.06.003
    [16] S. G. Shi, Some notes on supersolutions of fractional $p$-Laplace equation, J. Math. Anal. Appl., 463 (2018), 1052–1074. https://doi.org/10.1016/j.jmaa.2018.03.064 doi: 10.1016/j.jmaa.2018.03.064
    [17] S. G. Shi, G. L. Wang, Z. C. Zhai, Wiener type regularity for non-linear integrodifferential equation, Math. Z., 2025, in press.
    [18] S. G. Shi, J. Xiao, On fractional capacities relative to bounded open lipschitz sets, Potential Anal., 45 (2016), 261–298. https://doi.org/10.1007/s11118-016-9545-2 doi: 10.1007/s11118-016-9545-2
    [19] S. G. Shi, J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var. Partial Dif., 56 (2017), 1–22. https://doi.org/10.1007/s00526-016-1105-5 doi: 10.1007/s00526-016-1105-5
    [20] S. G. Shi, J. Xiao, A tracing of the fractional temperature field, Sci. China Math., 60 (2017), 2303–2320. https://doi.org/10.1007/s11425-016-0494-6 doi: 10.1007/s11425-016-0494-6
    [21] S. G. Shi, L. Zhang, Dual characterization of fractional capacity via solution of fractional $p$-Laplace equation, Math. Nachr., 293 (2020), 2233–2247. https://doi.org/10.1002/mana.201800438 doi: 10.1002/mana.201800438
    [22] S. G. Shi, L. Zhang, G. L. Wang, Fractional non-linear regularity, potential and balayage, J. Geom. Anal., 32 (2022). https://doi.org/10.1007/s12220-022-00956-6
    [23] S. G. Shi, Z. C. Zhai, L. Zhang, Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional $p$-Laplace and the fractional $p$-convexity, Adv. Calc. Var., 2023. https://doi.org/10.1515/acv-2021-0110
    [24] T. T. Shieh, D. E. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var., 8 (2015), 321–336. https://doi.org/10.1515/acv-2014-0009 doi: 10.1515/acv-2014-0009
    [25] T. T. Shieh, D. E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Var., 11 (2018), 289–307. https://doi.org/10.1515/acv-2016-0056 doi: 10.1515/acv-2016-0056
    [26] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, Orlando, Florida, 1986.
    [27] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547. https://doi.org/10.1515/acv-2016-0056 doi: 10.1515/acv-2016-0056
    [28] X. S. Wang, Z. Q. Wang, Z. Jia, Global weak solutions for an attraction-repulsion chemotaxis system with $p$-Laplacian diffusion and logistic source, Acta Math. Sci. Ser. B, 44 (2024), 909–924. https://doi.org/10.1007/s10473-024-0308-7 doi: 10.1007/s10473-024-0308-7
    [29] J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation, Adv. Math., 207 (2006), 828–846. https://doi.org/10.1016/j.aim.2006.01.010 doi: 10.1016/j.aim.2006.01.010
    [30] J. Xiao, Optimal geometric estimates for fractional Sobolev capacities, C. R. Math. Acad. Sci. Paris, 354 (2016), 149–153. https://doi.org/10.1016/j.crma.2015.10.014 doi: 10.1016/j.crma.2015.10.014
    [31] J. Xiao, D. P. Ye, Anisotropic Sobolev capacity with fractional order, Canad. J. Math., 69 (2017), 873–889. https://doi.org/10.4153/CJM-2015-060-3 doi: 10.4153/CJM-2015-060-3
    [32] J. Xiao, Z. C. Zhai, Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norems, J. Math. Sci., 166 (2010), 357–376. https://doi.org/10.1007/s10958-010-9872-6 doi: 10.1007/s10958-010-9872-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1004) PDF downloads(86) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog