
The role of geological and geotematic mapping has recently come to the forefront in spatial/environmental management. This paper aims to present some cases of boundary extension in the use of contemporary cartographic tools (GIS and WEBGIS). The potential of digital maps and associated databases offers a wide range of applications, responding to the urgent need to make available to users (practitioners in the technical sectors, planners and society as a whole) the most important concepts to concretely achieve better land management, active risk prevention and sustainable resource enhancement. The application of geomorphological maps to issues closer to society can effectively create its approach to more properly technical-scientific issues, fostering a shared awareness, useful in protecting and enhancing the fragile Italian territory. The described experiences focus on GIS, which confirms its effectiveness both for social involvement in environmental issues, and in territorial/environmental management.
Citation: Francesca Romana Lugeri, Barbara Aldighieri, Piero Farabollini, Fabrizio Bendia, Alberto Cardillo. Territorial knowledge and cartographic evolution[J]. AIMS Geosciences, 2022, 8(3): 452-466. doi: 10.3934/geosci.2022025
[1] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[2] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[3] | Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[6] | Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[9] | M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
The role of geological and geotematic mapping has recently come to the forefront in spatial/environmental management. This paper aims to present some cases of boundary extension in the use of contemporary cartographic tools (GIS and WEBGIS). The potential of digital maps and associated databases offers a wide range of applications, responding to the urgent need to make available to users (practitioners in the technical sectors, planners and society as a whole) the most important concepts to concretely achieve better land management, active risk prevention and sustainable resource enhancement. The application of geomorphological maps to issues closer to society can effectively create its approach to more properly technical-scientific issues, fostering a shared awareness, useful in protecting and enhancing the fragile Italian territory. The described experiences focus on GIS, which confirms its effectiveness both for social involvement in environmental issues, and in territorial/environmental management.
Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t)0≤s≤1,0≤t≤T,γ>0, | (1.1) |
ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, | (1.2) |
ϕ(s,0)=φ(s),0≤s≤1, | (1.3) |
where γ∈R is the constant.
The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.
In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.
In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.
In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.
For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ0∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ0∂s=φ(s,t), | (2.1) |
and then we get the linear scheme as
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2=−ϕn−1∂ϕn−1∂s+φ(s,t),a≤s≤b,0≤t≤T. | (2.2) |
By the partial linearization, nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ∂s=φ(s,t), | (2.3) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn−1∂ϕn∂s=φ(s,t),a≤s≤b,0≤t≤T. | (2.4) |
For the initial value ϕ∂ϕ∂s=ϕ0∂ϕ0∂s+(∂ϕ0∂s+ϕ0∂ϕ0∂s)(ϕ−ϕ0), we have
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ0∂s+ϕ0∂ϕ0∂sϕ=φ(s,t)+ϕ0∂ϕ0∂sϕ0, | (2.5) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn∂ϕn−1∂s+ϕn−1∂ϕn−1∂sϕn=φ(s,t)+ϕn−1∂ϕn−1∂sϕn−1, | (2.6) |
where n=1,2,⋯.
Interval [a,b] is divided into a=s0<s1<s2<⋯<sm−1<sm=b, for uniform partition with hs=b−am and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<⋯<tn−1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as
ϕnm(s,t)=m∑i=0n∑j=0ri(s)rj(t)ϕij | (3.1) |
where ϕij=ϕ(si,tj),
ri(s)=wis−sim∑j=0wjs−sj,rj(t)=wjt−tjn∑i=0wit−ti | (3.2) |
is the barycentric interpolation basis [26], and
wi=∑k∈Ji(−1)kk+ds∏j=k,j≠i1si−sj,wj=∑k∈Jj(−1)kk+dt∏i=k,k≠j1tj−ti | (3.3) |
where Ji={k∈I,i−ds≤k≤i},I={0,1,⋯,m−ds}. See [26]. We get the barycentric rational interpolation.
For the case
wi=1∏i≠k(si−sk),wj=1∏j≠k(tj−tk), | (3.4) |
we get the barycentric Lagrange interpolation.
So,
r′j(si)=wj/wisi−sj,j≠i,r′i(si)=−∑j≠ir′j(si), | (3.5) |
r(k)j(si)=k(r(k−1)i(si)r′i(sj)−r(k−1)i(sj)si−sj),j≠i, | (3.6) |
r(k)i(si)=−∑j≠ir(k)j(si). | (3.7) |
Then, we have
D(0,1)ij=r′i(tj), | (3.8) |
D(1,0)ij=r′i(sj), | (3.9) |
D(k,0)ij=r(k)i(sj),k=2,3,⋯. | (3.10) |
Combining (3.1) and (2.2), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In]ϕn=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1, | (3.11) |
and then we have
Lϕn=Ψn−1 | (3.12) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In, |
Ψn−1=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1 |
and ⊗ is the Kronecher product [17].
Combining (3.1) and (2.4), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ, | (3.13) |
n=1,2,⋯, and then we have
Lϕ=Ψ | (3.14) |
where L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In.
Combining (3.1) and (2.6), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1, | (3.15) |
and then we get
Lϕ=Ψn−1 | (3.16) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In, |
and
Ψn−1=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1. |
In this part, an error estimate of the KS equation is given with rn(s)=n∑i=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s]. | (4.1) |
Then, we have the following.
Lemma 1. For e(s) defined by (4.1) and ϕ(s)∈Cd+2[a,b], there is
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ϕi,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(s,t) to be the error of ϕ(s,t) as
e(s,t):=ϕ(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s,t]+(t−tj)⋯(t−tj+dt)ϕ[s,tj,tj+1,…,tj+d2,t]. | (4.5) |
With similar analysis of Lemma 1, we have the following
Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)∈Cds+2[a,b]×Cdt+2[0,T], we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds
Lϕ(sm,tn)=φ(sm,tn), | (4.7) |
and
limm,n→∞ϕ(sm,tn)=ϕ(s,t). | (4.8) |
Then, we get the following
Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there
|ϕ(s,t)−ϕ(sm,tn)|≤C(hds−3+τdt). |
Proof. As
Lϕ(s,t)−Lϕ(sm,tn)=∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2−ϕ0∂ϕ0∂s−φ(s,t)−[∂ϕ(sm,tn)∂t+γ∂4ϕ(sm,tn)∂s4+∂2ϕ(sm,tn)∂s2+ϕ0(sm,tn)∂ϕ0(sm,tn)∂s−φ(s,t)]=∂ϕ∂t−∂ϕ∂t(sm,tn)+γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]+∂2ϕ∂s2−∂2ϕ∂s2(sm,tn)+[ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). | (4.9) |
Here,
E1(s,t)=∂ϕ∂t−∂ϕ∂t(sm,tn), |
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)], |
E3(s,t)=∂2ϕ∂s2−∂2ϕ∂s2(sm,tn), |
E4(s,t)=ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn). |
With E2(s,t), we have
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,t)+∂4ϕ∂s4(sm,t)−∂4ϕ∂s4(sm,tn)]=m−ds∑i=0(−1)i∂4ϕ∂s4[si,si+1,…,si+d1,sm,t]m−ds∑i=0λi(s)+n−dt∑j=0(−1)j∂4ϕ∂s4[tj,tj+1,…,tj+d2,sm,tn]n−dt∑j=0λj(t)=∂4e∂s4(sm,t)+∂4e∂s4(sm,tn). |
For E2(s,t) we get
|E2(s,t)|≤|∂4e∂s4(sm,x)+∂4e∂s4(sm,tn)|≤C(hds−3+τdt+1). | (4.10) |
Then, we have
|E1(s,t)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.11) |
Similarly, for E3(s,t) we have
E3(s,t)=∂2ϕ∂s2(s,t)−∂2ϕ∂s2(sm,tn)=∂2e∂s2(s,tn)+∂2e∂s2(sm,tn), | (4.12) |
and
|E3(s,t)|≤|∂2e∂s2(s,tn)+∂2e∂s2(sm,tn)|≤C(hds−1+τdt+1). | (4.13) |
For E4(s,t) we get
|E4(s,t)|=|ϕ0∂ϕ∂s−ϕ0(sm,tn)∂ϕ∂s(sm,tn)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.14) |
Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.
All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.
Example 1. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t) |
with the condition is
ϕ(0,t)=0,ϕ(1,t)=0, |
and
ϕ(s,0)=sin(2πs). |
ϕss(0,t)=0,ϕss(1,t)=0, |
and
φ(s,t)=e−tsin(2πs)[2πe−tcos(2πs)−1+16π4−4π2]. |
The solution of the KS equation is
ϕ(s,t)=e−tsin(2πs). |
In Figures 1–3, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 4–6, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.
In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.
In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds−1) at t=1.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
Example 2. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=0, |
with the analytic solution
ϕ(s,t)=c+15√1119√19[−3tanh√112√19(s−ct+s0)+tanh3√112√19(s−ct+s0)], |
and boundary condition
ϕ(−10,t)=c+15√1119√19[−3tanh√112√19(−10−ct+s0)+tanh3√112√19(−10−ct+s0)], |
ϕ(10,t)=c+15√1119√19[−3tanh√112√19(10−ct+s0)+tanh3√112√19(10−ct+s0)], |
and initial condition
ϕ(s,0)=c+15√1119√19[−3tanh√112√19(s+s0)+tanh3√112√19(s+s0)], |
with c=2,x0=10.
In Figures 7–9, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.
In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds−1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.
The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.
The author declares no conflict of interest.
[1] | Dent BD, Torguson JS, Hodler TW (2009) Cartography: Thematic Map Design, 6 Eds, New York: McGraw-Hill Higher Education. |
[2] | Slocum TA, McMaster RB, Kessler FC, et al. (2008) Thematic Cartography and Geovisualization, 3 Eds., Upper Saddle River, NJ: Pearson. |
[3] | Peterson G (2009) GIS Cartography: A Guide to Effective Map Design. Taylor & Francis. https://doi.org/10.1201/9781003046325 |
[4] | Harris T, Rouse J, Bergeron S (2010) The Geospatial Semantic Web, Pareto GIS, and the Humanities. In Bodenhamer D, Corrigan J, Harris T, Eds, The Spatial Humanities: GIS and the Future of Humanities Scholarship, Indiana University Press, 124–142. |
[5] |
Moore A (2015) 'Web Cartography – Map Design for Interactive and Mobile Devices'. J Spat Sci 60: 195–196. https://doi.org/10.1080/14498596.2015.1006113 doi: 10.1080/14498596.2015.1006113
![]() |
[6] | ISPRA (2022) Carta della Natura. Visualizzatore cartografico. Available from https://sinacloud.isprambiente.it/portal/home/. |
[7] |
Sieber R (2006) Public Participation Geographic Information Systems: A Literature Review and Framework. Ann Assoc Am Geogr 96: 491–507. https://doi.org/10.1111/j.1467-8306.2006.00702.x doi: 10.1111/j.1467-8306.2006.00702.x
![]() |
[8] | Haimes P, Baba T, Medley S (2015) Mobile map applications and the democratisation of hazard information. In SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications. Association for Computing Machinery, New York, NY, USA, Article 7, 1–4. https://doi.org/10.1145/2818427.2818440 |
[9] | McKinster J, Trautmann N, Barnett M (2013) Teaching Science and Investigating Environmental Issues with Geospatial Technology: Designing Effective Professional Development for Teachers. Springer Science & Business Media: Berlin, Germany, 353. |
[10] |
Lugeri FR, Farabollini P, Amadio V, et al. (2018) Unconventional Approach for Prevention of Environmental and Related Social Risks: A Geoethic Mission. Geosciences 8: 54. https://doi.org/10.3390/geosciences8020054 doi: 10.3390/geosciences8020054
![]() |
[11] | Giddens A, Offe C, Touraine (1987) Ecologia politica. Milan: Feltrinelli. |
[12] |
Lugeri FR, Farabollini P (2018) Discovering the Landscape by Cycling: A Geo-Touristic Experience through Italian Badlands. Geosciences 8: 291. https://doi.org/10.3390/geosciences8080291 doi: 10.3390/geosciences8080291
![]() |
[13] |
Lugeri FR, Farabollini P, Greco R, et al. (2015) The Geological Characterization of Landscape in Major TV Series: A Suggested Approach to Involve the Public in the Geological Heritage Promotion. Sustainability 7: 4100–4119. https://doi.org/10.3390/su7044100 doi: 10.3390/su7044100
![]() |
[14] |
Lugeri FR, Farabollini P, Lugeri N (2019) Landscape analysis as a tool for risk reduction. AIMS Geosci 5: 617–630. https://doi.org/10.3934/geosci.2019.3.617 doi: 10.3934/geosci.2019.3.617
![]() |
[15] | Catton Jr WR, Dunlap RE (1978) Environmental Sociology. A New Paradigm. Am Sociol 13: 41–49. |
[16] | Forman RTT (1995) Land Mosaics: The Ecology of Landscapes and Regions. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781107050327 |
[17] | Forman RTT, Godron M (1986) Landscape ecology. New York, USA: John Wiley and Sons. |
[18] | Naveh Z, Lieberman AS (1994) Landscape Ecology Theory and Application. Series on Environmental Management. Heidelberg, Germany: Springer. |
[19] | Turner MG, Gardner RH, O'Neill RV (2001) Landscape Ecology in Theory and Practice: Pattern and Process. New York, USA: Springer. |
[20] |
Lugeri FR, Amadio V, Bagnaia R, et al. (2011) Landscapes and Wine Production Areas: A Geomorphological Heritage. Geoheritage 3: 221–232. https://doi.org/10.1007/s12371-011-0035-z doi: 10.1007/s12371-011-0035-z
![]() |
[21] | Amadio V, Amadei M, Bagnaia R, et al. (2002) The role of geomorphology in landscape ecology: the landscape unit map of Italy, Scale 1: 250,000. In Allison RJ (Ed.), Applied Geomorphology: Theory and Practice, London, UK: Wiley, 265–282. |
[22] | Amadei M, Bagnaia R, Laureti L, et al. (2004) Carta della natura alla scala 1: 50,000: metodologie di realizzazione. Manuali e linee guida 30/2004. Roma: APAT. |
[23] | Commission of the European Communities (1991) CORINE Biotopes manual. Vol. 1, 2, 3. EUR. |
[24] | Cardillo A, Augello R, Canali E, et al. (2021) Carta della Natura della regione Emilia-Romagna: cartografia e valutazione degli habitat alla scala 1: 25.000. Rapporti 354/2021. Roma: ISPRA. |
[25] |
Troll C (1950) Die geografische Landschaft und ihre Erforschung. Studium Generale, Springer, Heidelberg, 3: 163–181. https://doi.org/10.1007/978-3-662-38240-0_20 doi: 10.1007/978-3-662-38240-0_20
![]() |
[26] |
Nilsson C, Grelsson G (1995) The fragility of ecosystems: a review. J Appl Ecol 32: 677–692. https://doi.org/10.2307/2404808 doi: 10.2307/2404808
![]() |
[27] | Rossi PF, Amadio V, Rossi O, et al. (2006) The map of Italian nature: The detection of the hotspots of ecological attention. Technical Report Number 2006–0539. Center for Statistical Ecology and Environmental Statistics, The Pennsylvania State University. |
[28] | Gregori L (2004) Percorsi geoturistici ed enografici in Umbria. Conference Proceedings of 2 Convegno Geologia & Turismo. Bologna, Italy: Regione Emilia-Romagna, 58–60. |
[29] | Cita BM, Colacicchi R, Chiesa S, et al. (2004) Italian wines and geology. Coll. Paesaggi Geologici, Milan, Italy: BE-MA editrice. |
[30] | Globo, CNR-IDPA. WineGIS: terroir dei vini italiani e sistemi informativi geografici. Available from: http://www.winegis.it/it. |
[31] | ONAV. Perennial guide to Italian wines. Available from: https://www.guidaprosit.it/. |
[32] | Biraghi F, De Amicis M, Aldighieri B (2019) Geodatabase sulle tipologie di vini e uve in Italia. In: Cristaino D, Gull P, Lazzari M, et al. Eds., GIS Day Calabria 2019-X edizione, 205–212. |
[33] | Aldighieri B, Testa B (2012) OPENALP- Permanent Naturalistic Alpine Observatory: a way to increase the alpine land value. In Giusti C (Ed.), Geomorphosites 2009. Raising theprofile of geomorphological heritage through iconography, inventory and promotion. Paris-Sorbonne University. Febbraio 2012, 11–16. |
[34] | Aldighieri B, Di Bona Bonel A, Testa B (2015) Openalp3dolomiti: una piattaforma per la valorizzazione del territorio. In: D'Andrea M, Rossi R (Eds.), Geologia e Turismo 5℃ongresso Nazionale Geologia e Turismo, Bologna, 6–7 giugno 2013. Atti, ISPRA, Roma: 371–378. |
[35] | Farabollini P, Aringoli D, Bendia F, et al. (2022). The Geo-Itinerary of the 'Anello della Sibilla' between sciences, history and myth: a vehicle for the renaissance of the territories affected by the earthquake. Rendiconti on line della Società Geologica Italiana. Submitted for publication. |
[36] | ISPRA (2018) Quaderno 13 della Carta Geomorfologica d'Italia 1: 50.000. Servizio Geologico d'Italia, ISPRA Periodici tecnici. I Quaderni, serie III, del SGI. Vol. 13-I. Progetto CARG: modifiche ed integrazioni al Quaderno n. 4/1994/2018. Available from: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/i-quaderni-serie-iii-del-sgi/carta-geomorfologica-ditalia-alla-scala-1-50.000-aggiornamento-ed-integrazioni-delle-linee-guida-della-carta-geomorfologica-ditalia-alla-scala-1-50.000-fascicolo-i. |
[37] | Magnaguagno F (2009) Natura Umana e progetto Versante NORD: un nuovo approccio al disagio giovanile. Atti del Convegno Nazionale "Montagna solidale: i versanti della Montagnaterapia". Campus Selva dei Pini, Università di Roma La Sapienza, Pomezia. Available from: https://www.montagnaterapia.it/convegni.html. |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |