Research article

The global existence and blow-up of the solutions for a fractional Kirchhoff hyperbolic equations with viscoelastic term and logarithmic term

  • Published: 24 November 2025
  • This article investigates a type of hyperbolic equation of the fractional Kirchhoff with viscoelastic and logarithmic nonlinear terms subject to homogeneous Dirichlet-boundary:

    $ \left\{ \begin{array}{ll} u_{tt} +M([u]^{2}_{s})(-\Delta)^su-\int_{0}^{t}g(t-\tau)(-\Delta)^su(\tau)d\tau+u_t = |u|^{h-2}u\ln |u|,\ &\text{in } \Omega\times (0,\infty), \\ u(\cdot,0) = u_0,\ \ \ u_t(\cdot,0) = u_1,\ \ \ & \text{in } \Omega,\\ u(\cdot,t) = 0,& \text{on } \partial \Omega \times (0,\infty), \end{array} \right. $

    where $ [u]_{s} $ is the Gagliardo semi-norm of $ u, $ $ (-\Delta)^s $ is the fractional Laplacian with $ s\in(0, 1) $, $ 2 < 2\gamma < h < 2_s^* $, $ u_0 $ and $ u_1 $ are the initial functions, and $ \Omega \subset \mathbb{R}^N $ is a bounded domain with a smooth boundary. First, the global existence of solutions is established by combining the Galerkin method with the potential well theory. Subsequently, the finite-time blow-up of solutions is derived via the concavity method and a series of peculiar inequalities.

    Citation: Lijun Zhou, Ning Pan. The global existence and blow-up of the solutions for a fractional Kirchhoff hyperbolic equations with viscoelastic term and logarithmic term[J]. Electronic Research Archive, 2025, 33(11): 7126-7145. doi: 10.3934/era.2025315

    Related Papers:

  • This article investigates a type of hyperbolic equation of the fractional Kirchhoff with viscoelastic and logarithmic nonlinear terms subject to homogeneous Dirichlet-boundary:

    $ \left\{ \begin{array}{ll} u_{tt} +M([u]^{2}_{s})(-\Delta)^su-\int_{0}^{t}g(t-\tau)(-\Delta)^su(\tau)d\tau+u_t = |u|^{h-2}u\ln |u|,\ &\text{in } \Omega\times (0,\infty), \\ u(\cdot,0) = u_0,\ \ \ u_t(\cdot,0) = u_1,\ \ \ & \text{in } \Omega,\\ u(\cdot,t) = 0,& \text{on } \partial \Omega \times (0,\infty), \end{array} \right. $

    where $ [u]_{s} $ is the Gagliardo semi-norm of $ u, $ $ (-\Delta)^s $ is the fractional Laplacian with $ s\in(0, 1) $, $ 2 < 2\gamma < h < 2_s^* $, $ u_0 $ and $ u_1 $ are the initial functions, and $ \Omega \subset \mathbb{R}^N $ is a bounded domain with a smooth boundary. First, the global existence of solutions is established by combining the Galerkin method with the potential well theory. Subsequently, the finite-time blow-up of solutions is derived via the concavity method and a series of peculiar inequalities.



    加载中


    [1] G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig, 1883.
    [2] J. L. Lions, On some questions in boundary value problems of mathematical physics, N. Holl. Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [3] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321–342. https://doi.org/10.1006/jmaa.1997.5697 doi: 10.1006/jmaa.1997.5697
    [4] M. Q. Xiang, B. L. Zhang, D. Hu, Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping, Electron. Res. Arch., 28 (2020), 651–669. https://doi.org/10.3934/era.2020034 doi: 10.3934/era.2020034
    [5] N. Pan, P. Pucci, B. L. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equations 18 (2018), 385–409. https://doi.org/10.1007/s00028-017-0406-2 doi: 10.1007/s00028-017-0406-2
    [6] N. Pan, P. Pucci, R. Z. Xu, B. L. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equations 19 (2019), 615–643. https://doi.org/10.1007/s00028-019-00489-6 doi: 10.1007/s00028-019-00489-6
    [7] N. Boumaza, B. Gheraibia, General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term, J. Math. Anal. Appl., 489 (2020), 124185. https://doi.org/10.1016/j.jmaa.2020.124185 doi: 10.1016/j.jmaa.2020.124185
    [8] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [9] X. Cabré, J. G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052–2093. https://doi.org/10.1016/j.aim.2010.01.025 doi: 10.1016/j.aim.2010.01.025
    [10] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
    [11] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
    [12] J. G. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var., 42 (2011), 21–41. https://doi.org/10.1007/s00526-010-0378-3 doi: 10.1007/s00526-010-0378-3
    [13] X. K. Shao, Global existence and blow-up for a Kirchhoff-type hyperbolic problem with logarithmic nonlinearity, Appl. Math. Optim., 84 (2021), 2061–2098. https://doi.org/10.1007/s00245-020-09704-0 doi: 10.1007/s00245-020-09704-0
    [14] Y. C. Xu, N. Pan, On fractional order Kirchhoff hyperbolic equations with logarithmic terms, Bound. Value Probl., 2025 (2025), 24. https://doi.org/10.1186/s13661-025-02004-y doi: 10.1186/s13661-025-02004-y
    [15] J. A. Kim, Y. H. Han, Blow up of solution of a nonlinear viscoelastic wave equation, Acta Appl. Math., 111 (2010), 1–6. https://doi.org/10.1007/s10440-009-9524-3 doi: 10.1007/s10440-009-9524-3
    [16] H. T. Song, D. S. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 109 (2014), 245–251. https://doi.org/10.1016/j.na.2014.06.012 doi: 10.1016/j.na.2014.06.012
    [17] M. Q. Xiang, D. Hu, Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity, Discret. Contin. Dyn. Syst. Ser. S, 14 (2021), 4609–4629. https://doi.org/10.3934/dcdss.2021125 doi: 10.3934/dcdss.2021125
    [18] S. T. Wu, On decay and blow-up of solutions for a system of nonlinear wave equations, J. Math. Anal. Appl., 394 (2012), 360–377. https://doi.org/10.1016/j.jmaa.2012.04.054 doi: 10.1016/j.jmaa.2012.04.054
    [19] X. S. Han, M. X. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal., 71 (2009), 5427–5450. https://doi.org/10.1016/j.na.2009.04.031 doi: 10.1016/j.na.2009.04.031
    [20] S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. https://doi.org/10.1016/j.jmaa.2005.07.022 doi: 10.1016/j.jmaa.2005.07.022
    [21] Y. Liu, Long-time behavior of a class of viscoelastic plate equation, Electron. Res. Arch., 28 (2020), 311–326. https://doi.org/10.3934/era.2020018 doi: 10.3934/era.2020018
    [22] R. Z. Xu, Y. B. Yang, Y. C. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138–157. https://doi.org/10.1080/00036811.2011.601456 doi: 10.1080/00036811.2011.601456
    [23] G. Li, L. H. Hong, W. J. Liu, Global nonexistence of solutions for viscoelastic wave equations of Kirchhoff type with high energy, J. Funct. Spaces Appl., 2012 (2012), 530861. https://doi.org/10.1155/2012/530861 doi: 10.1155/2012/530861
    [24] G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.
    [25] A. Fiscella, R. Servadei, E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235–253. https://doi.org/10.5186/aasfm.2015.4009 doi: 10.5186/aasfm.2015.4009
    [26] E. Di Nezza, G. Palatucci, E. Valdinaci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [27] M. Q. Xiang, B. L. Zhang, M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional $p$-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021–1041. https://doi.org/10.1016/j.jmaa.2014.11.055 doi: 10.1016/j.jmaa.2014.11.055
    [28] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
    [29] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt = -Au+F(u)$, Tran. Am. Math. Soc., 192 (1974), 2076–2091. https://doi.org/10.1090/S0002-9947-1974-0344697-2 doi: 10.1090/S0002-9947-1974-0344697-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(157) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog