The shape parameter is crucial for radial basis functions (RBF) interpolation accuracy. Fixed global parameters often fail with complex data, whereas variable shape parameters improve flexibility by adjusting each basis function dynamically. To address the issue that variable shape parameter selection in the inverse multiple quadratic radial basis function (IMQ-RBF) interpolation is influenced by multiple factors, we proposed a hybrid prediction model based on the sparrow search algorithm (SSA) combining a multilayer perceptron and random forest (SSA-MLP-RF), which maps local geometric features of data points to the corresponding shape parameters. First, a dataset was constructed from scattered points, including the shape parameter values and 17 local features, to accumulate influencing factors. Subsequently, outlier removal, variance inflation factor analysis, XGBoost feature average gain, and mutual information methods were applied to perform feature selection, identifying seven key features. Finally, SSA was employed to optimize the hyperparameters of the MLP and RF, and a weighted combination model was constructed to achieve adaptive selection of shape parameters. Based on the test set results, the ablation experiments verified that the proposed SSA-MLP-RF hybrid model achieved significant performance improvement. Compared with several classical metaheuristic algorithms (particle swarm optimizatio, genetic algorithm, whale optimization algorithm, and blood-sucking leech optimizer), the SSA-MLP-RF model demonstrated the best predictive accuracy for the deformation shape parameter, achieving an R2 of 0.9203, with MAE, RMSE, MAPE, and NMSE values of 0.0391, 0.0499, 3.8201%, and 0.0797, respectively, and a Rényi entropy of 0.1200. The findings validated the effectiveness and rationality of the proposed model, providing a reliable approach for the adaptive selection of shape parameters in RBF interpolation.
Citation: Junbo Yang, Ling Wang, Dianxuan Gong. Adaptive prediction of IMQ-RBF interpolation variable shape parameters using an SSA-MLP-RF hybrid model[J]. Electronic Research Archive, 2025, 33(11): 7146-7171. doi: 10.3934/era.2025316
The shape parameter is crucial for radial basis functions (RBF) interpolation accuracy. Fixed global parameters often fail with complex data, whereas variable shape parameters improve flexibility by adjusting each basis function dynamically. To address the issue that variable shape parameter selection in the inverse multiple quadratic radial basis function (IMQ-RBF) interpolation is influenced by multiple factors, we proposed a hybrid prediction model based on the sparrow search algorithm (SSA) combining a multilayer perceptron and random forest (SSA-MLP-RF), which maps local geometric features of data points to the corresponding shape parameters. First, a dataset was constructed from scattered points, including the shape parameter values and 17 local features, to accumulate influencing factors. Subsequently, outlier removal, variance inflation factor analysis, XGBoost feature average gain, and mutual information methods were applied to perform feature selection, identifying seven key features. Finally, SSA was employed to optimize the hyperparameters of the MLP and RF, and a weighted combination model was constructed to achieve adaptive selection of shape parameters. Based on the test set results, the ablation experiments verified that the proposed SSA-MLP-RF hybrid model achieved significant performance improvement. Compared with several classical metaheuristic algorithms (particle swarm optimizatio, genetic algorithm, whale optimization algorithm, and blood-sucking leech optimizer), the SSA-MLP-RF model demonstrated the best predictive accuracy for the deformation shape parameter, achieving an R2 of 0.9203, with MAE, RMSE, MAPE, and NMSE values of 0.0391, 0.0499, 3.8201%, and 0.0797, respectively, and a Rényi entropy of 0.1200. The findings validated the effectiveness and rationality of the proposed model, providing a reliable approach for the adaptive selection of shape parameters in RBF interpolation.
| [1] | Z. Wu, Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs, J. Eng. Math., 19 (2002), 1–12. |
| [2] |
J. Sun, L. Wang, D. Gong, Model for choosing the shape parameter in the multiquadratic radial basis function interpolation of an arbitrary sine wave and its application, Mathematics, 11 (2023), 1856. https://doi.org/10.3390/math11081856 doi: 10.3390/math11081856
|
| [3] |
S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math., 11 (1999), 193–210. https://doi.org/10.1023/a:1018975909870 doi: 10.1023/a:1018975909870
|
| [4] |
J. Sun, L. Wang, D. Gong, An adaptive selection method for shape parameters in MQ-RBF interpolation for two-dimensional scattered data and its application to integral equation solving, Fractal Fract., 7 (2023), 448. https://doi.org/10.3390/fractalfract7060448 doi: 10.3390/fractalfract7060448
|
| [5] |
J. Sun, W. Wang, A localized MQRBF-FD method with adaptive shape parameter optimization for acoustic wave simulation, Eng. Anal. Bound. Elem., 177 (2025), 106270. https://doi.org/10.1016/j.enganabound.2025.106270 doi: 10.1016/j.enganabound.2025.106270
|
| [6] |
H. Nojavan, S. Abbasbandy, T. Allahviranloo, Variable shape parameter strategy in local radial basis functions collocation method for solving the 2D nonlinear coupled burgers' equations, Mathematics, 5 (2017), 38. https://doi.org/10.3390/math5030038 doi: 10.3390/math5030038
|
| [7] |
B. Fornberg, J. Zuev, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54 (2007), 379–398. https://doi.org/10.1016/j.camwa.2007.01.028 doi: 10.1016/j.camwa.2007.01.028
|
| [8] |
J. A. Koupaei, M. Firouznia, S. M. M. Hosseini, Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm, Alex. Eng. J., 57 (2018), 3641–3652. https://doi.org/10.1016/j.aej.2017.11.024 doi: 10.1016/j.aej.2017.11.024
|
| [9] |
D. Moazami, M. Esmaeilbeigi, Enhanced stability and accuracy in solving nonlinear Fredholm integral equations using hybrid radial kernels and particle swarm optimization, Comput. Appl. Math., 44 (2025), 78. https://doi.org/10.1007/s40314-024-03039-0 doi: 10.1007/s40314-024-03039-0
|
| [10] |
F. Afiatdoust, M. Esmaeilbeigi, Optimal variable shape parameters using genetic algorithm for radial basis function approximation, Ain Shams Eng. J., 6 (2015), 639–647. https://doi.org/10.1016/j.asej.2014.10.019 doi: 10.1016/j.asej.2014.10.019
|
| [11] |
F. N. Mojarrad, M. H. Veiga, J. S. Hesthaven, P. Öffner, A new variable shape parameter strategy for RBF approximation using neural networks, Comput. Math. Appl., 143 (2023), 151–168. https://doi.org/10.1016/j.camwa.2023.05.005 doi: 10.1016/j.camwa.2023.05.005
|
| [12] |
J. Sun, W. Wang, Optimizing shape parameters in RBF methods: A systematic review of techniques, applications, and computational challenges, Comput. Sci. Rev., 59 (2026), 100842. https://doi.org/10.1016/j.cosrev.2025.100842 doi: 10.1016/j.cosrev.2025.100842
|
| [13] |
P. González-Rodelas, H. M. H. Idais, M. Yasin, M. Pasadas, Optimal centers' allocation in smoothing or interpolating with radial basis functions, Mathematics, 10 (2021), 59. https://doi.org/10.3390/math10010059 doi: 10.3390/math10010059
|
| [14] |
A. H. Bacar, S. C. Rawhoudine, An optimal multiquadric variable shape parameter for boundary value problems using particle swarm optimization, J. Math. Res., 16 (2024), 108–131. https://doi.org/10.5539/jmr.v16n2p108 doi: 10.5539/jmr.v16n2p108
|
| [15] |
M. Heidari, M. Mohammadi, S. De Marchi, Curvature based characterization of radial basis functions: Application to interpolation, Math. Model. Anal., 28 (2023), 415–433. https://doi.org/10.3846/mma.2023.16897 doi: 10.3846/mma.2023.16897
|
| [16] |
S. Xiang, K. Wang, Y. Ai, Y. Sha, H. Shi, Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation, Appl. Math. Modell., 36 (2012), 1931–1938. https://doi.org/10.1016/j.apm.2011.07.076 doi: 10.1016/j.apm.2011.07.076
|
| [17] |
J. Biazar, M. Hosami, Selection of an interval for variable shape parameter in approximation by radial basis functions, Adv. Numer. Anal., 2016 (2016), 1397849. https://doi.org/10.1155/2016/1397849 doi: 10.1155/2016/1397849
|
| [18] |
S. Zhu, A. J. Wathen, Convexity and solvability for compactly supported radial basis functions with different shapes, J. Sci. Comput., 63 (2015), 862–884. https://doi.org/10.1007/s10915-014-9919-9 doi: 10.1007/s10915-014-9919-9
|
| [19] |
M. Bozzini, L. Lenarduzzi, M. Rossini, R. Schaback, Interpolation with variably scaled kernels, IMA J. Numer. Anal., 35 (2015), 199–219. https://doi.org/10.1093/imanum/drt071 doi: 10.1093/imanum/drt071
|
| [20] |
M. A. Jankowska, A. Karageorghis, Variable shape parameter Kansa RBF method for the solution of nonlinear boundary value problems, Eng. Anal. Boundary Elem., 103 (2019), 32–40. https://doi.org/10.1016/j.enganabound.2019.02.005 doi: 10.1016/j.enganabound.2019.02.005
|
| [21] |
S. N. Chiu, L. Ling, M. McCourt, On variable and random shape Gaussian interpolations, Appl. Math. Comput., 377 (2020), 125159. https://doi.org/10.1016/j.amc.2020.125159 doi: 10.1016/j.amc.2020.125159
|
| [22] |
Y. Zhang, J. Lin, S. Reutskiy, A novel Gaussian-cubic-based backward substitution method using symmetric variable shape parameter, Eng. Anal. Boundary Elem., 155 (2023), 1069–1081. https://doi.org/10.1016/j.enganabound.2023.07.026 doi: 10.1016/j.enganabound.2023.07.026
|
| [23] |
S. Lin, D. L. Young, C. Chen, Ghost-point based radial basis function collocation methods with variable shape parameters, Eng. Anal. Boundary Elem., 130 (2021), 40–48. https://doi.org/10.1016/j.enganabound.2021.05.006 doi: 10.1016/j.enganabound.2021.05.006
|
| [24] |
J. Yu, Z. Lei, Q. Yao, F. Zhou, X. Pan, A bounded randomly variable shape multi-quadric interpolation method in dual reciprocity boundary element method, Eng. Anal. Boundary Elem., 134 (2022), 377–387. https://doi.org/10.1016/j.enganabound.2021.10.001 doi: 10.1016/j.enganabound.2021.10.001
|
| [25] |
Z. Majdisova, V. Skala, M. Smolik, Algorithm for placement of reference points and choice of an appropriate variable shape parameter for the RBF approximation, Integr. Comput. Aided Eng., 27 (2020), 1–15. https://doi.org/10.3233/ica-190610 doi: 10.3233/ica-190610
|
| [26] |
K. Gao, G. Mei, S. Cuomo, F. Piccialli, N. Xu, ARBF: adaptive radial basis function interpolation algorithm for irregularly scattered point sets, Soft Comput., 24 (2020), 17693–17704. https://doi.org/10.1007/s00500-020-05211-0 doi: 10.1007/s00500-020-05211-0
|
| [27] |
J. Bai, H. Nguyen-Xuan, E. Atroshchenko, G. Kosec, L. Wang, M. A. Wahab, Blood-sucking leech optimizer, Adv. Eng. Software, 195 (2024), 103696. https://doi.org/10.1016/j.advengsoft.2024.103696 doi: 10.1016/j.advengsoft.2024.103696
|
| [28] |
F. Wei, Y. Feng, X. Shi, K. Hou, Improved sparrow search algorithm with adaptive multi-strategy hierarchical mechanism for global optimization and engineering problems, Cluster Comput., 28 (2025), 215. https://doi.org/10.1007/s10586-024-04883-9 doi: 10.1007/s10586-024-04883-9
|
| [29] |
X. Guo, F. Ding, Y. Han, Diffusion residual graph neural network-based model for XSS detection, Comput. Eng. Des., 46 (2025), 2888–2894. https://doi.org/10.16208/j.issn1000-7024.2025.10.020 doi: 10.16208/j.issn1000-7024.2025.10.020
|