Research article

Bit-level image encryption algorithm based on chaotic systems and DNA encoding

  • Published: 26 November 2025
  • The image encryption technology is an important means to ensure network digital data transmission security. To improve the security and encryption computational efficiency, we proposed a novel bit-level image encryption algorithm that integrates hyper-chaotic systems with DNA encoding operations. First, we generated high-quality pseudo-random sequences through K-means clustering, which were applied to hyper-chaotic sequences; second, we implemented multi-level scrambling at both bit-plane and bit-level; finally, we employed dynamic DNA encoding rules combined with bidirectional diffusion. Experimental results demonstrated that the proposed algorithm achieves a large key space (approximately ${2^{256}}$), high information entropy (close to 7.9899), and strong resistance to differential attacks (NPCR = 99.61%, UACI ≈ 33.46%). Our results also showed that the histograms of the encrypted images are even, and the correlation coefficients approach 0. Moreover, the proposed algorithm can effectively resist the chosen plaintext attack, brute force attack, clipping attack, salt and pepper noise attack, etc.

    Citation: Tingting Liu, Dongsheng Cheng, An Song. Bit-level image encryption algorithm based on chaotic systems and DNA encoding[J]. Electronic Research Archive, 2025, 33(11): 7172-7197. doi: 10.3934/era.2025317

    Related Papers:

  • The image encryption technology is an important means to ensure network digital data transmission security. To improve the security and encryption computational efficiency, we proposed a novel bit-level image encryption algorithm that integrates hyper-chaotic systems with DNA encoding operations. First, we generated high-quality pseudo-random sequences through K-means clustering, which were applied to hyper-chaotic sequences; second, we implemented multi-level scrambling at both bit-plane and bit-level; finally, we employed dynamic DNA encoding rules combined with bidirectional diffusion. Experimental results demonstrated that the proposed algorithm achieves a large key space (approximately ${2^{256}}$), high information entropy (close to 7.9899), and strong resistance to differential attacks (NPCR = 99.61%, UACI ≈ 33.46%). Our results also showed that the histograms of the encrypted images are even, and the correlation coefficients approach 0. Moreover, the proposed algorithm can effectively resist the chosen plaintext attack, brute force attack, clipping attack, salt and pepper noise attack, etc.



    加载中


    [1] T. Umar, M. Nadeem, F. Anwer, Chaos based image encryption scheme to secure sensitive multimedia content in cloud storage, Expert Syst. Appl., 257 (2024), 125050. https://doi.org/10.1016/j.eswa.2024.125050 doi: 10.1016/j.eswa.2024.125050
    [2] T. W. Kang, A multidimensional image encryption and decryption technology, J. Franklin Inst., 361 (2024), 107315. https://doi.org/10.1016/j.jfranklin.2024.107315 doi: 10.1016/j.jfranklin.2024.107315
    [3] F. Yu, S. He, W. Yao, S. Cai, Q. Xu, Bursting firings in memristive hopfield neural network with image encryption and hardware implementation, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2025. https://doi.org/10.1109/TCAD.2025.3567878 doi: 10.1109/TCAD.2025.3567878
    [4] B. S. Liu, J. Sun, Z. Q. Xu, An improved image encryption algorithm based on chaotic system, J. Comput., 4 (2009), 1091–1100. https://doi.org/10.4304/jcp.4.11.1091-1100 doi: 10.4304/jcp.4.11.1091-1100
    [5] R. Matthews, On the derivation of a "chaotic" encryption algorithm, Cryptologia, 13 (1989), 29–42. https://doi.org/10.1080/0161-118991863745 doi: 10.1080/0161-118991863745
    [6] Q. S. Gao, X. Q. Zhang, Multiple-image encryption algorithm based on a new composite chaotic system and 3D coordinate matrix, Chaos Solitons Fractals, 189 (2024), 115587. https://doi.org/10.1016/j.chaos.2024.115587 doi: 10.1016/j.chaos.2024.115587
    [7] J. Lu, X. Xue, X. Q. Zhang, R. Y. Zhao, Y. S. Zhang, Multiple-image encryption algorithm based on a new 3D hyperchaotic map and Whac-A-Mole scrambling model, Expert Syst Appl., 290 (2025), 128393. https://doi.org/10.1016/j.eswa.2025.128393. doi: 10.1016/j.eswa.2025.128393
    [8] I. Al-Dayel, M. F. Nadeem, M. A. Khan, B. S. Abraha, An image encryption scheme using 4-D chaotic system and cellular automaton, Sci. Rep., 15 (2025), 19499. https://doi.org/10.1038/s41598-025-95511-y doi: 10.1038/s41598-025-95511-y
    [9] W. Alexan, K. Hosny, M. Gabr, A new fast multiple color image encryption algorithm, Cluster Computing, 325 (2025). https://doi.org/10.1007/s10586-024-04919-0 doi: 10.1007/s10586-024-04919-0
    [10] W. Alexan, N. H. E. Shabasy, N. Ehab, E. A. Maher, A secure and efficient image encryption scheme based on chaotic systems and nonlinear transformations, Sci. Rep., 15 (2025), 31246. https://doi.org/10.1038/s41598-025-15794-z doi: 10.1038/s41598-025-15794-z
    [11] M. Youssef, M. Gabr, W. Alexan, M. B. M. Mansour, K. Kamal, H. Hosny, Enhancing satellite image security through multiple image encryption via hyperchaos, SVD, RC5, and dynamic S-Box generation, IEEE Access, 12 (2024), 123921–123945. https://doi.org/10.1109/ACCESS.2024.3454512 doi: 10.1109/ACCESS.2024.3454512
    [12] F. Yu, Y. M. Gracia, R. Guo, Z. Ying, J. Xu, W. Yao, et al., Dynamic analysis and application of 6D multistable memristive chaotic system with wide range of hyperchaotic states, Axioms, 14 (2025), 638. https://doi.org/10.3390/axioms14080638 doi: 10.3390/axioms14080638
    [13] W. Alexan, M. Youssef, H. H. Hussein, K. K. Ahmed, K. M. Hosny, A. Fathy, et al., A new multiple image encryption algorithm using hyperchaotic systems, SVD, and modified RC5, Sci. Rep., 15 (2025), 9775. https://doi.org/10.1038/s41598-025-92065-x doi: 10.1038/s41598-025-92065-x
    [14] K. Pandey, D. Sharma, Novel image encryption algorithm utilizing hybrid chaotic maps and Elliptic Curve Cryptography with genetic algorithm, J. Inf. Secur. Appl., 89 (2025), 103995. https://doi.org/10.1016/j.jisa.2025.103995 doi: 10.1016/j.jisa.2025.103995
    [15] W. Feng, K. Y. Zhang, J. Zhang, X. Y. Zhao, Y. Chen, B. Cai, et al., Integrating fractional-order hopfield neural network with differentiated encryption: Achieving high-performance privacy protection for medical images, Fractal Fract., 9 (2025), 426. https://doi.org/10.3390/fractalfract9070426 doi: 10.3390/fractalfract9070426
    [16] W. Feng, J. Zhang, Y. Chen, Z. T. Qin, Y. S. Zhang, M. Ahmad, et al., Exploiting robust quadratic polynomial hyperchaotic map and pixel fusion strategy for efficient image encryption, Expert Syst. Appl., 246 (2024), 123190. https://doi.org/10.1016/j.eswa.2024.123190 doi: 10.1016/j.eswa.2024.123190
    [17] H. Li, S. Yu, W. Feng, Y. Chen, J. Zhang, Z. T. Qin, et al., Exploiting dynamic vector-level operations and a 2D-Enhanced logistic modular map for efficient chaotic image encryption, Entropy, 25 (2023), 1147. https://doi.org/10.3390/e25081147 doi: 10.3390/e25081147
    [18] L. Moysis, M. Lawnik, W. Alexan, S. K. Goudos, M. S. Baptista, G. Fragulis, Exploiting circular shifts for efficient chaotic image encryption, IEEE Access, 13 (2025), 92997–93016. https://doi.org/10.1109/ACCESS.2025.3572589 doi: 10.1109/ACCESS.2025.3572589
    [19] W. Alexan, Y. Megalli, A new fast high dimensional and memristive hyperchaotic multiple image encryption method and its FPGA implementation. Discover Electron., 2 (2025), 75. https://doi.org/10.1007/s44291-025-00116-4 doi: 10.1007/s44291-025-00116-4
    [20] S. Gao, R. Wu, H. H. Iu, U. Erkan, Y. H. Cao, Q. Li, et al., Chaos-based video encryption techniques: A review, Comput. Sci. Rev., 58 (2025), 100816. https://doi.org/10.1016/j.cosrev.2025.100816 doi: 10.1016/j.cosrev.2025.100816
    [21] S. Gao, H. H. Iu, U. Erkan, C. Simsek, A. Toktas, Y. H. Cao, A 3D memristive cubic map with dual discrete memristors: Design, implementation, and application in image encryption, IEEE Trans. Circuits Syst. Video Technol., 35 (2025), 7706–7718. https://doi.org/10.1109/TCSVT.2025.3545868 doi: 10.1109/TCSVT.2025.3545868
    [22] S. Gao, S. Q. Ding, H. H. Iu, U. Erkan, A. Toktas, C. Simsek, et al., A three-dimensional memristor-based hyperchaotic map for pseudorandom number generation and multi-image encryption, Chaos, 35 (2025), 073105. https://doi.org/10.1063/5.0270220 doi: 10.1063/5.0270220
    [23] S. Gao, Z. Y. Zhang, H. H. Iu, S. Q. Ding, J. Mou, U. Erkan, et al., A parallel color image encryption algorithm based on a 2-D logistic-rulkov neuron map, IEEE Internet Things J., 12 (2025), 18115–18124. https://doi.org/10.1109/JIOT.2025.3540097 doi: 10.1109/JIOT.2025.3540097
    [24] S. Gao, Z. Y. Zhang, Q. Li, S. Q. Ding, H. H. Iu, Y. H. Cao, et al., Encrypt a story: A video segment encryption method based on the discrete sinusoidal memristive rulkov neuron, IEEE Trans. Dependable Secure Comput., 22 (2025), 8011–8024. https://doi.org/10.1109/TDSC.2025.3603570 doi: 10.1109/TDSC.2025.3603570
    [25] L. Chen, C. Q. Li, C. Li, Security measurement of a medical communication scheme based on chaos and DNA coding, J. Visual Commun. Image Represent., 83 (2022), 103424. https://doi.org/10.1016/j.jvcir.2021.103424 doi: 10.1016/j.jvcir.2021.103424
    [26] W. Feng, J. Zhang, Z. T. Qin, Y. G. He, Cryptanalysis of image encryption algorithm based on variable step length Josephus traversing and DNA dynamic encoding, J. Electron. Inf. Technol., 44 (2022), 3635–3642. https://doi.org/10.11999/JEIT210791 doi: 10.11999/JEIT210791
    [27] W. Feng, Z. Qin, J. Zhang, M. Ahmad, Cryptanalysis and improvement of the image encryption scheme based on Feistel network and dynamic DNA encoding, IEEE Access, 9 (2021), 145459–145470. https://doi.org/10.1109/ACCESS.2021.3123571 doi: 10.1109/ACCESS.2021.3123571
    [28] M. J. Zhao, L. X. Li, Z. Yuan, A multi-image encryption scheme based on a new n-dimensional chaotic model and eight-base DNA, Chaos, Solitons Fractals, 186 (2024), 115332. https://doi.org/10.1016/j.chaos.2024.115332 doi: 10.1016/j.chaos.2024.115332
    [29] L. M. Wu, Z. J. Tian, W. Chen, Color image encryption scheme based on 5D fractional-order complex chaotic system and eight-base DNA cubes, Expert Syst. Appl., 299 (2026), 129950. https://doi.org/10.1016/j.eswa.2025.129950. doi: 10.1016/j.eswa.2025.129950
    [30] M. Alawida, A novel DNA tree-based chaotic image encryption algorithm, J. Inf. Secur. Appl., 83 (2024), 103791. https://doi.org/10.1016/j.jisa.2024.103791 doi: 10.1016/j.jisa.2024.103791
    [31] X. D. Wang, X. B. Liu, J. W. Peng, A novel image encryption scheme based on a 3D enhanced chaotic map and DNA computing model, J. Franklin Inst., 362 (2025), 107790. https://doi.org/10.1016/j.jfranklin.2025.107790 doi: 10.1016/j.jfranklin.2025.107790
    [32] J. X. Tian, X. Q. Zhang, M. Liu, S. C. Jin, D. X. Shi, S. W. Yang, Remote sensing image encryption algorithm based on DNA convolution, J. Supercomput., 566 (2025). https://doi.org/10.1007/s11227-025-06982-9 doi: 10.1007/s11227-025-06982-9
    [33] L. L. Zhou, Q. L. Chen, F. Tan, C. X. Wu, A chaotic-system-based parallel image encryption algorithm with orthogonal arrays supporting thumbnail decryption, Expert Syst. Appl., 297 (2026), 129272. https://doi.org/10.1016/j.eswa.2025.129272 doi: 10.1016/j.eswa.2025.129272
    [34] J. F. Jie, Y. Yang, P. Zhang, The construction method of chaotic system model based on state variables and uncertain variables and its application in image encryption, Appl. Math. Modell., 144 (2025), 116097. https://doi.org/10.1016/j.apm.2025.116097 doi: 10.1016/j.apm.2025.116097
    [35] J. H. Wu, X. F. Liao, B. Yang, Image encryption using 2D Hénon-Sine map and DNA approach, Signal Process., 153 (2018), 11–23. https://doi.org/10.1016/j.sigpro.2018.06.008 doi: 10.1016/j.sigpro.2018.06.008
    [36] J. X. Chen, L. Chen, Y. C. Zhou, Cryptanalysis of a DNA-based image encryption scheme, Inf. Sci., 520 (2020), 130–141. https://doi.org/10.1016/j.ins.2020.02.024 doi: 10.1016/j.ins.2020.02.024
    [37] X. L. Chai, Y. R. Chen, L. Broyde, A novel chaos-based image encryption algorithm using DNA sequence operations, Opt. Lasers Eng., 88 (2017), 197–213. https://doi.org/10.1016/j.optlaseng.2016.08.009 doi: 10.1016/j.optlaseng.2016.08.009
    [38] P. F. Fang, M. M. Lou, M. Liu, H. Liu, Image encryption algorithm based on hyperchaotic system and DNA coding, in International Conference on Computer Communication and Artificial Intelligence (CCAI), IEEE, (2021), 41–46. https://doi.org/10.1109/CCAI50917.2021.9447470
    [39] H. J. Liu, Z. L. Zhu, H. Y. Jiang, B. L. Wang, A novel image encryption algorithm based on improved 3D chaotic cat map, in 2008 The 9th International Conference for Young Computer Scientists, (2008), 3016–3021. https://doi.org/10.1109/ICYCS.2008.449
    [40] T. G. Gao, Z. Q. Chen, Z. Z. Yuan, G. R. Chen, A hyperchaos generated from Chen's system, Int. J. Mod. Phys. C, 17 (2006), 471–478. https://doi.org/10.1142/S0129183106008625 doi: 10.1142/S0129183106008625
    [41] Y. Zhu, C. Wang, J. Sun, F. Yu, A chaotic image encryption method based on the artificial fish swarms algorithm and the DNA coding, Mathematics, 11 (2023), 767. https://doi.org/10.3390/math11030767 doi: 10.3390/math11030767
    [42] L. M. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (1994), 1021–1024. https://doi.org/10.1126/science.7973651 doi: 10.1126/science.7973651
    [43] G. Alvarez, S. J. Li, Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifurcation Chaos, 16 (2006), 2129–2151. https://doi.org/10.1142/S0218127406015970 doi: 10.1142/S0218127406015970
    [44] J. H. Sun, X. Q. Zhang, C. X. Chen, Image encryption algorithm based on Ⅴ-shaped scanning and matrix multiplication, Phys. Scr., 100 (2025), 035218. https://doi.org/10.1088/1402-4896/adb103 doi: 10.1088/1402-4896/adb103
    [45] B. Rezaei, H. Ghanbari, R. Enayatifar, An image encryption approach using tuned Henon chaotic map and evolutionary algorithm, Nonlinear Dyn., 111 (2023), 9629–9647. https://doi.org/10.1007/s11071-023-08331-y doi: 10.1007/s11071-023-08331-y
    [46] X. Y. Wang, M. C. Zhao, An image encryption algorithm based on hyperchaotic system and DNA coding, Opt. Laser Technol., 143 (2021), 107316. https://doi.org/10.1016/j.optlastec.2021.107316 doi: 10.1016/j.optlastec.2021.107316
    [47] Y. J. Xian, X. Y. Wang, X. P. Yan, Q. Li, X. Y. Wang, Image encryption based on chaotic sub-block scrambling and chaotic digit selection diffusion, Opt. Lasers Eng., 134 (2020), 106202. https://doi.org/10.1016/j.optlaseng.2020.106202 doi: 10.1016/j.optlaseng.2020.106202
    [48] X. Wang, C. Liu, A novel and effective image encryption algorithm based on chaos and DNA encoding, Multimedia Tools Appl., 76 (2017), 6229–6245. https://doi.org/10.1007/s11042-016-3311-8 doi: 10.1007/s11042-016-3311-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(236) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog