In this paper, we study the following quasilinear Schrödinger equation with a parameter: $ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2\kappa\beta\Delta(|u|^{2\beta})|u|^{2\beta-2}u = |u|^{q-2}u+|u|^{(2\beta)2^*-2}u $ in $ \mathbb{R}^N $, where $ N\geqslant3 $, $ \beta > \frac{1}{2} $, $ 4\beta < q < (2\beta)2^* $, $ \kappa $ is a constant, and $ V:\mathbb{R}^N\to\mathbb{R} $ satisfies the classical global assumption. By using a change of variable, we obtain the existence, multiplicity, and concentration behavior. We will see that the existence of solutions depends heavily on the parameter $ \beta $.
Citation: Hongjie Xu, Xianyong Yang. Semi-classical states for a class of quasilinear Schrödinger equations with a parameter[J]. Electronic Research Archive, 2025, 33(11): 7103-7125. doi: 10.3934/era.2025314
In this paper, we study the following quasilinear Schrödinger equation with a parameter: $ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2\kappa\beta\Delta(|u|^{2\beta})|u|^{2\beta-2}u = |u|^{q-2}u+|u|^{(2\beta)2^*-2}u $ in $ \mathbb{R}^N $, where $ N\geqslant3 $, $ \beta > \frac{1}{2} $, $ 4\beta < q < (2\beta)2^* $, $ \kappa $ is a constant, and $ V:\mathbb{R}^N\to\mathbb{R} $ satisfies the classical global assumption. By using a change of variable, we obtain the existence, multiplicity, and concentration behavior. We will see that the existence of solutions depends heavily on the parameter $ \beta $.
| [1] |
S. Kurihara, Large-amplitude quasi-solitions in superfluid films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
|
| [2] |
E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. https://doi.org/10.1063/1.525675 doi: 10.1063/1.525675
|
| [3] | J. Liu, Z. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Am. Math. Soc., 131 (2003), 441–448. Available from: http://www.jstor.org/stable/1194312. |
| [4] |
J. Liu, Y. Wang, Z. Wang, Soliton solutions for quaslinear Schrödinger equations, Ⅱ, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
|
| [5] |
X. Liu, J. Liu, Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differ. Equations, 254 (2013), 102–124. https://doi.org/10.1016/j.jde.2012.09.006 doi: 10.1016/j.jde.2012.09.006
|
| [6] |
J. M. Bezerra, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 248 (2010), 722–744. https://doi.org/10.1016/j.jde.2009.11.030 doi: 10.1016/j.jde.2009.11.030
|
| [7] |
H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
|
| [8] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, ZAMP, 43 (1992), 270–291. https://doi.org/10.1007/BF00946631 doi: 10.1007/BF00946631
|
| [9] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 153 (1993), 229–244. https://doi.org/10.1007/BF02096642 doi: 10.1007/BF02096642
|
| [10] |
M. del Pino, P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equations, 4 (1996), 121–137. https://doi.org/10.1007/BF01189950 doi: 10.1007/BF01189950
|
| [11] |
Y. Wang, W. Zou, Bound states to critical quasilinear Schrödinger equations, NoDEA, 19 (2012), 19–47. https://doi.org/10.1007/s00030-011-0116-3 doi: 10.1007/s00030-011-0116-3
|
| [12] |
X. He, A. Qian, W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137–3168. https://doi.org/10.1088/0951-7715/26/12/3137 doi: 10.1088/0951-7715/26/12/3137
|
| [13] |
M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal. Theory Methods Appl., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008
|
| [14] |
Z. Li, Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differ. Equations, 266 (2019), 7264–7290. https://doi.org/10.1016/j.jde.2018.11.030 doi: 10.1016/j.jde.2018.11.030
|
| [15] |
X. Liu, J. Liu, Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equations, 46 (2013), 641–669. https://doi.org/10.1007/s00526-012-0497-0 doi: 10.1007/s00526-012-0497-0
|
| [16] |
A. Moameni, Existence of soliton solutions for quasilinear Schrödinger equations involving critical exponent in $\mathbb{R}^N$, J. Differ. Equations, 229 (2006), 570–587. https://doi.org/10.1016/j.jde.2006.07.001 doi: 10.1016/j.jde.2006.07.001
|
| [17] |
A. Moameni, On the existence of standing wave solutions to quasilinear Schrödinger equations, Nonlinearity, 19 (2006), 937–957. https://doi.org/10.1088/0951-7715/19/4/009 doi: 10.1088/0951-7715/19/4/009
|
| [18] |
Z. Li, Y. Zhang, Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponents, J. Math. Phys., 58 (2017), 021501. https://doi.org/10.1063/1.4975009 doi: 10.1063/1.4975009
|
| [19] |
X. Yang, X. Tang, Y. Zhang, Positive, negative, and sign-changing solutions to a quasilinear Schrödinger equation with a parameter, J. Math. Phys., 60 (2019), 121510. https://doi.org/10.1063/1.5116602 doi: 10.1063/1.5116602
|
| [20] |
S. Adachi, T. Watanabe, $G$-invariant positive solutions for a quasilinear Schrödinger equation, Adv. Differ. Equations, 16 (2011), 289–324. https://doi.org/10.57262/ade/1355854310 doi: 10.57262/ade/1355854310
|
| [21] |
S. Adachi, T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal. Theory Methods Appl., 75 (2012), 819–833. https://doi.org/10.1016/j.na.2011.09.015 doi: 10.1016/j.na.2011.09.015
|
| [22] |
J. M. do Ó, U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differ. Equations, 38 (2010), 275–315. https://doi.org/10.1007/s00526-009-0286-6 doi: 10.1007/s00526-009-0286-6
|
| [23] | M. Willem, Minimax Theorems, Birkhaüser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
| [24] |
P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283. https://doi.org/10.1016/s0294-1449(16)30422-x doi: 10.1016/s0294-1449(16)30422-x
|
| [25] |
E. Dibenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate results elliptic equations, Nonlinear Anal. Theory Methods Appl., 7 (1983), 827–850. https://doi.org/10.1016/0362-546X(83)90061-5 doi: 10.1016/0362-546X(83)90061-5
|
| [26] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. https://doi.org/10.1016/0022-0396(84)90105-0 doi: 10.1016/0022-0396(84)90105-0
|
| [27] |
C. O. Alves, G. M. Figueiredo, Existence and multiplicity of positive solutions to a $p$-Laplacian equation in $\mathbb{R}^N$, Differ. Integr. Equations, 19 (2006), 143–162. https://doi.org/10.57262/die/1356050522 doi: 10.57262/die/1356050522
|