Research article

On multiple-cost optimization and extended controlled vector inequalities

  • Published: 21 November 2025
  • In this study, we established several relations between generalized (weak) vector controlled inequalities of Minty and Stampacchia type and the associated multi-cost models. To this end, we introduced the updated concepts of preconvexity and (strictly) strong convexity for functionals governed by controlled simple integrals and a mean-value-type result. Also, we introduced the corresponding multiobjective extremization models. The theoretical notions and the main results were justified by suitable numerical examples that were non-trivial.

    Citation: Savin Treanţă, Marilena Ciontescu. On multiple-cost optimization and extended controlled vector inequalities[J]. Electronic Research Archive, 2025, 33(11): 7085-7102. doi: 10.3934/era.2025313

    Related Papers:

  • In this study, we established several relations between generalized (weak) vector controlled inequalities of Minty and Stampacchia type and the associated multi-cost models. To this end, we introduced the updated concepts of preconvexity and (strictly) strong convexity for functionals governed by controlled simple integrals and a mean-value-type result. Also, we introduced the corresponding multiobjective extremization models. The theoretical notions and the main results were justified by suitable numerical examples that were non-trivial.



    加载中


    [1] M. A. Hanson, Bounds for functionally convex optimal control problems, J. Math. Anal. Appl., 8 (1964), 84–89. https://doi.org/10.1016/0022-247X(64)90086-1 doi: 10.1016/0022-247X(64)90086-1
    [2] M. H. Kim, Relations between vector continuous-time program and vector variational-type inequality, J. Appl. Math. Comput., 16 (2004), 279–287. https://doi.org/10.1007/BF02936168 doi: 10.1007/BF02936168
    [3] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, in Variational Inequalities and Complementarity Problems (eds. R. W. Cottle, F. Giannessi, J. L. Lions), John Wiley and Sons, Chichester, (1980), 151–186.
    [4] F. Giannessi, On Minty variational principle, in New Trends in Mathematical Programming Applied Optimization (eds. F. Giannessi, S. Komlosi, T. Rapcsak), (1998), 93–99. https://doi.org/10.1007/978-1-4757-2878-1_8
    [5] M. Oveisiha, J. Zafarani, Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 7 (2013), 709–721. https://doi.org/10.1007/s11590-012-0454-z doi: 10.1007/s11590-012-0454-z
    [6] S. J. Yu, J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl., 89 (1996), 749–769. https://doi.org/10.1007/bf02275358 doi: 10.1007/bf02275358
    [7] G. M. Lee, On relations between vector variational inequality and vector optimization problem, in Progress in Optimization Applied Optimization (eds. X. Yang, A. I. Mees, M. Fisher, L. Jennings), Springer, Boston, 2000. https://doi.org/10.1007/978-1-4613-0301-5_12
    [8] X. M. Yang, X. Q. Yang, K. L. Teo, Some remarks on the Minty vector variational inequality, J. Optim. Theory Appl., 121 (2004), 193–201. https://doi.org/10.1023/B:JOTA.0000026137.18526.7a doi: 10.1023/B:JOTA.0000026137.18526.7a
    [9] L. B. Santos, M. A. Rojas-Medar, A. Rufián-Lizana, Some relations between variational-like inequalities and efficient solutions of certain nonsmooth optimization problems, Int. J. Math. Math. Sci., 2006 (2006), 16. https://doi.org/10.1155/IJMMS/2006/26808 doi: 10.1155/IJMMS/2006/26808
    [10] Q. H. Ansari, G. M. Lee, Nonsmooth vector optimization problems and Minty vector variational inequalities, J. Optim. Theory Appl., 145 (2010), 1–16. https://doi.org/10.1007/s10957-009-9638-9 doi: 10.1007/s10957-009-9638-9
    [11] S. Al-Homidan, Q. H. Ansari, Generalized minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl., 144 (2010), 1–11. https://doi.org/10.1007/s10957-009-9591-7 doi: 10.1007/s10957-009-9591-7
    [12] M. Arana-Jiménez, G. Ruiz-Garzón, A. Rufián-Lizana, R. O. Gómez, A necessary and sufficient condition for duality in multiobjective variational problems, Eur. J. Oper. Res., 201 (2010), 672–681. https://doi.org/10.1016/j.ejor.2009.03.047 doi: 10.1016/j.ejor.2009.03.047
    [13] M. Miholca, On set-valued optimization problems and vector variational-like inequalities, Optim. Lett., 30 (2014), 101–108. https://doi.org/10.1007/s11590-012-0591-4 doi: 10.1007/s11590-012-0591-4
    [14] A. Jayswal, S. Singh, A. Kurdi, Multitime multiobjective variational problems and vector variational-like inequalities, Eur. J. Oper. Res., 254 (2016), 739–745. https://doi.org/10.1016/j.ejor.2016.05.006 doi: 10.1016/j.ejor.2016.05.006
    [15] A. Jayswal, S. Singh, Multiobjective variational problems and generalized vector variational-type inequalities, RAIRO Oper. Res., 51 (2017), 211–225. https://doi.org/10.1051/ro/2016017 doi: 10.1051/ro/2016017
    [16] C. M. Cebuc, S. Treanţă, On controlled Stampacchia-type vector variational inequalities, Control Cyber., 53 (2024), 321–334. https://doi.org/10.2478/candc-2024-0013 doi: 10.2478/candc-2024-0013
    [17] G. P. Crespi, I. Ginchev, M. Rocca, Variational inequalities in vector optimization, in Variational Analysis and Applications (eds. F. Giannessi, A. Maugeri), Kluwer Academic, Dordrecht, (2004), 79. https://doi.org/10.1007/0-387-24276-7_19
    [18] G. P. Crespi, I. Ginchev, M. Rocca, Some remarks on the Minty vector variational principle, J. Math. Anal. Appl., 345 (2008), 165–175. https://doi.org/10.1016/j.jmaa.2008.03.012 doi: 10.1016/j.jmaa.2008.03.012
    [19] G. Ruiz-Garzón, L. B. Santos, A. Rufián-Lizana, M. Arana-Jiménez, Some relations between Minty variational-like inequality problems and vectorial optimization problems in Banach spaces, Comput. Math. Appl., 60 (2010), 2679–2688. https://doi.org/10.1016/j.camwa.2010.09.012 doi: 10.1016/j.camwa.2010.09.012
    [20] S. Treanţă, C. F. Pîrje, C. M. Cebuc, On generalized Minty variational control inequalities and the associated multi-cost models, J. Multi-Criteria Decis. Anal., 32 (2025), e70008. https://doi.org/10.1002/mcda.70008 doi: 10.1002/mcda.70008
    [21] G. Yu, Y. Lu, Multi-objective optimization problems and vector variational-like inequalities involving semi-strong E-convexity, in Fourth International Joint Conference on Computational Sciences and Optimization, (2011), 476-479.
    [22] Y. Lu, D. Ruan, Q. Zhu, Symmetric analysis of stability criteria for nonlinear systems with multi-delayed periodic impulses: intensity periodicity and averaged delay, Symmetry, 17 (2025), 1481. https://doi.org/10.3390/sym17091481 doi: 10.3390/sym17091481
    [23] Z. Zhu, S. Liao, F. Jia, Nonovershooting prescribed finite-time control for nonlinear pure-feedback systems, Complex Syst. Stab. Control, 1 (2025), 4. https://doi.org/2510001743/2510001743
    [24] V. Jurdjevic, Time optimal problems on Lie groups and applications to quantum control, Commun. Anal. Mech., 16 (2024), 345–387. https://doi.org/10.3934/cam.2024017 doi: 10.3934/cam.2024017
    [25] Y. Yang, C. Wen, Y. Liu, H. Li, J. Wang, Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model, Commun. Anal. Mech., 16 (2024), 24–52. https://doi.org/10.3934/cam.2024002 doi: 10.3934/cam.2024002
    [26] S. Treanţă, T. Antczak, T. Saeed, Connections between non-linear optimization problems and associated variational inequalities, Mathematics, 11 (2023), 1314. https://doi.org/10.3390/math11061314 doi: 10.3390/math11061314
    [27] S. Treanţă, T. Saeed, On weak variational control inequalities via interval analysis, Mathematics, 11 (2023), 2177. https://doi.org/10.3390/math11092177 doi: 10.3390/math11092177
    [28] S. Treanţă, Y. Guo, The study of certain optimization problems via variational inequalities, Res. Math. Sci., 10 (2023), 7. https://doi.org/10.1007/s40687-022-00372-w doi: 10.1007/s40687-022-00372-w
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(174) PDF downloads(14) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog