In this study, we established several relations between generalized (weak) vector controlled inequalities of Minty and Stampacchia type and the associated multi-cost models. To this end, we introduced the updated concepts of preconvexity and (strictly) strong convexity for functionals governed by controlled simple integrals and a mean-value-type result. Also, we introduced the corresponding multiobjective extremization models. The theoretical notions and the main results were justified by suitable numerical examples that were non-trivial.
Citation: Savin Treanţă, Marilena Ciontescu. On multiple-cost optimization and extended controlled vector inequalities[J]. Electronic Research Archive, 2025, 33(11): 7085-7102. doi: 10.3934/era.2025313
In this study, we established several relations between generalized (weak) vector controlled inequalities of Minty and Stampacchia type and the associated multi-cost models. To this end, we introduced the updated concepts of preconvexity and (strictly) strong convexity for functionals governed by controlled simple integrals and a mean-value-type result. Also, we introduced the corresponding multiobjective extremization models. The theoretical notions and the main results were justified by suitable numerical examples that were non-trivial.
| [1] |
M. A. Hanson, Bounds for functionally convex optimal control problems, J. Math. Anal. Appl., 8 (1964), 84–89. https://doi.org/10.1016/0022-247X(64)90086-1 doi: 10.1016/0022-247X(64)90086-1
|
| [2] |
M. H. Kim, Relations between vector continuous-time program and vector variational-type inequality, J. Appl. Math. Comput., 16 (2004), 279–287. https://doi.org/10.1007/BF02936168 doi: 10.1007/BF02936168
|
| [3] | F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, in Variational Inequalities and Complementarity Problems (eds. R. W. Cottle, F. Giannessi, J. L. Lions), John Wiley and Sons, Chichester, (1980), 151–186. |
| [4] | F. Giannessi, On Minty variational principle, in New Trends in Mathematical Programming Applied Optimization (eds. F. Giannessi, S. Komlosi, T. Rapcsak), (1998), 93–99. https://doi.org/10.1007/978-1-4757-2878-1_8 |
| [5] |
M. Oveisiha, J. Zafarani, Generalized Minty vector variational-like inequalities and vector optimization problems in Asplund spaces, Optim. Lett., 7 (2013), 709–721. https://doi.org/10.1007/s11590-012-0454-z doi: 10.1007/s11590-012-0454-z
|
| [6] |
S. J. Yu, J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl., 89 (1996), 749–769. https://doi.org/10.1007/bf02275358 doi: 10.1007/bf02275358
|
| [7] | G. M. Lee, On relations between vector variational inequality and vector optimization problem, in Progress in Optimization Applied Optimization (eds. X. Yang, A. I. Mees, M. Fisher, L. Jennings), Springer, Boston, 2000. https://doi.org/10.1007/978-1-4613-0301-5_12 |
| [8] |
X. M. Yang, X. Q. Yang, K. L. Teo, Some remarks on the Minty vector variational inequality, J. Optim. Theory Appl., 121 (2004), 193–201. https://doi.org/10.1023/B:JOTA.0000026137.18526.7a doi: 10.1023/B:JOTA.0000026137.18526.7a
|
| [9] |
L. B. Santos, M. A. Rojas-Medar, A. Rufián-Lizana, Some relations between variational-like inequalities and efficient solutions of certain nonsmooth optimization problems, Int. J. Math. Math. Sci., 2006 (2006), 16. https://doi.org/10.1155/IJMMS/2006/26808 doi: 10.1155/IJMMS/2006/26808
|
| [10] |
Q. H. Ansari, G. M. Lee, Nonsmooth vector optimization problems and Minty vector variational inequalities, J. Optim. Theory Appl., 145 (2010), 1–16. https://doi.org/10.1007/s10957-009-9638-9 doi: 10.1007/s10957-009-9638-9
|
| [11] |
S. Al-Homidan, Q. H. Ansari, Generalized minty vector variational-like inequalities and vector optimization problems, J. Optim. Theory Appl., 144 (2010), 1–11. https://doi.org/10.1007/s10957-009-9591-7 doi: 10.1007/s10957-009-9591-7
|
| [12] |
M. Arana-Jiménez, G. Ruiz-Garzón, A. Rufián-Lizana, R. O. Gómez, A necessary and sufficient condition for duality in multiobjective variational problems, Eur. J. Oper. Res., 201 (2010), 672–681. https://doi.org/10.1016/j.ejor.2009.03.047 doi: 10.1016/j.ejor.2009.03.047
|
| [13] |
M. Miholca, On set-valued optimization problems and vector variational-like inequalities, Optim. Lett., 30 (2014), 101–108. https://doi.org/10.1007/s11590-012-0591-4 doi: 10.1007/s11590-012-0591-4
|
| [14] |
A. Jayswal, S. Singh, A. Kurdi, Multitime multiobjective variational problems and vector variational-like inequalities, Eur. J. Oper. Res., 254 (2016), 739–745. https://doi.org/10.1016/j.ejor.2016.05.006 doi: 10.1016/j.ejor.2016.05.006
|
| [15] |
A. Jayswal, S. Singh, Multiobjective variational problems and generalized vector variational-type inequalities, RAIRO Oper. Res., 51 (2017), 211–225. https://doi.org/10.1051/ro/2016017 doi: 10.1051/ro/2016017
|
| [16] |
C. M. Cebuc, S. Treanţă, On controlled Stampacchia-type vector variational inequalities, Control Cyber., 53 (2024), 321–334. https://doi.org/10.2478/candc-2024-0013 doi: 10.2478/candc-2024-0013
|
| [17] | G. P. Crespi, I. Ginchev, M. Rocca, Variational inequalities in vector optimization, in Variational Analysis and Applications (eds. F. Giannessi, A. Maugeri), Kluwer Academic, Dordrecht, (2004), 79. https://doi.org/10.1007/0-387-24276-7_19 |
| [18] |
G. P. Crespi, I. Ginchev, M. Rocca, Some remarks on the Minty vector variational principle, J. Math. Anal. Appl., 345 (2008), 165–175. https://doi.org/10.1016/j.jmaa.2008.03.012 doi: 10.1016/j.jmaa.2008.03.012
|
| [19] |
G. Ruiz-Garzón, L. B. Santos, A. Rufián-Lizana, M. Arana-Jiménez, Some relations between Minty variational-like inequality problems and vectorial optimization problems in Banach spaces, Comput. Math. Appl., 60 (2010), 2679–2688. https://doi.org/10.1016/j.camwa.2010.09.012 doi: 10.1016/j.camwa.2010.09.012
|
| [20] |
S. Treanţă, C. F. Pîrje, C. M. Cebuc, On generalized Minty variational control inequalities and the associated multi-cost models, J. Multi-Criteria Decis. Anal., 32 (2025), e70008. https://doi.org/10.1002/mcda.70008 doi: 10.1002/mcda.70008
|
| [21] | G. Yu, Y. Lu, Multi-objective optimization problems and vector variational-like inequalities involving semi-strong E-convexity, in Fourth International Joint Conference on Computational Sciences and Optimization, (2011), 476-479. |
| [22] |
Y. Lu, D. Ruan, Q. Zhu, Symmetric analysis of stability criteria for nonlinear systems with multi-delayed periodic impulses: intensity periodicity and averaged delay, Symmetry, 17 (2025), 1481. https://doi.org/10.3390/sym17091481 doi: 10.3390/sym17091481
|
| [23] | Z. Zhu, S. Liao, F. Jia, Nonovershooting prescribed finite-time control for nonlinear pure-feedback systems, Complex Syst. Stab. Control, 1 (2025), 4. https://doi.org/2510001743/2510001743 |
| [24] |
V. Jurdjevic, Time optimal problems on Lie groups and applications to quantum control, Commun. Anal. Mech., 16 (2024), 345–387. https://doi.org/10.3934/cam.2024017 doi: 10.3934/cam.2024017
|
| [25] |
Y. Yang, C. Wen, Y. Liu, H. Li, J. Wang, Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model, Commun. Anal. Mech., 16 (2024), 24–52. https://doi.org/10.3934/cam.2024002 doi: 10.3934/cam.2024002
|
| [26] |
S. Treanţă, T. Antczak, T. Saeed, Connections between non-linear optimization problems and associated variational inequalities, Mathematics, 11 (2023), 1314. https://doi.org/10.3390/math11061314 doi: 10.3390/math11061314
|
| [27] |
S. Treanţă, T. Saeed, On weak variational control inequalities via interval analysis, Mathematics, 11 (2023), 2177. https://doi.org/10.3390/math11092177 doi: 10.3390/math11092177
|
| [28] |
S. Treanţă, Y. Guo, The study of certain optimization problems via variational inequalities, Res. Math. Sci., 10 (2023), 7. https://doi.org/10.1007/s40687-022-00372-w doi: 10.1007/s40687-022-00372-w
|